An Object Tracking in Particle Filtering and Data Association Framework, Using SIFT Features

Abstract : In this paper, we propose a novel approach for multi-object tracking for video surveillance with a single static camera using particle filtering and data association. The proposed method allows for real-time tracking and deals with the most important challenges: 1) selecting and tracking real objects of interest in noisy environments and 2) managing occlusion. We will consider tracker inputs from classic motion detection (based on background subtraction and clustering). Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. This article presents SIFT feature tracking in a particle filtering and data association framework. The performance of the proposed algorithm is evaluated on sequences from ETISEO, CAVIAR, ETS2001 and VS-PETS2003 datasets in order to show the improvements relative to the current state-of-the-art.
Type de document :
Communication dans un congrès
International Conference on Imaging for Crime Detection and Prevention (ICDP), Nov 2011, London, United Kingdom. 2011
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00647256
Contributeur : Malik Souded <>
Soumis le : jeudi 15 décembre 2011 - 11:19:15
Dernière modification le : samedi 27 janvier 2018 - 01:30:44
Document(s) archivé(s) le : vendredi 16 mars 2012 - 02:20:37

Fichier

An_Object_Tracking_in_Particle...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00647256, version 1

Collections

Citation

Malik Souded, Laurent Giulieri, Francois Bremond. An Object Tracking in Particle Filtering and Data Association Framework, Using SIFT Features. International Conference on Imaging for Crime Detection and Prevention (ICDP), Nov 2011, London, United Kingdom. 2011. 〈hal-00647256〉

Partager

Métriques

Consultations de la notice

411

Téléchargements de fichiers

564