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Abstract. We present the specification of a basic library of depend-
ability mechanisms that can be used within automated approaches for
synthesising dependable Connectors in heterogeneous networks. The li-
brary builds on classical dependability patterns, such as majority voting
and retry, and uses the concept of overlay networks for triggering the
synthesis of specific dependability mechanisms in the Connector from
high-level specifications. We translated such dependability mechanisms
into SAN models with the aim to evaluate, through model-based analysis,
which dependability mechanisms should be embedded in the synthesised
Connector for ensuring a given dependability level between networked
systems willing to be connected. A case study is also presented to show
the application of selected library mechanisms. This work is carried out
in the context of Connect, a European FET project which is inves-
tigating the possibility of enabling long-lasting inter-operation among
networked systems by synthesising mediating Connectors at run-time.

1 Introduction and background

Interoperability in future networks will be characterised by seamless and contin-
uous communication among heterogeneous networked systems. Over time, net-
worked systems may change mode of operation, e.g., because of hardware/softwa-
re updates or new application contexts. As a consequence, network infrastruc-
tures ought to provide appropriate means for supporting interoperability among
evolving networked systems.

In the European FET project Connect [1], interoperability issues of evolv-
ing networks are tackled by synthesising dependable Connectors at run-time.
To do this, the network infrastructure defined in Connect embeds five logical
units, denominated enablers, that seamlessly collaborate for ensuring continu-
ous and long-lasting inter-operation among networked systems. In Connect,
the discovery enabler discovers the functionality of networked systems and ap-
plications and retrieves information on the interfaces they use for inter-operating
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with others. The learning enabler completes such a knowledge on the interaction
behaviour of networked systems by applying learning algorithms, and produces
a model of this behaviour in the form of a labelled transition system (LTS).
The synthesis enabler dynamically synthesises a software mediator using code
generation techniques (from the independent LTS models of each system) that
will connect and coordinate the interoperability between heterogeneous systems.
In order to fulfil dependability requirements, synthesis triggers the dependabil-

ity enabler, which is in charge of analysing the Connector’s design before the
Connector gets deployed and put in operation. If needed, the dependability en-
abler drives the synthesis enabler towards possible Connector’s enhancement.
The monitoring enabler continuously monitors the deployed Connectors during
their execution for updating the other enablers with run-time data.

In this work, we focus on the dependability enabler, which performs a model-
based analysis for assessing the dependability level of the synthesised Con-

nectors. Specifically, we point our attention on a dependability enabler’s mod-
ule, denominated enhancer. Such a module is responsible for guiding the synthe-
sis process towards enhancements of a Connector’s design whenever the anal-
ysis reveals inadequate dependability levels. In brief, this module is in charge of
selecting a combination of dependability mechanisms suitable for enhancing the
synthesised Connector so that it complies with given requirements. Then, the
synthesis enabler embeds the selected dependability mechanisms in the Con-

nector’s design and proceeds with its implementation and deployment. The
architecture of the dependability enabler and the functionalities of the enhancer
have been presented in [13]. The contribution of this paper consists in the defini-
tion of a basic library of dependability mechanisms for the enhancer. The library
builds on classical dependability patterns (see [18] for a survey), and uses the
concept of overlay networks for triggering the synthesis of specific dependabil-
ity mechanisms in the synthesised Connector from high-level specifications.
How these dependability mechanisms can then be embedded in the synthesised
connectors pertains to the synthesis enabler and is not addressed in this paper.

The paper is organised as follows. In Section 2, the stochastic activity net-
works [15] (SAN) formalism, a widely used formalism for model-based depend-
ability analysis of complex systems, is briefly illustrated in order to allow the
reader to understand the formal specification of the developed dependability
mechanisms. In Section 3, we explain the ideas underpinning the library of de-
pendability mechanisms, and we present the specification of such a library with
the SAN formalism. In Section 4, we trial our ideas by applying the library to a
case study based on a demonstrative scenario based on that presented in [8]. In
Section 5, we report on related work and conclude the paper.

2 The SAN Formalism

Stochastic Activity Networks [15, 14, 21] are an extension of the Petri Nets (PN)
formalism [17, 16]. SANs are directed graphs with four disjoint sets of nodes:
places, input gates, output gates, and activities.
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Activities replace and extend the transitions of the PN formalism. Each SAN
activity may be either instantaneous or timed. Timed activities represent actions
with a duration affecting the performance of the modelled system, e.g., message
transmission time. The duration of each timed activity is expressed via a time

distribution function. Any instantaneous or timed activity may have mutually
exclusive outcomes, called cases, chosen probabilistically according to the case

distribution of the activity. Cases can be used to model probabilistic behaviours.
An activity completes when its (possibly instantaneous) execution terminates.

As in PNs, the state of a SAN is defined by its marking, i.e., a function
that, at each step of the net’s evolution, maps the places to non-negative inte-
gers (called the number of tokens of the place). SANs enable the user to specify
any desired enabling condition and firing rule for each activity. This is accom-
plished by associating an enabling predicate and an input function to each input
gate, and an output function to each output gate. The enabling predicate is a
Boolean function of the marking of the gate’s input places. The input and out-
put functions compute the next marking of the input and output places. If these
predicates and functions are not specified for some activity, the standard PN
rules are assumed. The evolution of a SAN, starting from a given marking µ,
may be described as follows:

1. the instantaneous activities enabled in µ complete in some unspecified order;

2. if no instantaneous activities are enabled in µ, the enabled (timed) activities
become active;

3. the completion times of each active (timed) activity are computed stochas-
tically, according to the respective time distributions; the activity with the
earliest completion time is selected for completion;

4. when an activity (timed or not) completes, one of its cases is selected ac-
cording to the case distribution, and the next marking µ′ is computed by
evaluating the input and output functions;

5. if an activity that was active in µ is no longer enabled in µ′, it is removed
from the set of active activities.

Graphically, places are drawn as circles, input gates as left-pointing triangles,
output gates as right-pointing triangles, instantaneous activities as narrow ver-
tical bars, and timed activities as thick vertical bars. Cases are drawn as small
circles on the right side of activities.

3 Library of dependability mechanisms

Overlay networks are virtual networks built on top of existing network sub-
strates: nodes in overlay networks represent logical hosts involved in interactions,
and links in overlay networks correspond to paths in the network substrate that
are traversed by messages during inter-operations. To date, overlay networks
have been used for exploiting peculiar characteristics of network substrates at
the application level; for instance, Andersen et al [3] exploit highly redundant
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networks substrates for defining resilient communication systems as overlay net-
works (a survey on the use of overlay networks for defining new applications can
be found in [12]).

Thanks to the infrastructure provided by Connect, here we can use the
concept of overlay networks in an alternative way, i.e., rather than using over-
lay networks for exploiting the characteristics of the network substrate, we use
them for defining the characteristics of the network substrate that should be
synthesised. The basic idea is to view Connectors as overlay networks, and
to exploit their structure for triggering the generation of specific dependability
mechanisms in the network substrate during the synthesis process.

In the following, we describe the models we defined for triggering the genera-
tion of typical dependability mechanisms suitable to contrast two typical classes
of failure modes that may happen during interactions: timing failures, in which
networked systems send messages at time instants that do not match an agreed
schedule, and value failures, in which networked systems send messages con-
taining incorrect information items. For the purpose of this paper, we consider
timing failures of type omission, i.e., late messages are always discarded, and
value failures that cause a networked system to respond within the correct time
interval but with an incorrect value. Each model is specified with the SAN for-
malism. The models are developed according to three basic rules that allow to
simplify the automated procedure for embedding the mechanism in the specifi-
cation of the synthesised Connector: (i) each model has an initial place, s0,
whose tokens enable the first activity of the model; (ii) each model has a final
place, s1, which contains tokens whenever the last activity of the model com-
pletes; (iii) the overall number of tokens in s1 is always less or equal to the
number of tokens in s0. With the above rules, the behaviour of the model can
be seen as an enhanced activity, and can be directly used to replace any activity
that moves tokens between two places in the specification of the Connector
(the basic semantics of an activity is always preserved).

3.1 Retry Mechanism

The retry mechanism consists in re-sending messages that get corrupted or
lost during communications, e.g., due to transient failures of communication
links. This mechanism is widely adopted in communication protocols, such as
TCP/IP [6] for enabling reliable communication over unreliable channels. A
typical implementation of the retry mechanism uses time-outs and acknowl-
edgements: after transmitting a message, the sender waits for a message of the
receiver that acknowledges successful communication. If the acknowledgement is
not received within a certain time interval, the sender assumes that the commu-
nication was not successful, and re-transmits the message.

The synthesis of a retry mechanism can be triggered with the stochastic
activity network shown in Figure 1. On the sender side, the mechanism creates
a message re-transmission policy for re-sending the message at most N times;
on the receiver side, the mechanism creates a policy for avoiding duplicated
reception of messages and for sending acknowledgements.
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Fig. 1. Retry mechanism

In the model, all places initially contain zero tokens, except p0, which contains
N tokens, where N is a model parameter representing the maximum number of
re-transmissions. Activity send is enabled when the conjunction of the follow-
ing conditions is true: p0 and s0 contain at least one token, and ackReceived

contains zero tokens. When activity send completes with success (case 0, with
probability pr0), a token is removed from s0 and p0, and the marking of p1

is incremented by one. Activity receive is enabled when p1 contains at least
one token and messageReceived contains zero tokens. When activity receive

completes, a token is moved to s1, and the marking of p2 and messageReceived

is incremented by one. A token in p2 enables activity sendAck, whose aim is to
enable the receiving host notify the sender that the message has been success-
fully received. The sender stops re-transmitting the message as soon as it gets
an acknowledgement that the message has been successfully received, or after N
attempts.

3.2 Probing Mechanism

The probing mechanism exploits redundant paths and periodic keep-alive mes-
sages for enabling reliable communication in face of path failures. The basic idea
is to continuously collect statistics on the characteristics of the communication
channels, and to select the best channel on the basis of such statistics. This
mechanism has been used for defining communication services with guaranteed
delivery and performance levels, e.g., see Akamai’s SureRoute [2] and reliable
multi-cast protocols for peer-to-peer networks [23].

The synthesis of a probing mechanism that uses two redundant communi-
cation channels can be triggered with the stochastic activity network shown in
Figure 2. The mechanism instruments the sender with a periodic channel probing
functionality suitable to feed a monitoring system that collects statistics about
the reliability level of the communication channels.

In the model, place mode is a state variable that indicates the mode of oper-
ation of the mechanism, which can be either probing mode (mode contains zero
tokens), i.e., the mechanism tests the characteristics of the communication chan-
nels through keep-alive messages, or normal mode (mode contains one token), i.e.,
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Fig. 2. Probing mechanism

the mechanism selects the best estimated channel for relaying messages. Initially,
all places contain zero tokens, except ready, which contains one token.

When in normal mode, activity select is enabled when s0 contains at least
one token, and ready contains one token. When select completes, one token
is removed from s0 and ready, and send0 gets enabled if monitor0 has more
tokens than monitor1 (send1 gets enabled in the other case). If send0 completes
with success (case 0), then a token is added to s1 and ready. Similarly, when
send1 completes with success, a token is moved to s1 and ready.

When in probing mode, the model behave as follows: send0 and send1 have
both the same rate R0 (while their case probabilities depend on the character-
istics of the channels, which may vary over time). Activity select is enabled
when ready contains one token; when select completes, ready contains zero
tokens and activities send0 and send1 get enabled (by moving one token in both
p0 and p1). When send0 completes with success (case 0), a token is added to
monitor0. Similarly, when send1 completes, a token is added to monitor1. A
token is moved to ready when both send0 and send1 complete.

3.3 Majority Voting Mechanism

Majority voting is a fault-tolerant mechanism that relies on a decentralised vot-
ing system for checking the consistency of data. Voters are software systems
that constantly check each other’s results, and has been widely used for de-
veloping resilient systems in the presence of faulty components. In a network,
voting systems can be used to compare message replicas transmitted over dif-
ferent channels, see, for instance, the protocol proposed in [24] for time-critical
applications in acoustic sensor networks.

The synthesis of a majority voting mechanism that uses three redundant
communication channels can be triggered with the stochastic activity network
shown in Figure 3. The mechanism replicates the message sent by the transmit-
ting host over three channels. In this case, the mechanism is able to tolerate one
faulty channel.

In the model, all places initially contain zero tokens. Activity multipathRou-

ter gets enabled when s0 contains a token. When such an activity completes,
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Fig. 3. Majority voting mechanism

the token is removed from s0, and three send activities (send0, send1, send2)
get enabled by moving tokens into places p0, p1, and p2. The number of tokens
moved in such places encode the actual informative content of the message.
When a send activity completes with success, the activity preserves the number
of tokens (i.e., all tokens are moved forward into the next place). Activity voter

gets enabled when the all sends complete (such activities will eventually change
the marking of p3, p4, and p5). When activity voter completes, a token is moved
into s1 and all tokens in other places are removed.

3.4 Error Correction Mechanism

Error correction deals with the detection of errors and re-construction of the
original, error-free data. A widely used approach for enabling hosts to automat-
ically detect and correct errors in received messages is forward error correction

(FEC). The mechanism requires the sender host to transmit a small amount
of additional data along with the message. The mechanism has been used, for
instance, in [22] for defining an overlay-based architecture for enhancing the
quality of service of best-effort services over the Internet.

The synthesis of an error correction mechanism that uses two redundant
communication channels can be triggered with the stochastic activity network
shown in Figure 4. One channel is used to send the original message, and the
other channel is used to send the error correction (EC) code. The receiver is
instrumented with a filtering mechanism that checks and corrects messages.

Initially, all places contain zero tokens. When a token is moved into s0,
activity fec gets enabled. When such an activity completes, a token is removed
from s0, and activities sendMsg and sendEC get enabled by moving tokens into p0
and p1. The number of tokens moved in such places encode the actual informative
content of the message. When sendMsg completes with success, all tokens in
place p0 are moved into p2. Similarly, when sendEC completes, all tokens of p1
are moved into p3. Activity filter gets enabled when places p2 and p3 contain
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Fig. 4. Error correction mechanism

tokens. When activity filter completes, a token is moved into s1 and all tokens
in other places are removed.

3.5 Security Mechanism

A typical way to enforce protection on a host is to decouple the host from the rest
of the network. A host can, for instance, be protected from receiving unwanted
traffic by creating a ring that selectively filters the incoming traffic. Similarly, the
identity of a host can be protected by anonymising the host’s messages through a
set of intermediary hosts, denominated proxies. This mechanism has been used,
for instance, in [11] and [4] for protecting hosts from denial-of-service attacks.

The synthesis of a security mechanism over a network with two intermediary
hosts can be triggered with the stochastic activity network shown in Figure 5.
The mechanism creates an anonymiser service that selects a channel with a
certain probability, and forwards the message on such a channel. In the model,

Fig. 5. Security mechanism

all places initially contain zero tokens. When a token is moved into s0, activity
Anonymiser gets enabled. When such an activity completes, a token is moved
from s0 either to p0 (with probability pr0), or to p1 (with probability pr1), and
either send0 or send1 gets enabled. When a send activity completes, a token is
moved in s1.
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4 Case study

In this section, we show how the developed library can be used within an auto-
mated model-based dependability analysis with the aim to enhance a synthesised
Connector. We consider a demonstrative scenario described in [8], where two
kinds of heterogeneous devices need to communicate in a reliable and timely
manner. For clarity of exposition, in order to fit the purpose of this paper and
also make it self-contained, in the following we report a concise and slightly re-
worded description of the scenario reported in [8], and an informal specification
of the protocols used by the two kinds of heterogeneous devices, and of the syn-
thesised Connector. Readers interested in the complete original specification
are re-directed to [8].

4.1 Specification

The scenario considers an emergency situation in which policemen need to ex-
change information with security guards. Each policeman can exchange confi-
dential data with other policemen with a secured file sharing protocol. Security
guards, on the other hand, exchange information by using another protocol, de-
nominated emergency call. The two protocols have the same aim (i.e., enable
information exchange) but a mediating Connector is needed in order to enable
inter-operation, because they use different message types and different message
sequences.

Secured File Sharing. This is a basic peer-to-peer protocol for enabling file
sharing. The peer that initiates the communication, denominated coordinator,
sends a multicast message (selectArea) to a selected group of peers. When a
peer receives a selectArea message, the peer replies to the coordinator with
a areaSelected message. Upon receiving the areaSelected message, the co-
ordinator sends a data file to the peers (uploadData message) that, in turn,
automatically reply with an uploadSuccess message if the data has been suc-
cessfully received.

Emergency Call. This is a peer-to-peer protocol for sending data files from
a control centre to groups of devices. Each group of devices is coordinated by
a leader. The protocols is initiated by the control centre, which sends an eReq

message to a group of devices located in a selected area of interest. The group
leader is in charge of replying to the control centre with an eResp. Whenever
the control centre receives the eResp from a group leader, an emergencyAlert

message is sent to all devices. Each device automatically notifies the control
center with an eACK message whenever it successfully receives the data.

Mediating Connector. A mediating Connector suitable for enabling inter-
operation from devices using the secured file sharing protocol to devices using
the emergency call protocol performs the following translations: selectArea
messages are translated into eReq messages directed to the leaders of selected
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group of devices; eResp messages are translated into areaSelected messages;
uploadData messages are translated into multicast emergencyAlert messages;
eACK messages are collected by the Connector and then translated into a single
uploadSuccess message. A timeout is used to avoid infinite wait in the case of
failure of eACK messages.

4.2 SAN Models

(a) SecuredFileSharing

(b) EmergencyCall, commander (c) EmergencyCall, guard

(d) Connector

Fig. 6. SAN Models

The SAN models corresponding to the specifications are shown in Figure 6.
The Connector uses two different channels to communicate with the two differ-
ent kinds of devices. Any send and receive action performed by the Connector
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is represented by a timed activity. Each activity has two case probabilities: case 0
is associated to the correct behaviour; case 1 is associated to incorrect behaviour.
Since the purpose of this case study is not to show new results on a real-world
protocol, but to exemplify the utility of the developed library, here we assume
that timed activities are all exponentially distributed and with the same rate.

Fig. 7. SAN model of the Connected system

The model of the Connected system, which is shown in Figure 7, is obtained
by composing the models through place sharing. In the Connected system,
there is a shared place for each pair of activities that represent send/receive
actions: send activities add tokens in the shared place, while receive activities
remove tokens from the shared place and use the marking of the shared place as
enabling condition.

4.3 Analysis

The analysis is performed through Möbius [10], and consists in a measure of
latency and a measure of coverage. Latency is measured from when the control
centre sends the initial request selectArea to when it receives uploadSuccess.
Coverage is given by the percentage of responses the control centre receives back
within a certain time T .

The analysis we describe can be automated with the approach reported
in [13]. In order to simplify the exposition, here we consider only failures be-
tween the Connector and the guards’ devices (which execute the Emergency
Call protocol), and we use the probing mechanism to contrast timing failures,
and the majority voting mechanism to contrast value failure. Both mechanisms
are introduced on the communication channel between the Connector and the
guards’ devices (which follow the Emergency Call protocol).

Latency. The first analysis aims to assess the trend of latency for different
values of timeout, assuming three different values of timing failure probability
between the Connector and the guards. Figure 8(a), shows the value of latency
(on the y axis) for the Connected system without dependability mechanisms
(the timeout value is reported on the x axis). Figure 8(b), shows the same anal-
ysis performed on the model enhanced with the probing mechanism. We can
notice that, with the considered system parameters, the mechanism is able to
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(a) Basic model (b) Enhanced model with Probing Mecha-
nism

Fig. 8. Latency assessment in case of timing failure

(a) Basic model (b) Enhanced model with Majority Voting
Mechanism

Fig. 9. Coverage assessment in case of value failure
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reduce latency only in two out of three situations. When the timing failure prob-
ability is 0.5 the latency has very similar values for both models; in fact, in such
a case the failure probability has a too high value and the probing mechanism
is a too light means to contrast its effects.

Coverage. The second analysis is performed for three different probabilities of
value failures between the Connector and the guards. Figures 9(a) and 9(b)
show the analysis results for the basic model and for the model enhanced with
the majority voting mechanism. In this case, the mechanism is able to improve
coverage in all considered cases. We can notice that, for the probability val-
ues considered, the coverage provided by the enhanced model is approximately
double compared to basic one.

5 Related work and conclusions

Automated dependability analysis, pursued through transformation-based verifi-
cation and validation environments, has been the subject of several studies in the
last decade. Automatic/automated methods from system specification languages
to modelling languages amenable to perform dependability analysis has been
recognised as an important support for improving the quality of systems. More-
over, it favours the application of verification and validation techniques at indus-
try level, where these methods have difficulties to be applied on a routine basis,
primarily due to the high level of expertise required to deal with mathematical
modelling and analysis techniques. Development of an integrated environment to
support the early phases of system design, where design tools based on the UML
(Unified Modeling Language) are augmented with transformation-based valida-
tion and analysis techniques, is presented in [5], among several other works. A
Modeling framework allowing the generation of dependability-oriented analyt-
ical models from AADL (Architecture Analysis and Design Language) models
is described in [19]. Tools have also been developed, supporting the definition
of model-based transformations. To provide some examples, the Viatra tool [9]
automatically checks consistency, completeness, and dependability requirements
of systems designed using the Unified Modeling Language. The Genet tool [7]
allows the derivation of a general Petri net from a state-based representation of
a system. The ADAPT Tool supports model transformations from AADL Archi-
tectural Models to Stochastic Petri Nets [20]. However, from the point of view of
enhancing the model-transformation environment with template models of basic
fault tolerance mechanisms to allow automated assessment of enhanced, fault
tolerant designs, it appears a rather novel research direction. Although studies
exist dealing with libraries of fault tolerance mechanisms (e.g. [18]) to assist the
design of dependable systems, to the best of the authors’ knowledge the attempt
to provide template models of dependability mechanisms, to be incorporated
in a wider system dependability model to assess their efficacy at system design
time, is a new contribution of this paper.
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In this paper, five dependability mechanisms have been specified in terms
of SAN models, covering basic means to cope with timing and value failures
of communication channels in heterogeneous networked systems. They are first
encapsulated in the dependability model of the Connector set-up to allow in-
teroperability among networked systems, and managed by the dependability
evaluator enabler to analyse their appropriateness to satisfy dependability prop-
erties required by the networked systems. Upon positive assessment, they are
employed to build advanced Connectors design. A case study has been also
included, inspired by current research activity ongoing in the context of the EU
Connect project, to show the practical application of selected dependability
mechanisms in presence of failure scenarios.

The work described is a first step in the development of enhanced automated
dependability analysis as a support for the synthesis of dependable Connectors.
After the definition of the individual dependability mechanisms, all the implica-
tions related with their systematic usage to replace basic elements of the Con-

nector dependability model (showing unsatisfactory from the dependability or
performance point of view), have to be rigorously considered and solved. Of
course, also investigations on further dependability mechanisms suitable to the
addressed context would be interesting to carry-on. Indeed, these are among the
directions we are exploring as future work.
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