
In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Automated Measurement of Models of Requirements

Martin Monperrus1, Benoit Baudry2, Joël Champeau3,

Brigitte Hoeltzener3, Jean-Marc Jézéquel2,4

1. TU Darmstadt - 2. INRIA - 3. ENSIETA - 4. University of Rennes 1

Abstract

On way to formalize system requirements is to express them using the object-oriented

paradigm. In this case, the class model representing the structure of requirements is called

a requirements metamodel, and requirements themselves are object-based models of natural-

language requirements. In this paper, we show that such object-oriented requirements are

well-suited to support a large class of requirements metrics. We define a requirements meta-

model and use an automated measurement approach proposed in our previous work to specify

requirements metrics. We show that it is possible to integrate 78 metrics from 11 different pa-

pers in the proposed framework. The software that computes the requirements metric values

is fully generated from the specification of metrics.

1 Introduction

Requirements Metrics - Value Added. This was an appealing title of a talk at the 1997 International

Conference on Requirements Engineering [1]. The idea behind the title is that it is possible to

identify risks and flaws very early in the system life cycle by measuring requirements.

Also, the Capability Maturity Model (CMM) of the Software Engineering Institute emphasizes

on the need for requirements measurements: measurements are made and used to determine the

status of the activities for managing the allocated requirements (Key Practices of the Capability

Maturity Model [2, p. 98]). These guidelines on requirements measurement have then been

extended and refined in the ISO 25000 series of standards (SQuaRE - [3]).

According to Zave [4], requirements measurement is an important subfield of research on

requirements engineering, as a means of comparing solutions to requirements engineering problems.

Indeed, several papers have defined requirements metrics (e.g. [5, 6, 7, 8, 9, 10, 11, 12]).

However, those papers all address different aspects of requirements metrics, e.g. measuring the

product (such as counting the number of words of the requirements specification), or measuring

the process (such as gathering the cost in man/month of the requirements engineering phase).

Also, certain metrics do not share the same terminology, i.e. are described using different terms.

For instance, the notions of time frame and unit of time may have similar yet different meanings.

1

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Figure 1: Our acceptation of model of requirements.

Finally, some metrics are ambiguous and subject to interpretation since they are all described

with natural language. For instance, the cost of change to requirements of [8] could be interpreted

as the cost of verifying the consistency of impacted requirements or the cost of modifying the

corresponding software items. To our knowledge, there is no related work trying to unify previous

approaches in a single framework.

On the other hand, in recent years, a body of techniques called model-driven engineering has

emerged to tackle several problems of software engineering [13]. A key insight of model-driven

engineering is to leverage the object-oriented paradigm in other areas than domain analysis or

implementation. For instance, previous work [14] showed that the object-oriented paradigm is

appropriate to describe requirements specification using models of requirements. The research

presented in this paper goes further in this direction and explores the confluence of requirements

measurement and model-driven engineering.

Figure 1 illustrates what we call a model of requirements. A standard view of requirements

engineering in that a set of requirements written in natural languages specifies a system S (at the

left-hand side of the figure). In this paper, along the same line as related research [15], we define a

model of requirements as a formalization of a part of a requirements specification using the object-

oriented paradigm, i.e. certain requirements are described as objects having fields and relations

with other objects. This model of requirements is an instance of a requirements metamodel that

defines the space of valid models of requirements (at the right-hand side of the figure). Since a

requirements metamodel describes the structure of objects representing requirements, it is similar

to a set of classes of an object-oriented program and can be represented using a class diagram.

Thus a model of requirements as used in this paper, is different from a requirements process model

that describes a customer process for better understanding the environment, and also different

from an analysis model for showing how a delivered product or solution will work in the client

environment.

In this paper, we propose a requirements metamodel that contains all the necessary concepts

with respect to requirements measurement, i.e. a requirements metamodel that supports the

requirements metrics of the literature. The metamodel unifies both the terminology and the

semantics of the requirements concepts involved. More specifically, our contributions are as follows:

• a unified list of 78 requirements metrics based on previous work on requirements metrics

(Section 2). This list grounds the contributions that follow but may also be used in the

context of new requirements quality models.

2

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

• a requirements metamodel that supports requirements measurement (Section 4). The full

specification of this metamodel is given in appendix A.

• the automatic generation of a requirements measurement tool using the model-driven mea-

surement approach of [16]. The aforementioned unified requirements metrics are formally

captured as instances of a metric metamodel. These instances then seed the generation of a

requirements measurement tool (Section 5).

We analyze the main characteristics of our approach in a discussion section, where we provide

insights and arguments showing that: 1) it unifies previous heterogeneous work; 2) it allows the

complete computability of requirements metrics; 3) it is fully supported by generative program-

ming.

The remainder of this paper is organized as follows. Section 2 is the study of the literature

on requirements metrics; Section 3 presents the process we adopted to build our requirements

metamodel, which is presented in section 4. Then, section 5 describes our model-driven solution

to the measurement of requirements. Finally, section 6 discusses our approach and section 7

concludes the paper by sketching future work.

2 A Survey on Requirement Metrics

In this section, we present a survey on requirements metrics. First we discuss the criteria we

chose to select metrics among previous contributions. We then briefly describe the corresponding

papers.

2.1 Methodology

2.1.1 Identification of papers

To identify the relevant papers for the survey, we have used the Google Scholar1 bibliographic

database with the words “requirement” and “metric” or “measurement”. Furthermore, we have

carefully followed the citation graph to ensure that we have not missed papers that are not

indexed in Google Scholar. All matching papers were systematically considered for inclusion.

They are two threats to validity in this identification strategy. First, Google Scholar may not

index all papers related to requirements metrics. Indeed, Zhang and Ali Babar [17] showed that

IEEE Xplore and ACM Digital Library are the most commonly used sources for literature reviews

in software engineering. However, several authors (e.g. [18, 19]) showed that the coverage of Google

Scholar is very good in average (close to 100% according to the latest paper), independently of

the field. Second, it is possible that we have missed relevant papers which do not mention the

1http://scholar.google.com

3

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

aforementioned words. We think it is unlikely since these words are both used in papers on

requirements measurement that are much cited (e.g. [6]) or written by reference authors (e.g. [4]).

2.1.2 Selection of requirements metrics

We have defined the following criteria to select metrics among existing papers.

1. Our work focuses on requirements product metrics. In this paper, a requirement product

metric is a metric that is applied to a requirement or a set of requirements, also known as a

requirements specification [20].

2. We discard purely syntactic and natural language based metrics, for instance the number of

pages of [6]. Syntactic metrics are useful, and they perfectly address the measurement of

existing requirements specifications. However, they are not appropriate to obtain semantic

information with syntactic metrics (for instance, the number of requirements that were dis-

carded between the first and the second version of the requirements specification). Although

natural language based metrics also perfectly fit to existing requirements specifications (i.e.

they are lightweight), they are often imprecise [21].

2.2 Selected papers

In the following, we briefly present pieces of research that define requirements metrics which

comply with the criteria defined in section 2.1.2. They are mostly sorted by chronological order.

Baumert et al. The paper of Baumert et al. [22] describes a set of software measures that

are compatible with the measurement practices of the Capability Maturity Model for Soft-

ware. The measures are classified by category. For instance, one category addresses the

requirements stability.

Davis et al. The goal of the Davis et al.’s paper [5] is to thoroughly explore the concept of quality

in a software requirements specification (SRS) and to define quality attributes that can be

really measured. They define 24 quality attributes for a software requirements specification.

They show examples of requirements that satisfy or not each quality attribute.

Costello and Liu Costello and Liu [6] believe that the discipline of software metrics can be

applied to requirements metrics. Indeed, they try to provide a full life cycle coverage by

metrics. Their final goal is to comprehensively assess objective aspects of the requirement

engineering processes and products. To our knowledge, they are the first to introduce the

expression “measurable requirements specification". This expression emphasizes the key role

of measurement for requirement engineering. To a certain extent, this means that the will

to measure requirements is a sufficient reason to modify the requirement products or the

4

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

requirement engineering process accordingly. Costello and Liu define several metrics linked

to three quality attributes: volatility, traceability and completeness.

Marchesi To the best of our knowledge, the paper by Marchesi [7] is the first to consider require-

ments from a model-driven viewpoint. The corresponding metrics address use case based

requirements, in the sense of UML use cases [23].

Loconsole Loconsole [8] also defines a set of requirement products metrics. In this paper, she

applies the Goal/Question/Metric approach [24] to the Capability Maturity Model (similarly

to [22]) and obtains 53 interesting requirements metrics. According to the criteria of section

2.1.2, we keep 13 of them.

Henderson-Sellers et al. The paper by Henderson-Sellers et al. [9] makes a synthesis between

the objections of Costello [6] and the idea of Marchesi [7]. Henderson-Sellers et al. set

out a use case template so that use cases can be metricated. Given a set of requirements

expressed in a standard use cases template, it is then possible to define requirements metrics

and obtain metric values. Indeed, they propose twelve use case metrics.

Singh et al. Singh et al. define [10] a complexity metric for an individual requirement and for a

category of requirements. In order to compute the metric values, they propose a requirements

metamodel. To our knowledge, this is the first attempt to define a requirements metamodel

with the main goal of making the requirements measurable.

White papers In 2004, two white papers by different companies were published [25], [26]. Kolde

points out that many projects lack requirements measurement and that requirements doc-

uments are of various form, hence are difficult to measure. He also defines several require-

ments metrics. The scope of Computing Model Complexity [26] is larger. However, since the

company sells a UML-oriented tool, the paper contains several use cases metric definitions.

Both papers emphasize on the fact that requirements metamodeling eases the measurement

of requirements.

MDD Engineering Metrics Catalogue The Modelware project published a MDD Engineer-

ing Metrics Catalogue [27]. We include in our approach the metrics related to use cases that

are defined in this document.

Berenbach et al. Berenbach et al. [11] describes a CMMI compliant and model-driven approach

for requirements measurement. This work maps the CMM process onto models, mainly use

cases models, in order to automatically obtain metric values.

5

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Short Metric Description Origins

1 Number of requirements (NR) Costello, Kolde, Davis, Loconsole,
Baumert

2 Number of initial requirements Loconsole, Baumert
3 Number of requirements added per time frame Costello, Kolde
4 Number of requirements modified per time frame Costello
5 Number of requirements deleted per time frame Costello, Baumert
6 Number of changes per time frame Costello, Kolde, Loconsole
7 Number of changes per requirement Loconsole
8 Number of requirements that trace to the next level up Costello
9 Number of requirements that trace to the next level down Costello
10 Number of requirements that trace to the next level in both directions Costello
11 Number of requirements that trace from highest to lowest Costello, Kolde
12 Number of requirements that trace from lowest to highest Costello
13 Number of CSCI linked to a requirement Loconsole
14 Number of requirements per level that have inconsistent traceability links

upward
Costello

15 Number of req. per level that have inconsistent traceability links down-
ward

Costello, Kolde

16 Number of requirements per level that have no traceability links upward Costello
17 Number of requirements per level that have no traceability links downward Costello
18 Degree of decomposition per requirement per time frame Costello
19 Number of requirements per status Costello, Kolde, Davis, Berenbach, Lo-

console
20 Number of req. that trace to one or more incomplete req. Costello
21 Num. of req. that trace to inconsistent requirement (i.e. status is Tbx -

to be X)
Costello

22 Number of incomplete requirements Costello
23 Number of requirements reflected in one or more CSCI Costello
24 Number of use cases per status Modelware
25 Number of use cases per status per time frame Modelware, Loconsole
26 Number of use cases Douglass, Marchesi
27 Number of functions specified (NF) Davis
28 Number of unique functions specified (NUF) Davis
29 Number of requirements traced to incomplete CSCI Costello
30 Number of accepted use case diagrams Berenbach
31 Number of non submitted use case diagrams Berenbach
32 Number of sequence diagrams per use case Douglass
33 Number of submitted use case diagrams Berenbach
34 Number of boundaries that do not communicate with an actor Berenbach
35 Number of boundaries that do not communicate with a concrete use case Berenbach
36 Number of use cases per actor Douglass, Marchesi
37 Number of actors Berenbach, Douglass, Henderson-Sellers
38 Number of use cases non described by one or more behavioral diagram Berenbach
39 Number of use cases that do not appear on a diagram Berenbach
40 Number of circular dependencies between use cases Berenbach
41 Number of uses cases that do not appear on a parent behavioral diagram Berenbach
42 Number of mixed use cases (including one abstract and one concrete) Berenbach
43 Number of impacted requirements per change Modelware, Loconsole, Baumert
44 Number of input states per function (A) Davis
45 Number of states per use cases Douglass
46 Number of activities per use cases Douglass, Henderson-Sellers
47 Number of activities in the main flow per use case Henderson-Sellers
48 Number of activities per alternative flow per use case Henderson-Sellers
49 Number of activities in the alternative flows per use case Henderson-Sellers
50 Number of activities per actor Henderson-Sellers, Marchesi
51 Number of activities per goal Henderson-Sellers
52 Number of goals per stakeholder Henderson-Sellers
53 Number of dependencies per use case (includes, extends) Douglass
54 Number of requirements changes to a requirements baseline Kolde
55 Number of requirements by responsible Kolde
56 Number of responsibles by requirement Loconsole
57 Number of functional requirements allocated to a project release Kolde, Loconsole, Baumert
58 Strength of an individual requirement Singh
59 Strength of a category Singh
60 Number of req. for which all reviewers presented identical interpretations

(NU)
Davis, Loconsole

62 Number of input stimulus per function (B) Davis
63 Number of flows per function (C) Davis
65 Number of correct requirements (NC) Davis

67 Verifiability = NR/(NR +
∑

i
costi +

∑
i
timei) Davis

68 Number of test cases per requirement Loconsole, Baumert
69 Number of fun. that are not deterministic (NUFND) Davis
70 Number of req. that describe pure external behavior Davis
71 Number of req. that describe architecture and algorithm (NAC) Davis
74 Size of the longest path between the first activity and the final activity Henderson-Sellers
75 Number of alternative flows Henderson-Sellers
76 Number of stakeholders Henderson-Sellers
77 Number of goals Henderson-Sellers
78 Number of changes to req. incorporated into baseline per time frame Loconsole

DERIVED
61 Unambiguity (derived) Davis
64 Completeness per function (derived) Davis
66 Correctness (derived) Davis
72 Design dependency (derived) Davis
73 Redundancy (derived) Davis

Table 1: Consolidated List of Requirements Metrics From Literature
6

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Analysis of one metric Express as derived metric

Add concepts in the metamodel

Reuse existing concepts

[more metric]

Figure 2: Our metric-driven metamodeling process

2.3 A Comprehensive List of Requirements Metrics

The unification of the metrics presented in section 2.2 results in a list of 78 metrics that is shown in

Table 1. The first column of the table is an ID, the second column gives a short metric description

and the last column contains the name of the first author of papers that describe a particular

metric. Each row represents a metric. Note that for certain metrics, we had to unify terms, i.e.

certain metrics of the literature deal with concepts that are similar yet named differently. In the

following, we will use this list in two manners:

• First, to create a requirements metamodel dedicated to measurement.

• Second, to formally implement these metrics using the model-driven measurement approach

that we have presented in [16].

We also hope that this unified list will inspire measurement features in both commercial and

open-source requirements tools and will contribute to ground new requirements quality models

(e.g. [28]).

3 A Metric-driven Metamodeling Process

This section presents a metric-driven metamodeling process. It is notable that only the need

for measurement triggers the metamodeling activity (i.e. it’s not the simple reuse of an existing

metamodel). Hence, we use the term “metric-driven”, which means that:

• the main goal of the metamodel is to support the specification and implementation of re-

quirements metrics.

• the metamodel is created with a bottom-up approach. Every concept of the metamodel

(class, reference, etc.) has been created because it was needed in a particular requirements

metric of the literature.

Figure 2 shows the process we followed to create the requirements metamodel. It is a UML

activity diagram. At the beginning, the requirements metamodel contains nothing. Then, we

7

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Requirement

ArchitecturalConstraint

CapabilityRequirement ConstraintRequirement

PerformanceConstraint

UseCase
abstract : boolean

Function

includes
0..*

extends
0..*

Figure 3: The requirements inheritance hierarchy

analyzed each requirement metric one by one: if the metric referred to concepts or relationships

that do not yet exist in the requirements metamodel at this point in time, we added them to the

metamodel (obviously, the first considered metric triggered at least one concept to the metamodel,

for instance the class “Requirement”). Also some metrics can be expressed as derived metrics, in

such cases, we simply defined them on top of the already analyzed metrics.

The analysis process was solely done by the first author in 2 days. Unfortunately, we did not

trace all the detail of this work. Hence, we can not produce the number of metrics that could be

expressed directly, or that triggered the addition of a new concept in the requirements metamodel.

Eventually the application of our metric-driven metamodeling process for requirements engi-

neering ended up with a metamodel containing 36 classes. This small number of classes shows that

the majority of metrics deal with the same requirements concepts. In other terms, not all analy-

ses of a particular metric triggered the addition of a new concept. The core of the requirements

metamodel was identified after having analyzed the first half of metrics. Eventually, we obtained

a metamodel that captures the common requirements modeling concepts and the relationships

between these concepts. This metamodel is described in the next section.

4 A Requirements Metamodel that Supports Measurement

In this section, we present the main aspects of our requirements metamodel that supports all the

requirements metrics of the literature. Not all classes, references and attributes are presented here

but the complete metamodel is given in appendix.

The metamodel is centered on the notion of requirement, as shown in Figure 3. A requirement

can be refined in several types. A CapabilityRequirement specifies an atomic capability of the sys-

tem. It can be defined using textual description with the class Function, or using a UseCase. The

8

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

main difference between UseCase and Function is that use cases involve a concrete scenario and

some actors. On the contrary, a requirement instance of Function is an abstract description of the

capability. In our approach, since UseCase inherits from CapabilityRequirement, we recommend

to have a 1-to-1 mapping between uses cases and capabilities and to extensively use the “includes”

relationship between use cases to handle higher-order use-cases and complex scenarios.

Some requirements are expressed as constraints on the system (also known in the literature

as non-functional requirements, but we keep the terminology of Davis et al. [5]), expressed with

the ConstraintRequirement class, which can be refined as ArchitecturalConstraint or as Perfor-

manceConstraint. An ArchitecturalConstraint represents the required constraints on the system

architecture (for example, “the messaging system has to run on Unix”). A PerformanceConstraint

represents an expectation on the performance of the system (for example, “the system has to re-

spond in less than 500ms”). The metamodel supports links from a particular constraint (instance

of ConstraintRequirement) to a capability: this is handled by the reference between ConstraintRe-

quirement and CapabilityRequirement. For instance, “the messaging system has to run on Unix”

may be linked to the capability “a message is added when new users are added.”. Note that Con-

straintRequirement is not abstract, which means that one can instantiate this class directly to

express other constraints, for example security or reliability requirements.

These classes of the metamodel are all derived from requirements metrics that target a specific

requirement type. For instance, the metric number of req. that describe architecture and algorithm

[5] counts the number of instances of the ArchitecturalConstraint class.

The main attributes and references of the class Requirements are shown in Figure 4. The

requirement itself has a name and is described as one string containing few sentences. Note that

this requirement metamodel does not address the finer grain modeling of a requirement. A cre-

ation date is a time stamp for traceability. Several metrics are concerned with the history of

a requirement, hence a requirement can be tagged current version, while keeping a traceability

link to older versions thanks to the reference pastVersions. A requirement is associated with a

status, instance of class Status. The different statuses are not coded in the metamodel, but as a

library of instances of class Status dependent of the process, for instance, to be submitted (TBS),

to be approved (TBA), approved (A). The requirements can be structured into categories, that

is why there is a category attribute. Categories are logical packages, in order to facilitate the

comprehension of the requirements specifications. For instance, a category may correspond to a

macro-function of the system, e.g.; “Entertainment system" in an airplane. A requirement can be

associated to zero or more TestCases. The modeling of test cases is not is the scope of this meta-

model. A requirement is finally allocated to zero or more software items (also known as Computer

Software Configuration Item - CSCI). The remaining associations express the decomposition in

sub-requirements and the dependency links between requirements. The latter is equivalent to the

dependency matrices of previous approaches [29].

9

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Requirement

description : String

creationDate : Date

linkedMaterials : String
name : String

author : String

RequirementCategory

name : String

TestCase

estimatedDevelopmentCostOfTestCase : integer

estimatedTimeCostOfTestCase : integer

realDevelopmentCostOfTestCase : integer

realDevelopmentTimeOfTestCase : integerCSCI

description : String

moreAbstractDescription

0. .*

pastVersions
0. .*

currentVersion
0..1

dependencies

0. .*

providerFor

0. .*

Figure 4: The requirement concept

Requirement

RequirementChange

date : Date

RequirementAddition

RequirementDeletion

RequirementModification

ProjectRelease

RequirementsBaseLine

deletedRequirement
1

newVersion

1

oldVersion

1

newRequirement

1

requirementsSatisfied
0..*

requirements
0..*

Figure 5: Life cycle management of requirements

Figure 5 shows the concepts linked to the life cycle of requirements. This family of concepts

is part of an important number of requirements metrics of the survey. A Baseline is composed

of a set of well formed requirements. A Release satisfies a set of requirements. Within a time

frame, whose meaning depends on the requirements process, there are several RequirementChange.

RequirementChange is an abstract class, specialized into RequirementAddition, RequirementMod-

ification, and RequirementDeletion. These classes allow a full control over the requirements life

cycle.

Apart from these main concepts, our requirements metamodel contains many more concepts

that will be mentioned in the next sections. The full metamodel is given in appendix.

5 Implementation of Requirements Measurement Software

Using Model-driven Development

To implement the metrics listed in Table 1, we have used the model-driven measurement approach

(MDM) presented in [16, 30]. It means that we have expressed the metrics of Table 1 as an in-

stance of a metric metamodel. These formal metrics refer to the metric metamodel described

above. Figure 6 presents the model-driven measurement approach in the context of requirements

measurement as an UML activity diagram. The application of the MDM approach begins by cre-

10

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Specify metrics as instances of the
metric metamodel

Requirements Metamodeling

Metric specification metamodel

Requirements metric specifications

Requirements metamodel Requirements

refers to

conforms to

applies to

conforms to

Generate the measurement
software

<<create>>

<<create>>

<<to measure>>

Figure 6: Model-driven measurement of requirements

ating a domain metamodel: in our case the requirements metamodel presented above. Then, the

MDM approach consists in specifying metrics as instances of a metric specification metamodel2.

Note that the metric metamodel is domain-independent. It only contains concepts related to met-

rics. Eventually, a prototype that implements the MDM approach fully generates the measurement

software based on the metric specifications.

Figure 6 contains not only activities, but also the artifacts that are involved in the interplay

of the activities (represented by UML objects, i.e. rectangles with underlined text). A set of

requirements metric specifications is an instance of the metric specification metamodel and refers to

concepts of the requirements metamodel. There is no dependency between the metric metamodel

which is independent of the requirements domain, and the requirements metamodel, which is

independent of the MDM approach. What is generated is a tool for measuring requirements

specifications. The generated measurement tool is dedicated to the metrication of models of

requirements structured by the requirements metamodel defined above. This tool is fully fledged,

and once deployed, can be used by requirements engineers and managers to get quantitative

feedback on the requirements they work on.

Let us now elaborate on a sample of three metrics formally specified with the MDM approach.

5.1 Example 1: Total number of requirements

In MDM, a SigmaMetric counts the number of model elements satisfying a predicate. The total

number of requirements is expressed as a SigmaMetric. Note that since our requirements meta-

model handles the version history, we have to select only current requirements. If self.currentVersion

is set, it means that the requirement has been overridden by a new one, hence we count only those

which are not linked to a current version.
2Please refer to [30] for details about the metric specification metamodel, which is out of scope of this paper.

11

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

metr i c SigmaMetric 01_NOR i s

e lements s a t i s f y "(Requirement . i s I n s t a n c e (s e l f)

and s e l f . cu r r entVer s i on==void)"

endmetr ic

5.2 Example 2: Number of CSCI linked to a requirement

In MDM, a SetOfElementsPerX metric counts the number of elements linked to a root element

by a path of a certain kind. Hence, this is specified using three predicates: 1) a predicate on the

root element; 2) a predicate on the counted element, 3) a predicate on the path, which lists the

references that can be followed. Note that if they are several elements matching as root element,

we obtain one metric value per root element. The number of CSCI linked to a requirement counts

the number of CSCI linked to a requirement by references of type refinedIn or allocatedTo.

metr i c SetOfElementsPerX 13_N i s

e lements s a t i s f y "Requirement . i s I n s t a n c e (s e l f)"

count "CSCI . i s I n s t a n c e (s e l f)"

r e f e r e n c e s fo l l owed " r e f ined In , a l locatedTo "

endmetr ic

5.3 Example 3: Degree of decomposition per requirement

In MDM, a PathLength gives the size of the longest path from a root element following a certain

path. It is specified using two predicates: 1) on the root element and 2) on the path. The degree

of decomposition per requirement can be specified as a PathLength metric with respect to the

moreAbstractDescription reference between requirements (cf. metamodel).

metr i c PathLength 18a_N i s

e lements s a t i s f y "(Requirement . i s I n s t a n c e (s e l f)"

r e f e r e n c e s fo l l owed " moreAbstractDescr ipt ion"

endmetr ic

5.4 Conclusion

By implementing the requirements metrics listed in Table 1 using the MDM approach, we are able

to generate a requirements measurement tool. Concretely, it is an Eclipse plugin that measures

models of requirements produced by EMF-based editors (Eclipse Modeling Framework, see [31]).

Note that no code has been written, the only artifacts created were the requirements metamodel

and the specifications of metrics within MDM.

12

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

6 Discussion

This section discusses the important characteristics of our approach: the unified metric list, the

metric-driven metamodeling process, the requirements metamodel, the implementation and the

interpretation of metrics, and the main limitations.

6.1 Unified Metric List

The list of metrics of Table 1 is a consolidation of published work. We refer to the evaluation of

each paper to assess the usefulness and applicability of metrics.

However, our contribution is not to define new metrics, but to present a unified list in order to

show that it is possible to automate the production of requirements measurement software, and

to contribute to build a consensus around requirements metrics in the requirements engineering

research and industrial communities.

The previous metric frameworks suffered from two limitations: first, they addressed a particular

facet of the requirements engineering process, and second they were not directly computable. On

the contrary, our approach and our unified metric list aim to be comprehensive in scope (by

unifying previous work). Furthermore, as discussed more in depth in what follows, this unified

list grounds executable metric specifications (by defining a requirement metamodel and defining

metrics as an instance of an executable metric metamodel).

A notable point is that this list contains few metrics related to non-functional requirements

(NFRs). Metric #71 (Number of req. that describe architecture and algorithm) refers to them

(see 2 for an explanation on how architectural constraints relate to NFRs). Metrics #57 and

#70 (Number of functional requirements allocated to a project release and Number of req. that

describe pure external behavior) focus on the functional requirements, hence indirectly relate to

the dichotomy functional / non-functional requirements. Since this table reflects our survey (see

2), it shows that the literature has not focused so far on measurement related to non-functional

requirements.

6.2 Metric-driven Metamodeling Process

The metric driven metamodeling process was appropriate to create our requirements metamodel.

This process, which is not described in our previous work, was also useful in measuring models

from other domains. For instance, in [32], we have applied the process to create new metamodels

related to the simulation of maritime surveillance systems. Then, we were able to obtain simulation

metrics in a model-driven manner (e.g. the number of boats that the system can detect). We

choose to present this process in detail in this paper, because the need for measurement is the main

motivation to adopt a metamodeling process for requirements (in order to address the limitations

of natural language processing techniques). On the contrary, for maritime surveillance systems, it

13

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

Metamodel element Metric IDs

Activity(c) #47, #46, #50, #51, #74, #49, #48
Actor(c) #36, #37, #34, #35, #50

ArchitecturalConstraint(c) #71
Baseline(c) #54, #78
Boundary(c) #34, #35

CSCI(c) #29, #23, #13
CapabilityRequirement(c) #70, #57, #63, #62, #44, #27, #28

ConceptionLevel(c) #10, #11, #12, #14, #15, #16, #17, #8, #9
Diagram(c) #38, #41
EndUser(c) #65

Flow(c) #47, #75, #63, #49, #48
Goal(c) #51, #52, #77

Individual(c) #60
Realease(c) #57

Requirement(c) #55, #56, #69, #68, #19, #65, #67, #58, #60, #59, #21, #7, #23,
#22, #2, #1, #29, #78

RequirementAddition(c) #3
RequirementCategory(c) #59
RequirementChange(c) #6, #7, #43, #54
RequirementDeletion(c) #5

RequirementModification(c) #4
RequirementsBaseline(c) #2

Responsible(c) #55, #56
SequenceDiagram(c) #32

StakeHolder(c) #76, #52
State(c) #45, #44
Status(c) #19, #21, #25, #24, #30, #31, #33

Stimulus(c) #62
TestCase(c) #67, #68

TimeFrame(c) #18, #78, #6, #4, #5, #25, #3
UseCase(c) #47, #46, #45, #42, #41, #53, #40, #49, #48, #36, #26, #35, #25,

#24, #74, #32, #38, #39
UseCaseDiagram(c) #39, #33, #30, #31

allocatedTo(r) #29, #23, #13
alternative(a) #75
concrete(a) #35
correct(a) #65

costOfTest(a) #67
decomposedIn(r) #18, #43, #10, #11, #12, #13, #14, #15, #16, #17, #21, #20, #23,

#29, #9
dependsOn(r) #28, #58
describedBy(r) #41

extends(r) #40, #41, #53
includes(r) #40, #42, #41, #53

next(r) #74
originalRequirement(r) #10, #11, #12, #14, #15, #16, #17, #8

reviewed(a) #60
supplierFor(r) #43, #58

Table 2: Main Metamodel Elements Supporting Requirements Metric

was as important to measure models and to simulate them.

6.3 Relationship between the Requirements Metamodel and the Met-

rics

To understand the relationship between our requirements metamodel and measurement, Table 2

shows the correspondence between the elements of the metamodel and the metrics in which they

are involved. The first column gives the metamodel element (with a symbol to denote the kind

of metamodel element: “c” for class, “r” for reference, “a” for attribute). The second column gives

the metric ID (the ID refers to Table 1). For instance, the class “SequenceDiagram” (2nd column)

is used in metric #32, which is the Number of sequence diagrams per use case (see Table 1).

This table shows that some metamodel elements are very important for quantitatively assessing

requirements: those elements that are involved in many metric formulas (i.e. the concept of

14

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

“UseCase”). Also, it shows that the metamodel covers all aspects of requirements engineering as

given by the current state of research on requirements measurement.

The requirements metamodel not only supports metrics: with the Eclipse Modeling Framework

[31], it is used to fully generate a requirements editor. A requirements editor supports the creation

and modification of requirements specification in manner that complies with the structure enforced

by the requirements metamodel.

6.4 Comparison with other Requirement Metamodels

A unique characteristic of the requirements metamodel proposed in this paper is the process

through which it has been designed. This metamodel is designed as the set of necessary notions

to compute all the requirement metrics we have found. This particular approach to metamodel

design also means that the intention of the metamodel is unique: it is meant to formally capture

requirements in a way that allows computing metrics, as opposed to modeling requirements for

simulation or ambiguity detection.

Since this metamodel is designed from existing work on requirements, its content overlaps some

existing metamodels. In particular concepts such as Requirement, UseCase or TestCase from our

metamodel can be found in the requirements modeling part of SySML [33]. Still, since our intent

focuses on reasoning and computing metrics about requirements and not about the system to

which these requirements refer, we do not model the relations between requirements and design

as it is done in SySML. Our metamodel also overlaps with the part of the UML metamodel

dedicated to use cases (or similar use case metamodels such as [9]), but it is much more focused

towards requirements engineering (for instance, we have the notion of requirement version). So,

in summary, it overlaps with several existing metamodels (UML, SySML, REMM [34]), but it is

the only metamodel that captures the concepts (and only the ones) that are necessary to compute

all metrics from the litterature.

There are also requirements metamodels in the litterature that do not overlap with our meta-

model. These metamodels either focus on one specific type of relationship among requirements

(e.g., the metamodel proposed by Gokni et al.[35]) or they go in the details of specific require-

ments such as real-time properties (e.g., the work by Dhaussy et al. [36]) or detailed use case

specifications (e.g., the work by Brottier et al. [37]).

6.5 Implementation of Requirements Metrics

The computability of requirements metrics is the ability to automatically obtain metric values from

requirements metric specifications. Contrary to previous work on requirements metrics, thanks to

the MDM approach, we are able to create a formal and computable description of requirements

metrics.

Also, the requirements measurement software is fully generated. Without any programming

15

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

effort, users get an integrated measurement tool in their requirements environment. For instance,

a right click on a requirements document file proposes a “Measure” action, which computes the

values of the 78 metrics listed of Table 1.

Since the whole code of the measurement tool is generated, the approach is adaptable. Both

requirements metamodel and requirements metrics can be adapted or extended to a requirements

engineering process specific to a company. For instance, the set of status for a requirement can be

reduced or augmented, depending on the approval process. A company can also add a class to the

metamodel, for instance a class BudgetConstraint, inheriting from a Constraint requirement (see

Figure 3). Similarly, the requirements metric specifications can be adapted, and it is also possible

to write new requirements metrics tailored to a given process.

6.6 Interpretation of Metric Values

The scope of the paper is: a requirements metamodel, a unification of the literature on require-

ments metrics and an automated approach for requirements measurement. Hence, it is out of

scope here to provide interpretation guidelines of metric values. For this very important yet diffi-

cult point (the interpretation may depend on the company and project settings), we refer to both

the papers that proposed the metrics, and to reference work in the domain [38, 39].

6.7 Drawbacks

We have shown above that using a model-driven approach for measuring requirements can provide

a unified framework to formally express requirements and requirements metrics. However, this

is no silver bullet. We identify two important drawbacks. First, requirements engineers have to

change the way they think and produce requirements: they have to understand the requirements

metamodel so as to fill the correct information as an instance of metamodel elements. They may

also have to learn metamodeling to adapt the metamodel to their needs and to their existing

processes, as discussed in section 6.5.

In industry, requirements engineers already use tools. Using our approach would introduce a

new tool in their toolbox. This would introduce licensing costs, training costs and interoperability

problems between tools. The latter point contains interesting areas of future research with respect

to model interchange and requirements engineering processes.

7 Conclusion

In this paper, we have presented a new approach for the measurement of requirements. We

analyzed 11 previous contributions on requirements metrics, consisting of 138 metric specifications.

From this set of metrics, we have created a requirements metamodel and a consolidated list of 78

metric specifications. We have shown how to implement these metrics using the MDM approach

16

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

[16], a declarative and generative approach for measurement. Thanks to generative programming,

our approach to requirements measurement allows to obtain both a requirements editor and a

requirements measurement software.

Future work could explore whether it is possible to semi-automatically translate an existing

requirements specification as a formalized specification that conforms to the proposed requirements

metamodel. Also, an empirical study with practitioners would be valuable to highlight to which

extent requirements processes and practices are open to structured requirements models.

References

[1] T. Hammer, L. Rosenberg, L. Huffman, and L. Hyatt, “Requirements metrics - value

added,” in Proceedings of the 3rd IEEE International Symposium on Requirements Engi-

neering (RE’97), p. 141.1, IEEE Computer Society, 1997.

[2] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush, “Key practices of the

capability maturity model,” tech. rep., Software Engineering Institute, 1993.

[3] ISO/IEC, “Software product quality requirements and evaluation (square) (ISO/IEC 25000),”

tech. rep., ISO/IEC, 2007.

[4] P. Zave, “Classification of research efforts in requirements engineering,” ACM Comput. Surv.,

vol. 29, no. 4, pp. 315–321, 1997.

[5] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G. Kincaid, G. Ledeboer,

P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos, “Identifying and measuring quality in

a software requirements specification,” in Proceedings of the First International Software

Metrics Symposium, IEEE, 1993.

[6] R. J. Costello and D.-B. Liu, “Metrics for requirements engineering,” J. Syst. Softw., vol. 29,

pp. 39–63, Apr. 1995.

[7] M. Marchesi, “OOA metrics for the Unified Modeling Language,” in Proceedings of the 2nd

Euromicro Conference on Software Maintenance and Reengineering (CSMR’98), p. 67, IEEE

Computer Society, 1998.

[8] A. Loconsole, “Measuring the requirements management key process area,” in Proceedings of

the 12th European Software Control and Metrics Conference (ESCOM’2001), Shaker Pub-

lishing, 2001.

[9] B. Henderson-Sellers, D. Zowghi, T. Klemola, and S. Parasuram, “Sizing use cases: How to

create a standard metrical approach,” in Proceedings of the 8th International Conference on

Object-Oriented Information Systems (OOIS ’02), pp. 409–421, Springer-Verlag, 2002.

17

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

[10] Y. Singh, S. Sabharwal, and M. Sood, “A systematic approach to measure the problem com-

plexity of software requirement specifications of an information system,” Information and

Management Sciences, vol. 15, pp. 69–90, 2004.

[11] B. Berenbach and G. Borotto, “Metrics for model driven requirements development,” in Pro-

ceeding of the 28th International Conference on Software Engineering (ICSE ’06), pp. 445–

451, ACM Press, 2006.

[12] M. Medina Mora and C. Denger, “Requirements metrics: an initial literature survey on

measurement approaches for requirements specifications,” tech. rep., Fraunhofer IESE, 2003.

[13] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, pp. 25–31, February

2006.

[14] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, “Requirements by contracts allow

automated system testing,” in Proceedings of the 14th International Symposium on Software

Reliability Engineering (ISSRE’03), p. 85, 2003.

[15] E. Brottier, B. Baudry, Y. L. Traon, D. Touzet, and B. Nicolas, “Producing a global require-

ment model from multiple requirement specifications,” in Proceedings of the IEEE Enterprise

Computing Conference (EDOC’2007), pp. 390–404, 2007.

[16] M. Monperrus, J.-M. Jézéquel, J. Champeau, and B. Hoeltzener, “A model-driven measure-

ment approach,” in Proceedings of the ACM/IEEE 11th International Conference on Model

Driven Engineering Languages and Systems (MODELS’2008), Springer, 2008.

[17] H. Zhang and M. A. Babar, “On searching relevant studies in software engineering,” in Pro-

ceedings of the 14th International Conference on Evaluation and Assessment in Software

Engineering (EASE), 2010.

[18] E. Neuhaus, C. Neuhaus, A. Asher, and C. Wrede, “The depth and breadth of Google Scholar:

An empirical study,” Libraries and the Academy, vol. 6, no. 2, 2006.

[19] X. Chen, “Google Scholar’s Dramatic Coverage Improvement Five Years after Debut,” Serials

Review, 2010.

[20] IEEE, “Recommended practice for software requirements specifications (IEEE 830),” tech.

rep., IEEE, 1998.

[21] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language requirements,” Soft-

ware: Practice and Experience, vol. 32, no. 2, pp. 113–133, 2002.

[22] J. Baumert and M. McWhinney, “Software measures and the capability maturity model,”

tech. rep., Software Engineering Institute, Carnegie Mellon University, 1992.

18

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

[23] OMG, “UML 2.0 superstructure,” tech. rep., Object Management Group, 2004.

[24] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric approach,” in

Encyclopedia of Software Engineering, Wiley, 1994.

[25] C. Kolde, “Basic metrics for requirements management.” White paper, Borland, 2004.

[26] B. P. Douglass, “Computing model complexity.” White paper, I-Logix, 2004.

[27] Modelware Project, “D2.2 MDD Engineering Metrics Definition,” tech. rep., Framework Pro-

gramme Information Society Technologies, 2006.

[28] R. Dromey, “Cornering the chimera,” IEEE Software, vol. 13, no. 1, pp. 33–43, 1996.

[29] F. Moisiadis, “The fundamentals of prioritising requirements,” in Proceedings of the Systems

Engineering, Test and Evaluation Conference (SETE’2002), The Systems Engineering Society

of Australia, 2002.

[30] M. Monperrus, J.-M. Jézéquel, B. Baudry, J. Champeau, and B. Hoeltzener, “Model-driven

generative development of measurement software,” Software and Systems Modeling (SoSyM),

pp. –, 2010.

[31] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose, Eclipse Modeling Frame-

work. Addison-Wesley, 2004.

[32] M. Monperrus, B. Long, J. Champeau, B. Hoeltzener, G. Marchalot, and J.-M. Jézéquel,

“Model-driven architecture of a maritime surveillance system simulator,” Systems Engineering

Journal, vol. 13, 2009.

[33] OMG, “Omg systems modeling language,” Specification document 1.2, OMG, 2010.

[34] C. Vicente-Chicote, B. Moros, and J. A. T. Álvarez, “Remm-studio: an integrated model-

driven environment for requirements specification, validation and formatting,” Journal of

Object Technology, vol. 6, no. 9, pp. 437–454, 2007.

[35] A. Goknil, I. Kurtev, and K. van den Berg, “A metamodeling approach for reasoning about re-

quirements,” in Model Driven Architecture – Foundations and Applications (I. Schieferdecker

and A. Hartman, eds.), vol. 5095 of Lecture Notes in Computer Science, pp. 310–325, Springer

Berlin / Heidelberg, 2008.

[36] P. Dhaussy, P.-Y. Pillain, S. Creff, A. Raji, Y. Le Traon, and B. Baudry, “Evaluating context

descriptions and property definition patterns for software formal validation,” in Model Driven

Engineering Languages and Systems (A. Schürr and B. Selic, eds.), vol. 5795 of Lecture Notes

in Computer Science, pp. 438–452, Springer Berlin / Heidelberg, 2009.

19

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

[37] E. Brottier, Y. Le Traon, and B. Nicolas, “Composing models at two modeling levels to

capture heterogeneous concerns in requirements,” in Software Composition (B. Baudry and

E. Wohlstadter, eds.), vol. 6144 of Lecture Notes in Computer Science, pp. 1–16, Springer

Berlin / Heidelberg, 2010.

[38] R. Lutowski, Software requirements: encapsulation, quality, and reuse. Auerbach Publica-

tions, 2005.

[39] R. R. Young, Project Requirements: A Guide to Best Practices. Management Concepts, 2006.

20

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

A The requirements metamodel

This description of the metamodel uses the syntax of the Kermeta metamodeling language, see

http://www.kermeta.org

class Requirement {

reference category : RequirementCategory#requirements

reference level : ConceptionLevel#reqs

reference moreAbstractDescription : Requirement[0..∗]#refinedIn

reference refinedIn : Requirement[0..∗]#moreAbstractDescription

reference status : Status[0..∗]#reqs

reference pastVersions : Requirement[0..∗]#currentVersion

reference currentVersion : Requirement#pastVersions

attribute linkedMaterials : String[0..∗]

reference allocatedTo : CSCI[0..∗]

reference testCases : TestCase[0..∗]

reference responsible : Responsible[0..∗]#requirements

reference dependencies : Requirement[0..∗]#providerFor

reference providerFor : Requirement[0..∗]#dependencies

attribute name : String

attribute description : String

attribute creationDate : Date

attribute author : String }

class RequirementCategory {

reference requirements : Requirement[0..∗]#category

attribute name : String }

class UseCase inherits CapabilityRequirement {

reference diagrams : UseCaseDiagram[0..∗]#usecases

reference includes : UseCase[0..∗]

attribute ~abstract : boolean

reference describedBy : DynamicDiagram#describedUseCase

reference extends : UseCase[0..∗] }

class RequirementAddition inherits RequirementChange {

reference newRequirement : Requirement[1..1] }

class RequirementDeletion inherits RequirementChange {

reference deletedRequirement : Requirement[1..1] }

class RequirementModification inherits RequirementChange {

reference newVersion : Requirement[1..1]

21

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

reference oldVersion : Requirement[1..1] }

class RequirementChange {

attribute date : String }

class ConceptionLevel {

reference reqs : Requirement[0..∗]#level

attribute num : integer

attribute description : String

reference nextLevel : ConceptionLevel }

class Status {

reference reqs : Requirement[0..∗]#status

attribute name : String }

class UseCaseDiagram {

reference usecases : UseCase[0..∗]#diagrams

reference status : Status[0..∗] }

class TimeFrame {

reference changes : RequirementChange[0..∗] }

class CapabilityRequirement inherits Requirement {

reference actors : Actor[0..∗]#inreq }

class ConstraintRequirement inherits Requirement { }

class ArchitecturalConstraint inherits ConstraintRequirement { }

class PerformanceConstraint inherits ConstraintRequirement { }

class Actor {

reference inreq : CapabilityRequirement[0..∗]#actors

reference inUseCase : UseCase[0..∗]

reference boundary : Boundary[0..∗]#actor

attribute complexity : integer }

class CSCI {

attribute description : String }

class Class inherits CSCI { }

class Procedure inherits CSCI { }

class Method inherits CSCI { }

class Boundary {

reference actor : Actor[0..∗]#boundary }

class DynamicDiagram {

reference describedUseCase : UseCase#describedBy }

class StateDiagram inherits DynamicDiagram {

attribute states : State[0..∗]#containingStateDiagram

22

In: Software Quality Journal, Springer, Online Edition, 2011 (DOI: 10.1007/s11219-011-9163-6)

reference stimuli : Stimulus[0..∗] }

class SequenceDiagram inherits DynamicDiagram { }

class ActivityDiagram inherits DynamicDiagram {

attribute activities : Activity[0..∗]#containingActivityDiagram }

class Activity {

reference containingActivityDiagram : ActivityDiagram#activities }

class State {

reference containingStateDiagram : StateDiagram#states }

class Defects {

reference faultyCSCI : CSCI[0..∗] }

class ProjectRelease {

reference requirementsSatisfied : Requirement[0..∗] }

class Function inherits CapabilityRequirement { }

class Stimulus {

reference usedIn : StateDiagram[0..∗] }

class TestCase {

attribute estimatedDevelopmentCostOfTestCase : integer

attribute estimatedTimeCostOfTestCase : integer

attribute realDevelopmentCostOfTestCase : integer

attribute realDevelopmentTimeOfTestCase : integer }

class RequirementsBaseLine {

reference requirements : Requirement[0..∗] }

class Responsible {

reference requirements : Requirement[0..∗]#responsible }

class Group inherits Responsible {

reference individuals : Individual[0..∗]#groups }

class Individual inherits Responsible {

reference groups : Group[0..∗]#individuals }

class CSCIStatus inherits Status { }

23

