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Abstract—Gaussian mixture models (GMM) have been widely systems use diagonal covariances and only the mean vectors
and successfully used in speaker recognition during the las are MAP adapted. We then applied this simplified version
decades. They are generally trained using the generative iterion to a "small” speaker identification task. While the resugtin
of maximum likelihood estimation. In an earlier work, we . - . L -
proposed an algorithm for discriminative training of GMM wi th training algorithm is _m_ore ?mc'em t_h‘?m the original ones w
diagonal covariances under a large margin criterion. In this found however that it is still not efficient enough to process
paper, we present a new version of this algorithm which has large scale databases such as in NIST Speaker Recognition
the major advantage of being computationally highly efficiat.  Evaluation (NIST-SRE) campaigns.

The resulting algorithm is thus well suited to handle large sale ; ; ;
databases. To show the effectiveness of the new algorithm,ew In order to address this problem, we propose in this paper a

carry out a full NIST speaker verification task using NIST- new approach for fast training of Large-Margin GMM which
SRE'2006 data. The results show that our system outperforms allow efficient processing in large scale applications. Wé® a
the baseline GMM, and with high computational efficiency. address a speaker verification task which is a more difficult
Index Terms—Large margin training, Gaussian mixture mod-  task than speaker identification. To do so, we exploit the
els, discriminative learning, speaker recognition, speadr verifi- 5t that in general not all the components of the GMM are
cation involved in the decision process, but only thebest scoring
components. We also exploit the property of correspondence
between the MAP adapted GMM mixtures and the UBM
Most of state-of-the-art speaker recognition systemsaaly mixtures. In order to show the effectiveness of the new
the generative training of Gaussian Mixture Models (GMMalgorithm, we carry out a full NIST speaker verification task
using maximum likelihood estimation and maximum a postsing NIST-SRE’2006 (core condition) data. The resultsasho
teriori estimation [1]. Generative training does not hoaev that our new algorithm is not only highly efficient but also
directly optimize the classification performance sincerib-p outperforms the baseline generative GMM.
vides a model for the joint probability distribution. Forish  The paper is organized as follows. After an overview on
reason, discriminative training approaches have been an irarge-Margin GMM training in section 2, we describe our
teresting and valuable alternative since they addresgttjire new training algorithm in section 3. Experimental results a
the classification problem [2], and lead generally to bettéfien reported in section 4.
performances than generative methods. For instance, 8uppo

I. INTRODUCTION

Vector Machines (SVM) combined with GMM supervectors [I. OVERVIEW ON LARGE MARGIN GMM TRAINING
are among state-of-the-art approaches in speaker veidficat ) ) . -
[3]. In this section we start by recalling the original Large

Recently a new discriminative approach for multiway claé\-ll"‘lrgln GMM trammg _algonthr_n develo.ped n .[4]’ [6]. We
sification has been proposed, the Large Margin Gaussi n recalllthe simplified version of this algorithm that we
mixture models (LM-GMM) [4]. The latter have the Saméntroduced in [5].
advantage as SVM in term of the convexity of the optimizatio .
problem to solve. However they differ from SVM because they- Large Margin GMM
draw nonlinear class boundaries directly in the input space In Large Margin GMM [4], [6], each class is modeled
and thus no kernel trick/matrix is required. While LM-GMMby a mixture of ellipsoids in thé>- dimensional input space.
have been used in speech recognition, they have not bdéme m'" ellipsoid of the class is parametrized by a centroid
used in speaker recognition (to the best of our knowledgekctor.,,, (mean vector), a positive semidefinite (orientation)
In an earlier work [5], we proposed a simplified versiommatrix ¥.,, and a nonnegative scalar offst, > 0. These
of LM-GMM which exploit the fact that traditional GMM parameters are then collected into a single enlarged matrix



L. speech data gathered from a large number of speakers. The
o _v background model represents speaker-independent disrib
cm cmﬂcm .
Doy = < ) . (1) of the feature vectors. When enrolling a new speaker to the
system, the parameters of the UBM are adapted to the feature

A GMM is first fit to each class using maximum likelihooddistribution of the new speaker. The adapted model is then
estimation. Le{a,}{, (zn: € RP) be theT, feature vectors used as the model of that speaker. It is possible to adateall t
of the n'" segment (i.en'" speaker training data). Then, forparameters, or only some of them from the background model.
eachz,, belonging to the clasg,, y, € {1,2,...,C} where Traditionally, in the GMM-UBM approach, the target speaker
C is the total number of classes, we determine the indgx GMM is derived from the UBM model by updating only
of the Gaussian component of the GMM modeling the clagse mean parameters usingnaaximum a posterior(MAP)

y» Which has the highest posterior probability. This index iglgorithm [1], while the (diagonal) covariances and theghs
called proxy label remain unchanged.

The training algorithm aims to find matricds.,, such that  Following the same philosophy of traditional GMM, we
"all” examples are correctly classified by at least one margproposed in [5] to neglect the orientation of tife,,, matrices
unit, leading to the LM-GMM criterion: in training. That is, in our Large Margin diagonal GMM (LM-

dGMM) [5], each class (speaket)is initially modeled by a
M . GMM with M diagonal mixtures (trained by MAP adaptation
Ve #y,, —log Z e FntPemine > 1 4 zfgbynmmznt, of the UBM in the setting of speaker recognition). For each
m=1 classec, the m* Gaussian is parametrized by a mean vector
. 2) em, @ diagonal covariance matr¥,, = diag(c2,,, ...,02,p),
i“ J and the scalar factaf,,, which corresponds to the weight of
Because 0 the softmax inequality:the Gaussian. .
ming, ap, > —logZe*“"z Eq. (2) states that for each With this relaxation on the matrlc_ech,_ for each example
— Tnt, the goal of the training algorithm is now to force the
competing class # y, the match (in term of Mahalanobislog-likelihood of its proxy label Gaussiam.,; to be at least
distance) of any centroid in clagsis worse than the targetone unit greater than the log-likelihood of each Gaussian

_MZmlycm Mzmqjcmﬂcm + 90m

wherez,,; =

centroid by a margin of at least one unit. component of all competing classes. That is, given theitrgin
In a segmental training scheme, the loss function is thesamples{(z,¢, yn, mn:)}h_,, we seek mean vectors.,,
given by: which satisfy the LM-dGMM criterion:
N 1 Tn Ve # Yn, Vm, (5)
L = Z Z max <0 9 1 + T_ Z (Z;l;tq)ynmmznt d(Inta /Lcm) + 9771 Z 1 + d(Inta :uynmnt) + omnt?
n=1c#yn " t=1

(xnti - Mcmi)2

M
whered =
+lOQZ€ZTTLt¢mZ"t>> + OzZtrace(\I/cm)7 (@nt; frem) Z 252
m=1 cm

i—1 K mi . )
Afterward, theseM constraints are fold into a single one

. () sing the softmax inequality. The segment-based LM-dGMM
where the second term penalizes large trace Mahalanobllﬁerion becomes thus:

metrics. The hyperparameter is set by cross-validation on

development data. ve ;inyn, o
Finally, the decision rule used for classification is: 1 Z —log exp(—d(Zne, frem) — Oum)
T Mo B m=1 (6)
. —z; Pen 2 T,
Yy = argmin, —log e %t Temt & (4) n
{; mZ:l } > 1+ Tln Zd(xnta My + omm)-
. - . .. . t=1
As opposed to other discriminative training algorithmstsuc The loss function to minimize for LM-dGMM is then given
as conditional log-likelihood learning, the major advaygaf by:
this loss function is its convexity. For a complete desamipt N .
of the LM-GMM and their extension to LM-HMM, we refer 1 &
to [4], [6], [7]. bo L ma (0 RRS DY (d(xnt,uynmm
B. Large Margin GMM with diagonal covariances (LM- M
dGMM) + Om,., +1log Z exp(—d(@nt, pem) — Om) | |-
m=1
Most of state-of-the art speaker recognition systems use @)

diagonal-covariances GMM. In these GMM based speakerAs compared to the original algorithm, we showed in [5]
recognition systems, a speaker-independeotld modelor that this simplified version has the advantage of being more
Universal Background Mode{(UBM) is first trained with efficient while it still yields similar or better performaes on
the EM algorithm [8] from tens or hundreds of hours of speaker identification task.



1.
A. Description of the new LM-dGMM training algorithm

LM- dGMM TRAINING WITH k-BEST GAUSSIANS During test, we compute a match score depending
on both the target mode{icrm,>m,0,»} and the UBM
Uum, 2m, 0m } for each test hypothesis. We use again the

Despite the fact that our LM-dGMM is computationallysame principle to achieve fast scoring. Given a test segment
much faster than the original LM-GMM of [4], [6], we of T frames, for each test frame we use the UBM to select
still encountered efficiency problems when dealing withhhigthe setE, of k-best scoring proxy labels and compute the
number of Gaussian mixtures. Indeed, even for an easy &ferage log likelihood ratio using only thedabels:

speakers identification task as the one presented in [5], we
could not run the training in a relatively short time with our
% Z log Z exp(—d(xt, pem) — Om)
t=1 meE;

current implementation. This would imply that large scate a LLRaug
plications such as NIST-SRE, where hundreds or thousands of

target speakers are available, would be infeasible in resde
time (for instance, 5460 target speakers are included in the
NIST-SRE’2010 core condition, with 610748 trials to prozes

—log Y exp(—d(xt, pirm) —9m)>-
meFE;

(10)

involving 13325 test segments [9]). This quantity provides a score for the the test segment to

In order to develop a fast training algorithm which couldbe uttered by the target model/speakethe higher the score
be used in large scale applications, we propose to drdgticd, the greater the probability that the test segment wasat
reduce the number of constraints to satisfy in Eq. (6). Byndoi by the target speaker is.
so, we would drastically reduce the computational comp}exi
of the loss function and its gradient, which are the quastitiB. Handling of outliers
responsible for most of the computational time. To achieve
this goal we propose to use another property of state-cathe
GMM systems, that is, decision is not made upon all mixtu
components but only using thebest scoring Gaussians.

In other words, for each,, and each, instead of summing
over the M mixtures in the left side of equation Eq. (6),
we would sum only over thé Gaussians with the highest 1 &
posterior probabilities selected using the GMM of class h, = Z mazx (0 , 1+ T Z
In order to further improve efficiency and reduce memory c#Yn " =1
requirement, we exploit the property reported in [1] about
correspondence between MAP adapted GMM mixtures and
UBM mixtures. We use the UBM to select one unique set (11)
St Of k-best Gaussian components per frame, instead of  ;,  \haaqres the decrease in the loss function when an
(C — 1) sets. This leads to & — 1) times faster and less ;

) ) > initially misclassified segment is corrected during the rseu
memory consuming selection. Thus, the higher the number& learning. We associate outliers with large values:of We

Farget speakers is, the greater computation and MemomGavhan re-weight the hinge loss terms in Eq. (9) by using segmen

We adopt the strategy of [4] to detect outliers and reduce
rtheir negative effect on learning. Outliers are detectedgis
e initial GMM models. We compute the accumulated hinge
loss incurred by violations of the large margin constraints

Eq. (8) :
(d(‘rnt7uynmnt)

+ emnt + lOg Z exp(_d(xnta ,ucm) - em)

meESn¢

IS. ) ] weightssw,, = min(1, hi)
More precisely, we now seek mean vectprs, that satisfy "
the large margin constraints in Eq. (8) : N
£t = SWap g, (12)
Ve # yn, ;
T,
T%, Z (— log Z exp(—d(Tnt, frem) — Hm)> Wg solve this unconstraineq non-linear optimization peofl
=1 MESns (8) using the second order optimizer LBFGS [10].
|~ In summary, our new and fast training algorithm of LM-
21477 ) d@nts iy + O, dGMM is the following:

t=1
« For each class (speaker), initialize with the GMM trained

The loss function becomes: by MAP of the UBM,

N 1 I « select Proxy labels using these GMM,
£t = Z Z max (0 , 1+ T Z <d(Int7Nynmnt) « select the set of-best UBM Gaussian components for
n=1 cty, =1 each training frame,
« compute the segment weights,
+ Omae +log Y eap(=d(@ns, frem) = Om) « using the LBFGS algorithm, solve the unconstrained non-

mESne linear optimization problem according to equation Eq.

9) (12)

This loss function remains convex and can still be solved
using dynamic programming. min L.

(13)



TABLE |
EER(%) AND minDCRB(100) performances for GMM and LM-dGMM
systems with and without T-norm, using models with 256 Gass

components.

no T-norm with T-norm
System EER [ minDCF | EER | minDCF
GMM 9.48 4.26 8.83 3.56
LM-dGMM 8.97 3.97 8.40 3.49

IV. EXPERIMENTAL RESULTS

We perform experiments on the NIST-SRE'2006 [11
speaker verification task and compare the performanceseof 1l
baseline GMM and our new LM-dGMM system. The compal
isons are made on the male part of the NIST-SRE’2006 cc
condition (1conv4w-1conv4w). Performances are assessed 02l
ing Detection Error Tradeoff (DET) plots and measured i
terms of equal error rate (EER) and minimum of detection cos.
function (minDCF). The latter is calculated following NISTgig 1. DET piots for GMM and LM-dGMM systems with T-normalization.
criteria [12].

The feature extraction is carried out by the filter-bank lblase
cepstral analysis tool Spro [13]. Bandwidth is limited t@thof EER of about4.87%. These results suggest that our
300-3400Hz range. 24 filter bank coefficients are first com~best technique not only allow efficient training but also
puted over 20ms Hamming windowed frames at a 10ms frargtill outperforms the baseline generative GMM system. We
rate and transformed into Linear Frequency Cepstral Coeffirention here that we observed the same behavior of our new
cients (LFCC). Consequently, the feature vector is comghosalgorithm on the speaker identification task presented Jn [5
of 50 coefficients including 19 LFCC, their first derivativeswe can thus fairly consider that our fast Large Margin GMM
their 11 first second derivatives and the delta-energy. Thigcriminative training algorithm is a good alternativethee
LFCCs are preprocessed by Cepstral Mean Subtraction amnassical generative GMM training in the setting of speaker
variance normalization. We applied an energy-based voimgcognition. We also expect further performance improveisie
activity detection to remove silence frames, hence keepimghen combining it with other discriminative methods such
only the most informative frames. Finally, the remainingVM-GMM supervectors [3].
parameter vectors are normalized to fit a zero mean and unit
variance distribution. V. CONCLUSION

We use the state-of-the-art open source software AL-We presented a new simplified algorithm to train Large-
IZE/Spkdet [14], [15] for GMM modeling. A male-dependenMargin GMM by using thek-best scoring Gaussians selected
UBM is trained using all the telephone data from the NISTorm the UBM. This algorithm is highly efficient which
SRE’2004. Then we train a MAP adapted GMM for the 34fhakes it well suited to process large scale databases such
target speakers belonging to the primary task. The corraspoas in NIST'SRE. We carried out experiments on a speaker
ing list of 22123 trials (involving 1601 test segments) asedi verification task under the NIST-SRE’2006 core condition.
for test. T-norm score normalization technique [16] is &bl The results show that we achieve better accuracy than the
to the log-likelihood ratio scores. Session variabilitydeting baseline GMM system (trained with ALIZE/Spkdet) with
techniques are not used in our experiments. 200 male speakdégh computational efficiency. These results suggest thiat t
from NIST-SRE’2004 are used as background data. The samework is promising should be further investigated and
MAP adapted GMM define the baseline GMM system, argbmpared/combined with other discriminative methodshsuc
are used as initialization for the LM-dGMM one. as SVM-GMM supervectors in particular. This will be the

Table | provides the EERs and minDCFs of the two systemsurpose of future communications. We also emphasize that
with and without T-norm, for models with 256 Gaussianvhile we have been interested in speaker recognition agplic
components {/ = 256). Figure 1 shows DET plots for thetions, our algorithm can be used in many other classification
best GMM and LM-dGMM systems (with T-norm). All theseapplications involving large training databases.
results are obtained with the 10 best proxy labels selected
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