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Abstract

A class of models is presented, in the form of continuation monads polymorphic
for first-order individuals, that is sound and complete for minimal intuitionis-
tic predicate logic (including disjunction and the existential quantifier). The
proofs of soundness and completeness are constructive and the computational
content of their composition is, in particular, a β-normalisation-by-evaluation
program for simply typed lambda calculus with sum types. Although the inspi-
ration comes from Danvy’s type-directed partial evaluator for the same lambda
calculus, the use of delimited control operators (i.e. computational effects) is
avoided. The role of polymorphism is crucial – dropping it allows one to obtain
a notion of model complete for classical predicate logic.

Keywords: intuitionistic logic, completeness, Kripke models, Double-negation
Shift, normalisation by evaluation
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1. Introduction

Although Kripke models are standard semantics for intuitionistic logic, there
is as yet no (simple) constructive proof of their completeness when one considers
all the logical connectives. While Kripke’s original proof [25] was classical, Veld-
man gave an intuitionistic one [32] by using Brouwer’s Fan Theorem to handle
disjunction and the existential quantifier. To see what the computational con-
tent behind Veldman’s proof is, one might consider a realisability interpretation
of the Fan Theorem (for example [5]), but, all known realisers being defined
by general recursion, due to the absence of an elementary proof of their termi-
nation, it is not clear whether one can think of the program using them as a
constructive proof or not.

1Present address: Faculty of Informatics, University “Goce Delčev”, PO Box 201, 2000
Štip, Macedonia; E-mail: dankoilik@gmail.com
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On the other hand, a connection between normalisation-by-evaluation (NBE)
[6] for simply typed lambda calculus, λ→, and completeness of minimal intu-
itionistic logic for Kripke models for the fragment {∧,⇒, ∀} has been made
[8, 19]. We review this connection in Section 2. There, we also revisit Danvy’s
extension [10] of NBE from λ→ to λ→∨, simply typed lambda calculus with
sum types. Even though Danvy’s algorithm is simple and elegant, he uses the
full power of delimited control operators which do not yet have a typing system
that permits to understand that use logically. We deal with that problem in
Section 3, by modifying the notion of Kripke model so that we can give a proof
of completeness for full intuitionistic logic in continuation-passing style, that
is, without relying on having delimited control operators in our meta-language.
In Section 4, we extract the algorithm behind the given completeness proof, a
β-NBE algorithm for λ→∨. In Section 5, we stress the importance of our models
being parametric, by comparing them to similar models that are complete for
classical logic [23]. We conclude with Section 6, where we also mention related
work.

The proofs of Section 3 have been formalised in the Coq proof assistant in
[20], which also represents an implementation of the NBE algorithm of Section 4.

2. Normalisation-by-Evaluation as Completeness

In [6], Berger and Schwichtenberg presented a proof of normalisation of
λ→ which does not involve reasoning about the associated reduction relation.
Instead, they interpreted λ-terms in a domain, or ambient meta-language, using
an evaluation function,

J−K : Λ → D,

and then they defined an inverse to this function, which from the denotation
in D directly extracts a term in βη-long normal form. The inverse function ↓,
called reification, is defined by recursion on the type τ of the term, at the same
time with an auxiliary function ↑, called reflection:

↓τ : D → Λ-nf

↓τ := a 7→ a τ -atomic

↓τ→σ := S 7→ λa. ↓σ (S· ↑τ a) a-fresh

↑τ : Λ-ne → D

↑τ := a 7→ a τ -atomic

↑τ→σ := e 7→ S 7→↑σ e(↓τ S)

Here, S ranges over members of D, and we used 7→ and · for abstraction and
application at the meta-level. The classes of neutral (Λ-ne) and λ-terms in
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normal form (Λ-nf) are given by the following inductive definition.2

Λ-nf ∋ r := λaτ .rσ | eτ λ-terms in normal form

Λ-ne ∋ e := aτ | eτ→σrτ neutral λ-terms

It was a subsequent realisation of Catarina Coquand [8], that the evaluation
algorithm J·K is also the one underlying the Soundness Theorem for minimal
intuitionistic logic (with ⇒ as the sole logical connective) with respect to Kripke
models, and that the reification algorithm ↓ is also the one underlying the
corresponding Completeness Theorem.

More precisely, the following well-known statements hold and their proofs
have been machine-checked [9, 19] for the logic fragment generated by the con-
nectives {⇒,∧, ∀}.

Definition 2.1. AKripke model is given by a preorder (K,≤) of possible worlds,
a quantification domain D(w) for every w ∈ K, and a relation of forcing, w 
 X ,
that interprets the predicate X(x1, . . . , xn) in the world w by an n-ary relation
on D(w), such that,

for all w′ ≥ w,D(w) ⊆ D(w′), and

for w′ ≥ w, d1, . . . , dn ∈ D(w), (w 
 X)(d1, . . . , dn) → (w′

 X)(d1, . . . , dn).

The relation of forcing is then extended to all formulae by the following clauses,
using an explicit superscript σ substitution necessary for a precise handling of
quantifiers:

w 

σ X(x1, . . . , xn) := (w 
 X)(d1, . . . , dn), when σ = {x1 7→ d1, . . . , xn 7→ dn}

w 

σ A ∧B := w 


σ A and w 

σ B

w 

σ A ∨B := w 


σ A or w 

σ B

w 

σ A ⇒ B := for all w′ ≥ w,w′



σ A → w′



σ B

w 

σ ∀x.A(x) := for all w′ ≥ w and d ∈ D(w′), w′



σ,x 7→d A(x)

w 

σ ∃x.A(x) := for some d ∈ D(w), w 


σ,x 7→d A(x)

w 

σ ⊥ := false

w 

σ ⊤ := true

We write w 

σ Γ when w forces each formula of Γ. We write σ ∈ D(w) to

emphasise that all interpretations of individuals from σ live in D(w).

Remark 2.2. The explicit substitution environment σ maps free variables x to
interpretations of individual constants d ∈ D(w). In the forcing clauses for ⇒
and ∀, there is an implicit lifting from σ ∈ D(w) to σ ∈ D(w′).

2Neutral terms are the subset of normal terms that cannot be reduced on their own, whose
reduction is blocked because of a free-variable appearance. Closed λ→-terms always reduce
to closed terms in normal form, never to neutral terms.
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Theorem 2.3 (Soundness). If Γ ⊢ p : A then, in any Kripke model, for any
world w and σ ∈ D(w), if w 


σ Γ, then w 

σ A.

Proof. By induction on the height of the derivation tree.

Theorem 2.4 (Strong Completeness by Substitution3). There is a model U (the
“universal model”) such that, given a world w of U and σ ∈ D(w), if w 


σ A,
then there exists a term p and a derivation in normal form w ⊢ p : A.

Proof. The universal model U is built by setting:

• K to be the set of contexts Γ;

• “≤” to be the subset relation of contexts;

• “Γ 
 X” to be the set of derivations in normal form Γ ⊢nf X , for X a
closed atomic formula;

• D(−) to be the constant function that for every world gives the same set
of individual terms of predicate logic.

One then proves simultaneously, by induction on the complexity of A, that
the two functions defined above, reify (↓) and reflect (↑), are correct, that is, that
↓ maps a member of Γ 


σ A to a normal proof term (derivation) Γ ⊢ p : A, and
that ↑ maps a neutral term (derivation) Γ ⊢ e : A to a member of Γ 


σ A.

We can compose theorems 2.3 and 2.4 to obtain a normalisation procedure.

Corollary 2.5 (Normalisation-by-evaluation (NBE)). For every closed λ→-
term p, such that ⊢ p : τ , there exists a closed term in normal form p′ ∈ Λ-nf,
such that ⊢ p′ : τ .

The following corollary justifies for U the name “universal model”.

Corollary 2.6 (Completeness, usual formulation). If in any Kripke model, for
any world w and σ ∈ D(w), w 


σ Γ implies w 

σ A, then there exists a term p

and a derivation Γ ⊢ p : A.

Proof. If w 

σ Γ → w 


σ A in any Kripke model, then also w 

σ Γ → w 


σ A

in the model U above. Since from the ↑-part of Theorem 2.4 we have that
A,Γ 


σ A, and hence Γ 

σ Γ, then from the ↓-part of the same theorem there

exists a term p such that Γ ⊢ p : A.

If one wants to extend this technique for proving completeness for Kripke
models to the rest of the intuitionistic connectives, ⊥, ∨ and ∃, the following
meta-mathematical problems appear, which have been investigated in the mid-
dle of the last century. At that time, Kreisel, based on observations of Gödel,
showed [24][21, Section 3.1.1] that for a wide range of intuitionistic semantics,
into which Kripke’s can also be fit:

3The term “strong completeness by substitution” is used to make a link with [24].
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• If one can prove the completeness for the negative fragment of formulae
(built using ∧,⊥,⇒, ∀, and negated atomic formulae, X ⇒ ⊥), of intu-
itionistic logic, then one can prove Markov’s Principle,

¬¬∃nA0(n) → ∃nA0(n), (MP)

for A0(n) decidable. In view of Theorem 2.4, whose proof is purely in-
tuitionistic, this implies that having a completeness proof cover ⊥ means
being able to prove MP, which is known to be independent of many con-
structive logical systems.

• If one can prove the completeness for all of intuitionistic predicate logic,
that is, including ∨ and ∃, then one can prove a stronger principle,

∀α¬¬∃nA0(n) → ∀α∃nA0(n), (MP+)

where A0(n) is decidable and α ranges over functions N → {0, 1}.

We mentioned that Veldman [32] used Brouwer’s Fan Theorem to handle ∨
and ∃, but to handle ⊥ he simply removed the forcing definition “w 
 ⊥ :=
false” from the original definition of forcing of Kripke, allowing w 
 ⊥ to be
defined, like any other atomic formula, through a (unary) meta-level predicate,
w 
⊥. In the author’s view, Veldman’s modification only makes Kripke’s orig-
inal definition more regular: if in Definition 2.1 one considers ⊥ as a nullary
predicate, rather than a logical connective, one obtains Veldman’s definition.
We remark in passing that it is the same kind of “trick” that allowed Kriv-
ine to obtain a constructive version of Gödel’s completeness proof for classical
predicate logic. [26]

If one tries to straightforwardly extend the NBE-Completeness proof of The-
orem 2.4 to cover disjunction (the existential quantifier is analogous), one sees
that a problem appears in the case of reflection of sum, ↑τ∨σ. There, given a
neutral λ-term that derives τ ∨σ, one is supposed to prove that w 
 τ ∨σ holds,
which by definition means to prove that either w 
 τ or w 
 σ holds. But,
since the input λ-term is neutral, it is not of the form ι1r or ι2r (see extended
definition of Λ-nf and Λ-ne below), therefore we are not able to decide immedi-
ately which of the τ and σ will be proved. Because, a neutral term represents
a computation state that is “stuck” due to open variables preventing further
reduction.

However, if we consider this situation in a wider context, that of Corol-
lary 2.5, because we are starting with closed λ-terms, we know that all of the
free variables that appear in the neutral term in question, will be substituted
for in the future. Therefore, if we could postpone the decision “w 
 τ or w 
 σ”
in the case of ↑τ∨σ, we could decide later whether the left or the right disjunct
has been proved.

This is precisely what was realised in Computer Science by Danvy, who
gave a so-called type-directed partial evaluation algorithm (TDPE) for λ→∨.
A TDPE algorithm is another name for an NBE algorithm, although the two
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concepts were discovered in separate fields of research. [14] Danvy used for this
purpose the delimited control operators “shift and reset”, that he previously
developed with Filinski. [12] Computationally, shift and reset are powerful,
because they permit to express any so-called monadic computational side-effect.
[15]

For a formal definition of their computational behaviour, we refer the reader
to the original articles [12, 13]. Here we will attempt a brief informal description
of their semantics.

These delimited control operators consist of two components, the delim-
iter #p (“reset”) and the operator Sk.p (“shift”). A shift must appear inside
the scope of at least one reset, that is, we consider expressions of the form
E[#F [Sk.p]], where F [·] and E[·] are λ-terms with a hole, called evaluation
contexts. The reset delimits an evaluation context F [·], allowing shift to gain
control of it through the variable k. Shift is a kind of λ-abstraction that allows
to manipulate its environment up to the nearest delimiter set by reset.

We give two examples of reduction sequences in a lambda calculus extended
with numbers and addition (written in infix-notations). The first one,

1 + #2 + Sk.4 → 1 + #4 {(λa.#2 + a)/ k} = 1 +#4 → 1 + 4 → 5,

is an example of using shift which does not make use of its k. This has the
effect of simply replacing the evaluation context with the current term under
the shift. In the second example,

1 + #2 + Sk.k4 + k8

→1 + #(λa.#2 + a)4 + (λa.#2 + a)8

→+1 + #(#6) + (#10)

→+1 + #6 + 10

→+17,

shift uses its k twice, having as effect the double use of the evaluation context
“2 + · ”.

A similar usage of shift happens in Danvy’s NBE algorithm for λ→∨,

↓τ : D → Λ-nf

↓τ := a 7→ a τ -atomic

↓τ→σ := S 7→ λa.# ↓σ (S· ↑τ a) a-fresh

↓τ∨σ := S 7→

{

ι1(↓
τ S′) , if S = inl ·S′

ι2(↓
σ S′) , if S = inr ·S′

↑τ : Λ-ne → D

↑τ := a 7→ a τ -atomic

↑τ→σ := e 7→ S 7→↑σ e(↓τ S)

↑τ∨σ := e 7→ Sκ.case e of
(a1.#κ · (inl ·(↑τ a1)) ‖
a2.#κ · (inr ·(↑σ a2)))

ai-fresh

6



where we extend the inductive definition of normal and neutral λ-terms as fol-
lows:

Λ-nf ∋ r := eτ | λaτ .rσ | ιτ1r | ιτ2r

Λ-ne ∋ e := aτ | eτ→σrτ | case eτ∨σ
of (aτ1 .r

ρ
1‖a

σ
2 .r

ρ
2)

For the computational behaviour of the algorithm, we point the reader to the
original article [10].

One may wonder if using these computational facilities is safe from the log-
ical point of view, that is, whether Danvy’s algorithm constitutes at the same
time a constructive proof of completeness of intuitionistic predicate logic with
disjunction (and, by analogy, with ∃) with respect to Kripke models. In order
to affirm that, we need a typing system for shift and reset that at the same time
is a constructive logic and is able to type-check the above computer program.
While we do know how to construct typing systems for shift and reset that are
constructive, [18, 22] more work is necessary in order to make one that can
type-check the program. On the other hand, the existing typing systems are
either so-called type-and-effect system [12, 2], where implication is a quaternary
not binary connective, or variants of classical logic [29].

3. Kripke-CPS Models and Their Completeness

Historically, shift and reset appeared as a way to write in direct style all the
programs that required to be written in continuation-passing style (CPS). We
can thus hope to give a normalisation-by-evaluation proof for intuitionistic logic
with ∨ and ∃ in continuation-passing style, or, logically speaking, because CPS
translations are analogous to double-negation translations, to give an “indirect”
such proof of Completeness. Note, however, that this indirectness does not make
the proof less constructive: we do get a constructive Completeness proof, and
one can use it to compute normal forms of terms,4 albeit one can not keep the
same notion of model as Kripke models.

In this section we present a notion of model that we developed following
this idea, by suitably inserting continuations into the notion of Kripke model.
We prove that the new models are sound and complete for full intuitionistic
predicate logic.

Definition 3.1. An Intuitionistic Kripke-CPS model (IK-CPS) is given by:

• a preorder (K,≤) of possible worlds ;

• a binary relation (−) 

(−)
⊥ between worlds and formulae, labelling a world

as exploding5 at a formula;

4Even in practice, using the formalisation in the Coq prof assistant. [20]
5The term “exploding” nodes is somewhat of a folklore, and is used besides the terms

“fallible” nodes and “sick” nodes. The name comes from the original purpose of this predicate,
to stand for forcing of ⊥.
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• a binary relation (−) 
s (−) of strong forcing between worlds and atomic
formulae (predicates), such that

for all w′ ≥ w,w 
s X ⊆ w′

s X,

• and a domain of quantification D(w) for each world w, such that

for all w′ ≥ w,D(w) ⊆ D(w′).

The relation (−) 
s (−) of strong forcing is extended from atomic to composite
formulae inductively and by simultaneously defining one new relation, (non-
strong) forcing:

⋆ A formula A is forced at world w (notation w 

σ A) if, for any formula C,

∀w′ ≥ w.
(

∀w′′ ≥ w′. w′′


σ
s A → w′′



C
⊥

)

→ w′


C
⊥;

• w 

{x1 7→d1,...,xn 7→dn}
s X(x1, . . . , xn) if (w 
s X)(d1, . . . , dn);

• w 

σ
s A ∧B if w 


σ A and w 

σ B;

• w 

σ
s A ∨B if w 


σ A or w 

σ B;

• w 

σ
s A ⇒ B if for all w′ ≥ w, w′



σ A implies w′



σ B;

• w 

σ
s ∀x.A(x) if for all w′ ≥ w and all d ∈ D(w′), w′



σ,x 7→d A(x);

• w 

σ
s ∃x.A(x) if w 


σ,x 7→d A(x) for some d ∈ D(w).

Remark 3.2. Certain details of the definition have been put into boxes to facil-
itate the comparison carried out in Section 5.

Remark 3.3. We use explicit environments σ for handling quantifiers, for the
reasons mentioned in Remark 2.2. To lessen the notational burden, we will skip
writing the σ-superscript when it is not relevant, like in the non-quantifier cases
of the proof of Theorem 3.13.

Remark 3.4. In the definition of (non-strong) forcing, there is a universal quan-
tification over all formulae C. We could as well have used a quantification
over N and work with encodings of formulae when constructing the universal
model of Definition 3.10. What is important, however, is to remark that this
quantification if first-order, the C-s are individuals not predicates or types.

Remark 3.5. The condition “for all formula C” is only necessary for the sound-
ness proof (Theorem 3.9) to go through, more precisely, the cases of elimination
rules for ∨ and ⇒. The completeness proof (Theorem 3.13) goes through even
if we define w 
 A by

∀w′ ≥ w.
(

∀w′′ ≥ w′. w′′

s A → w′′



A
⊥

)

→ w′


A
⊥ .
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Lemma 3.6. Strong forcing and (non-strong) forcing are monotone in any IK-
CPS model, that is, given σ ∈ D(w) and w′ ≥ w, w 


σ
s A implies w′



σ
s A, and

w 

σ A implies w′



σ A.

Proof. Monotonicity of strong forcing is proved by induction on the complexity
of the formula, while that of forcing is by definition. The proof is easy and
available in the Coq formalisation.

It is not needed that the exploding node predicate be monotone.

Lemma 3.7. The following “monadic” operations are definable for IK-CPS
models:

“unit” η(·) w 

σ
s A → w 


σ A

“bind” (·)∗(·) (∀w′ ≥ w. w′


σ
s A → w′



σ B) → w 


σ A → w 

σ B

Proof. Easy, using Lemma 3.6. If we leave implicit the handling of formulae C,
worlds, and monotonicity, we have the following procedures behind the proofs.

η(α) = κ 7→ κ · α

(φ)∗(α) = κ 7→ α · (β 7→ φ · β · κ)

Remark 3.8. These operations are called monadic because their typing satisfies
the functional programming notion of monad. We currently do not know if a
corresponding notion of monad in Category Theory arises from them.

With Table 1, we fix a derivation system and proof term notation for mini-
mal intuitionistic predicate logic. There are two kinds of variables, proof term
variables a, b, . . ., and individual (quantifier) variables x, y, . . .. Individual terms
(constants) are denoted by t. We rely on these conventions to resolve the ap-
parent ambiguity of the syntax: the abstraction λa.p is a proof term for ⇒I ,
while λx.p is a proof term for ∀I ; (p, q) is a proof term for ∧I , while (t, q) is a
proof term for ∃I .

We supplement the characterisation of normal and neutral terms from page 7:

Λ-nf ∋ r :=e | λa.r | ι1r | ι2r | (r1, r2) | λx.r | (t, r)

Λ-ne ∋ e :=a | er | case e of (a1.r1‖a2.r2) | π1e | π2e | et |

dest e as (x.a) in r

As before, let w 

σ Γ denote that all formulae from Γ are forced.

Theorem 3.9 (Soundness). If Γ ⊢ p : A, then, in any world w of any IK-CPS
model, and for any σ ∈ D(w), if w 


σ Γ, then w 

σ A.

Proof. The proof is by induction on the height of the derivation tree. We con-
sider the last used derivation rule. Here we give the propositional case for ⇒E ,
and the quantifier cases. For the rest of the cases from the propositional frag-
ment, one can be guided by the algorithm given in Section 4.

9



(a : A) ∈ Γ
Ax

Γ ⊢ a : A

Γ ⊢ p : A1 Γ ⊢ q : A2
∧I

Γ ⊢ (p, q) : A1 ∧ A2

Γ ⊢ p : A1 ∧ A2
∧i

EΓ ⊢ πip : Ai

Γ ⊢ p : Ai
∨i

IΓ ⊢ ιip : A1 ∨ A2

Γ ⊢ p : A1 ∨ A2 Γ, a1 : A1 ⊢ q1 : C Γ, a2 : A2 ⊢ q2 : C
∨E

Γ ⊢ case p of (a1.q1‖a2.q2) : C

Γ, a : A1 ⊢ p : A2 ⇒I

Γ ⊢ λa.p : A1 ⇒ A2

Γ ⊢ p : A1 ⇒ A2 Γ ⊢ q : A1 ⇒E

Γ ⊢ pq : A2

Γ ⊢ p : A(x) x-fresh
∀I

Γ ⊢ λx.p : ∀x.A(x)

Γ ⊢ p : ∀x.A(x)
∀E

Γ ⊢ pt : A(t)

Γ ⊢ p : A(t)
∃I

Γ ⊢ (t, p) : ∃x.A(x)

Γ ⊢ p : ∃x.A(x) Γ, a : A(x) ⊢ q : C x-fresh
∃E

Γ ⊢ dest p as (x.a) in q : C

Table 1: Proof term annotation for the natural deduction system of minimal intuitionistic
predicate logic (MQC)

Case ⇒E. To show w 
 Γ → w 
 B, suppose w 
 Γ, and suppose C,w′ ≥ w

are given, and let κ′ denote a proof of

∀w′′ ≥ w′. (w′′

s B → w′′



C
⊥).

To show that w′


C
⊥, apply the induction hypothesis w 
 A ⇒ B setting in it

C := C,w′ := w′. Now, given φ, which denotes a proof of

∀w′′ ≥ w′. (w′′

 A → w′′


 B),

we have to show w′


C
⊥. We can finish the proof by using φ, the other induction

hypothesis w 
 A, and κ′.

10



Case ∀I . To show that w 

σ ∀x.A(x), we use “unit” of Lemma 3.7, and then we

have to show that, for a given w′ ≥ w, d ∈ D(w′), we have that w′


σ,x 7→d A(x).

But, this is immediate by the induction hypothesis.

Case ∀E. We show that w 

σ,x 7→d A(x) in the same way as the case of ⇒E ,

except that φ stands for a proof of

∀w′′ ≥ w′. ∀d ∈ D(w′′). w′′


σ,x 7→d A(x),

and there is no (need of a) second induction hypothesis to apply.

Case ∃I . To show that w 

σ ∃x.A(x) from the induction hypothesis w 


σ,x 7→d

A(x), where d ∈ D(w), is immediate by “unit” of Lemma 3.7.

Case ∃E. To show that w 
 C, suppose that a formula C′ and a world w′ ≥ w

are given, and denote by κ′ a proof of

∀w′′ ≥ w′. (w′′


σ
s C → w′′



C′

⊥ ).

To show that w′


C′

⊥ , apply the induction hypothesis w′

 ∃x.A(x) setting

C := C′, w′ := w′, and then, given d ∈ D(w′) and a proof of w′


σ,x 7→d A(x),

show w′


C′

⊥ by using the other induction hypothesis and κ′.

Definition 3.10. The Universal IK-CPS model U is obtained by setting:

• K to be the set of contexts Γ of MQC;

• Γ ≤ Γ′ iff Γ ⊆ Γ′;

• Γ 
s X iff there is a derivation in normal form of Γ ⊢ X in MQC, where
X is an atomic formula;

• Γ 

C
⊥ iff there is a derivation in normal form of Γ ⊢ C in MQC;

• for any w, D(w) is a set of individuals for MQC (that is, D(−) is a constant
function from worlds to sets of individuals).

(−) 
s (−) is monotone for the first argument because of the weakening property
for intuitionistic “⊢”.

Remark 3.11. The difference between strong forcing “
s” and the exploding node
predicate “
C⊥” in U is that the former is defined on atomic formulae, while the
latter is defined on any kind of formulae. Although, for U , it would suffice to
use “
C⊥” for “
s”, we do not want to make the abstract definition of IK-CPS
model less general by unifying the two. For similar reasons, we keep D(−) a
monotone function on worlds instead of the constant one used for U .

Lemma 3.12. We can also define the monadic “run” operation on the universal
model U , but only for atomic formulae X:

µ(·) : w 
 X → w 
s X.

11



Proof. By setting C := X and applying reflexivity of the preorder and the
identity function.

Theorem 3.13 (Completeness for U). For any closed formula A and closed
context Γ, the following hold for U :

Γ 
 A −→ there exists r ∈ Λ-nf such that Γ ⊢ r : A (↓)

for e ∈ Λ-ne,Γ ⊢ e : A −→ Γ 
 A (↑)

Proof. We prove simultaneously the two statements by induction on the com-
plexity of formula A.

We skip writing the proof term annotations, and write just Γ ⊢ A instead
of “there exists p such that Γ ⊢ p : A”, in order to decrease the level of detail.
The algorithm behind this proof that concentrates on proof terms is given in
Section 4.

Base case. (↓) is by “run” (Lemma 3.12), (↑) is by “unit” (Lemma 3.7).

Induction case for ∧. Let Γ 
 A ∧B i.e.

∀C. ∀Γ′ ≥ Γ. ((∀Γ′′ ≥ Γ′. Γ′′

 A and Γ′′


 B → Γ′′ ⊢ C) → Γ′ ⊢ C) .

We apply this hypothesis by setting C := A ∧ B and Γ′ := Γ, and then, given
Γ′′ ≥ Γ s.t. Γ′′


 A and Γ′′

 B, we have to derive Γ′′ ⊢ A ∧ B. But, this is

immediate by applying the ∧I rule and the induction hypothesis (↓) twice, for
A and for B.

Let Γ ⊢ A ∧ B be a neutral derivation. We prove Γ 
 A ∧ B by applying
unit (Lemma 3.7), and then applying the induction hypothesis (↓) on ∧1

I , ∧
2
I ,

and the hypothesis.

Induction case for ∨. Let Γ 
 A ∨B i.e.

∀C. ∀Γ′ ≥ Γ. ((∀Γ′′ ≥ Γ′. Γ′′

 A or Γ′′


 B → Γ′′ ⊢ C) → Γ′ ⊢ C) .

We apply this hypothesis by setting C := A ∨ B and Γ′ := Γ, and then, given
Γ′′ ≥ Γ s.t. Γ′′


 A or Γ′′

 B, we have to derive Γ′′ ⊢ A ∨ B. But, this is

immediate, after a case distinction, by applying the ∨i
I rule and the induction

hypothesis (↓).
We now consider the only case (besides ↑∃xA(x) below) where using shift

and reset, or our Kripke-style models, is crucial. Let Γ ⊢ A ∨ B be a neutral
derivation. Let a formula C and Γ′ ≥ Γ be given, and let

∀Γ′′ ≥ Γ′. (Γ′′

 A or Γ′′


 B → Γ′′ ⊢ C) . (#)

We prove Γ′ ⊢ C by the following derivation tree:

12



Γ ⊢ A ∨B

Γ′ ⊢ A ∨B

A ∈ A,Γ′

Ax
A,Γ′ ⊢ A

(↑)
A,Γ′


 A
inl

A,Γ′

 A or A,Γ′


 B
(#)

A,Γ′ ⊢ C

B ∈ B,Γ′

Ax
B,Γ′ ⊢ B

(↑)
B,Γ′


 B
inr

B,Γ′

 A or B,Γ′


 B
(#)

B,Γ′ ⊢ C
∨E

Γ′ ⊢ C

Induction case for ⇒. Let Γ 
 A ⇒ B i.e.

∀C. ∀Γ′ ≥ Γ.

((∀Γ′′ ≥ Γ′. (∀Γ3 ≥ Γ′′. Γ3 
 A → Γ3 
 B) → Γ′′ ⊢ C) → Γ′ ⊢ C) .

We apply this hypothesis by setting C := A ⇒ B and Γ′ := Γ, and then, given
Γ′′ ≥ Γ s.t.

∀Γ3 ≥ Γ′′. Γ3 
 A → Γ3 
 B (#)

we have to derive Γ′′ ⊢ A ⇒ B. This follows by applying (⇒I), the IH for(↓),
then (#), and finally the IH for (↑) with the Ax rule.

Let Γ ⊢ A ⇒ B be a neutral derivation. We prove Γ 
 A ⇒ B by applying
unit (Lemma 3.7), and then, given Γ′ ≥ Γ and Γ′


 A, we have to show that
Γ′


 B. This is done by applying the IH for (↑) on the (⇒E) rule, with the IH
for (↓) applied to Γ′


 A.

Induction case for ∀. We recall that the domain function D(−) is constant in
the universal model U .

Let Γ 

σ ∀xA(x) i.e.

∀C. ∀Γ′ ≥ Γ.
((

∀Γ′′ ≥ Γ′.
(

∀Γ3 ≥ Γ′′. ∀t ∈ D. Γ3 

σ,x 7→t A(x)

)

→ Γ′′ ⊢ C
)

→ Γ′ ⊢ C
)

.

We apply this hypothesis by setting C := ∀xA(x) and Γ′ := Γ, and then, given
Γ′′ ≥ Γ s.t.

∀Γ3 ≥ Γ′′. ∀t ∈ D. Γ3 

σ,x 7→t A(x) (#)

we have to derive Γ′′ ⊢ ∀xA(x). This follows by applying (∀I), the IH for(↓),
and then (#).

Let Γ ⊢ ∀xA(x) be a neutral derivation. We prove Γ 

σ ∀xA(x) by applying

unit (Lemma 3.7), and then, given Γ′ ≥ Γ and t ∈ D, we have to show that
Γ′



σ,x 7→t A(t). This is done by applying the IH for (↑) on the (∀E) rule and the

hypothesis Γ ⊢ ∀xA(x).

Induction case for ∃. Let Γ 

σ ∃xA(x) i.e.

∀C. ∀Γ′ ≥ Γ.
((

∀Γ′′ ≥ Γ′.
(

∃t ∈ D. Γ′′


σ,x 7→t A(t)

)

→ Γ′′ ⊢ C
)

→ Γ′ ⊢ C
)

.

We apply this hypothesis by setting C := ∃xA(x) and Γ′ := Γ, and then, given
Γ′′ ≥ Γ s.t. ∃t ∈ D. Γ′′



σ,x 7→t A(x), we have to derive Γ′′ ⊢ ∃xA(x). This

follows by applying (∃I) with t ∈ D, and the IH for(↓).
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Let Γ ⊢ ∃xA(x) be a neutral derivation. Let a formula C and Γ′ ≥ Γ be
given, and let

∀Γ′′ ≥ Γ′.
(

∃t ∈ D.Γ′′


σ,x 7→t A(x) → Γ′′ ⊢ C

)

. (#)

We prove Γ′ ⊢ C by the following derivation tree:

Γ ⊢ ∃xA(x)

Γ′ ⊢ ∃xA(x)

A(x) ∈ A(x),Γ′

Ax
A(x),Γ′ ⊢ A(x)

(↑)
A(x),Γ′



σ,x 7→t A(x)

(#)
A(x),Γ′ ⊢ C x-fresh

∃E

Γ′ ⊢ C

For all of the (↓)-directions, it holds that r ∈ Λ-nf. By verifying that all above
proof cases generate derivations in normal form.

In the same way as for corollaries 2.5 and 2.6, we obtain the following two.

Corollary 3.14. For every closed proof term p of MQC, such that ⊢ p : A,
there exists a proof term p′ in normal form, such that ⊢ p′ : A.

Corollary 3.15. If in any IK-CPS model, at any world w, w 
 Γ implies
w 
 A, then there exists a term p and a derivation Γ ⊢ p : A.

4. Normalisation by Evaluation in IK-CPS Models

In this section we give the algorithm that we manually extracted from the
formalisation in the proof assistant Coq, for the restriction to the interesting
propositional fragment that involves implication and disjunction. The algorithm
extracted automatically by Coq contains too many details to be instructive,
however, the interested reader can directly run it inside the proof assistant.

The following evaluation function for λ→∨-terms is behind the proof of The-
orem 3.9:

JΓ ⊢ p : AKw
Γ : w 
 A

JaKρ := ρ(a)

Jλa.pKρ := κ 7→ κ · (α 7→ JpKρ,a 7→α) = η · (α 7→ JpKρ,a 7→α)

JpqKρ := κ 7→ JpKρ · (φ 7→ φ · JqKρ · κ)

Jι1pKρ := κ 7→ κ · (inl ·JpKρ) = η · (inl ·JpKρ)

Jι2pKρ := κ 7→ κ · (inr ·JpKρ) = η · (inr ·JpKρ)

Jcase p of (a1.q1‖a2.q2)Kρ := κ 7→ JpKρ ·

(

γ 7→

{

Jq1Kρ,a1 7→α · κ , γ = inl ·α
Jq2Kρ,a2 7→β · κ , γ = inr ·β

)
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The following is the algorithm behind Theorem 3.13:

↓AΓ : Γ 
 A → {p ∈ Λ-nf | Γ ⊢ p : A}

↑AΓ : {e ∈ Λ-ne | Γ ⊢ e : A} → Γ 
 A

↓XΓ := α 7→ µ · α X-atomic

↑XΓ := e 7→ η · e X-atomic

↓A⇒B
Γ := η ·

(

φ 7→ λa. ↓BΓ,a:A
(

φ· ↑AΓ,a:A a
))

a-fresh

↑A⇒B
Γ := e 7→ η ·

(

α 7→↑BΓ
(

e
(

↓AΓ α
)))

↓A∨B
Γ := η ·

(

γ 7→

{

ι1 ↓AΓ α if γ = inl ·α
ι2 ↓BΓ β if γ = inr ·β

)

↑A∨B
Γ := e 7→ κ 7→ case e of

(

a1.κ ·
(

inl · ↑AΓ,a1:A
a1
)

‖

a2.κ ·
(

inr · ↑BΓ,a2:B
a2
)) ai-fresh

5. Variants and Relation to Classical Kripke Models

5.1. “Call-by-value” Models

Defining forcing on composite formulae in Definition 3.1 proceeds anal-
ogously to defining the call-by-name CPS translation [30], or Kolmogorov’s
double-negation translation [31, 28]. A definition analogous to the call-by-value
CPS translation [30], i.e. Kuroda’s double-negation translation, is also possible,
by defining (non-strong) forcing by:

• w 

{x1 7→d1,...,xn 7→dn}
s X(x1, . . . , xn) if (w 
s X)(d1, . . . , dn);

• w 

σ
s A ∧B if w 


σ
s A and w 


σ
s B;

• w 

σ
s A ∨B if w 


σ
s A or w 


σ
s B;

• w 

σ
s A ⇒ B if for all w′ ≥ w, w 


σ
s A implies w 
 B;

• w 

σ
s ∀x.A(x) if for all w′ ≥ w and all d ∈ D(w′), w′



σ,x 7→d A(x);

• w 

σ
s ∃x.A(x) if w 


σ,x 7→d
s A(x) for some d ∈ D(w).

One can prove this variant of IK-CPS models sound and complete, similarly
to Section 3, except that, in the statement of Soundness, one needs to put w 
s Γ
in place of w 
 Γ.

5.2. Classical Models

In [20, 21, 23], based on work with Lee and Herbelin, we presented the
following notion of model which is complete for classical predicate logic and
represents an NBE algorithm for it.

Definition 5.1. A Classical Kripke-CPS model (CK-CPS), is given by:
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• a preorder (K,≤) of possible worlds ;

• a unary relation on worlds (−) 
⊥ labelling a world as exploding;

• a binary relation (−) 
s (−) of strong forcing between worlds and atomic
formulae, such that

for all w′ ≥ w,w 
s X ⊆ w′

s X,

• and a domain of quantification D(w) for each world w, such that

for all w′ ≥ w,D(w) ⊆ D(w′).

The relation (−) 
s (−) of strong forcing is extended from atomic to compos-

ite formulae inductively and by simultaneously defining two new relations,
refutation and (non-strong) forcing:

⋆ A formula A is refuted in the world w (notation w : A 
) if any world
w′ ≥ w, which strongly forces A, is exploding;

⋆ A formula A is forced in the world w (notation w 
 A) if any world w′ ≥ w,
which refutes A, is exploding;

• w 

{x1 7→d1,...,xn 7→dn}
s X(x1, . . . , xn) if (w 
s X)(d1, . . . , dn);

• w 

σ
s A ∧B if w 


σ A and w 

σ B;

• w 

σ
s A ∨B if w 


σ A or w 

σ B;

• w 

σ
s A ⇒ B if for all w′ ≥ w, w′



σ A implies w′



σ B;

• w 

σ
s ∀x.A(x) if for all w′ ≥ w and all d ∈ D(w′), w′



σ,x 7→d A(x);

• w 

σ
s ∃x.A(x) if w 


σ,x 7→d A(x) for some d ∈ D(w).

The differences between Definition 3.1 and Definition 5.1 are marked with
boxes. We can also present CK-CPS using binary exploding nodes, by defining
w 
s ⊥ := ∀C.w 


C
⊥. Then, we get the following statement of forcing in CK-CPS,

∀w′ ≥ w.
(

∀w′′ ≥ w′. w′′


σ
s A → ∀I.w′′



I
⊥

)

→ ∀O.w′


O
⊥,

versus forcing in IK-CPS,

∀C. ∀w′ ≥ w.
(

∀w′′ ≥ w′. w′′


σ
s A → w′′



C
⊥

)

→ w′


C
⊥ .

The difference between forcing in the intuitionistic and classical models is,
then, that: 1) the dependency on C is necessary in the intuitionistic case, while it
is optional in the classical case; 2) the continuation (the internal implication) in
classical forcing is allowed to change the parameter C upon application, whereas
in intuitionistic forcing the parameter is not local to the continuation, but to
the continuation of the continuation.

The reader may find it instructive to check for himself why Peirce’s Law
cannot be forced in IK-CPS, while it can be forced in CK-CPS.
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6. Conclusion

We gave a constructive (intuitionistic) proof of completeness of MQC with
respect to IK-CPS models, inspired by a particular use of delimited control op-
erators. This does not defy Gödel’s and Kreisel’s “negative” meta-mathematical
results of Section 2: simply, their arguments rely on a different class of semantics
– intuitionistic semantics à la Tarski.6

On the other hand, precisely those “negative” results were an indication
that one can build constructive systems based on delimited control operators
that can prove extra-intuitionistic principles, like the predicate-logic versions of
Markov’s Principle [18] or Double-negation Shift [22].

Another question that could be asked is whether the results of this paper
could simply be obtained by applying the double-negation translation to the
classical proof of completeness for Kripke models. While it is quite possible that
a constructive completeness proof for full intuitionistic logic (without ⊥) could
be obtained in such a way, like for completeness of classical logic by Krivine
[26, 4], it is clear that that would give a different method of proof. Namely,
the classical proofs from [25, 31] are Henkin-style proofs which depend on an
enumeration of formulae and a constructive version of the ultra-filter theorem
that relies on that enumeration [21, Chapter 1], hence, the obtained constructive
completeness could not be expected to produce an NBE algorithm, because the
later should depend crucially on structural recursion over the type, like our
completeness proof, not on an ad hoc enumeration.

We pointed out that our algorithm is β-NBE, because were we able to identify
βη-equal terms of λ→∨ through our NBE function, we would have solved the
problem of the existence of canonical η-long normal form for λ→∨. However, as
shown by [17], due to the connection with Tarski’s High School Algebra Problem
[7, 33], the notion of such a normal form is not finitely axiomatisable. If one
looks at examples of λ→∨-terms which are βη-equal but are not normalised to
the same term by Danvy’s (and our) algorithm, one can see that in the Coq
type theory these terms are interpreted as denotations that involve commutative
cuts.

In recent unpublished work [11], Danvy also developed a version of his NBE
algorithm directly in CPS, without using delimited control operators. In [16],
Filinski proves the correctness of an NBE algorithm for Moggi’s computational
λ-calculus, including sums, by also evaluating the input terms in a domain based
on continuations. In [3], Barral gives a program for NBE of λ-calculus with sums
by just using the exceptions mechanism of a programming language, which is
something a priori strictly weaker than using delimited control operators.

In [1], Altenkirch, Dybjer, Hofmann, and Scott, give a topos theoretic proof
of NBE for a typed λ-calculus with sums, by constructing a sheaf model. The
connection between sheaves and Beth semantics7 is well known. While the proof

6The work of [24] appeared before the invention of Kripke models for intuitionistic logic.
[25]

7We remark that, for the fragment {⇒,∀,∧}, NBE can also be seen as completeness for
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is constructive, due to their use of topos theory, for us it is not clear how to
extract an algorithm from it.

In [27], Macedonio and Sambin present a notion of model for extensions of
Basic logic (a sub-structural logic more primitive than Linear logic), which, for
intuitionistic logic, appears to be related to our notion of model. However, they
demand that their set of worlds K be saturated, while we do not, and we can
hence also work with finite models.
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