N

HAL

open science

Process for Optimizing an Application

Christine Eisenbeis, Andry Randrianatoavina, Francois Thomasset, Sid

Touati, Olivier Temam, Gregory Watts, Abella Jaume, Carlos Ciuraneta, J.M.

Codina, Antonio Gonzalez, et al.

» To cite this version:

Christine Eisenbeis, Andry Randrianatoavina, Frangois Thomasset, Sid Touati, Olivier Temam, et al..
Process for Optimizing an Application. [Research Report] M3.D3 - Part 1, 2000, pp.29. hal-00647613

HAL Id: hal-00647613
https://inria.hal.science/hal-00647613

Submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00647613
https://hal.archives-ouvertes.fr

MHAOTEU: Memory Hierarchy Analysis and Optimization Tools f or the
End-User

REPORT M3.03

Task 3.4 Process for Optimizing an
Application

Christine Eisenbeis, Andry Randrianatoavina, Francois Thomasset, Sid Ahmed
Ali Touati, INRIA.

Olivier Temam, Gregory Watts, LRI, Paris South University (previously i
Versailles).

Jaume Abella, Carles Ciuraneta, Josep M. Codina, Antonio Gonzalez, Josep
Llosa, Xavier Vera, UPC.

Mark Bull and Michael O’Boyle, University of Edinburgh.

Philippe Guillen, ONERA.

MHAOTEU: Project N 24942

Contents

MHAOTEU: Project N 24942

[.UVSQ APPLICATION 1

1.GENERAL PRESENTATION OF THE APPLICATION 2
2.PERFORMANCE ANALYSIS OF THE ORIGINAL APPLICATION 3

3.Srep 1: BLOCKING TO REMOVE CAPACITY MISSES 4

4.Srep 2: EXPLOITING A COALESCENT WRITE-BUFFER 6

5.FNAL RESULTS AND CONCLUSIONS 8
I1.EDINBURGH APPLICATION 8

1.AppPLicaTON 8

2. PERFORMANCEANALYSIS OF THEORIGINAL APPLICATION 9
2.1 Analysis 9

3.0pTiMisaTion 10

4. ConcLusions 11

[11.UPC APPLICATION 11

1. GENERAL PRESENTATION OF THE APPLICATION 11

2. INITIAL PERFORMANCE ANALYSIS OF THE APPLICATION 12
3. ANALYSIS AND OPTIMIZATION PROCESS 12

4. FINAL RESULTS AND CONCLUSIONS 18

IV.INRIA APPLICATION 20

1 GENERAL PRESENTATION OF THE APPLICATION 20
2 INITIAL PERFORMANCE OF THE APPLICATION 21
3 Srers oF THE oPTIMIZATION DEC—ALPHA) 24
4 FiNAL RESULTS AND CONCLUSION 26

V.ONERA APPLICATION 27

In this document, we present the experience of several partnBespnocess of

analyzing and optimizing an application. This text describes shortlyftre & each
partner performed for the MHAOTEU demo workshop held in Barcelonagte®éer
1999. Each partner looked for an application effectively used by academdaustrial
end-users (as defined in the MHAOTEU workprogramme), and attengptgdimize

that application. This work should not be considered as a descriptider ofess for
Optimizing an Application which is a planned deliverable for the third year. It should be
viewed as preliminary investigations on that topic.

The text is split in 5 sections, each corresponding to an applicatoeakEh

application, we provide a short description of the application, perfoereamalysis of
the original program and the different steps of the analysis/optionzatocess.

. UVSQ AprpLICATION

MHAOTEU: Project N 24942

1. General presentation of the application

The application provided by Matra—BAe defense division is an electrorismmnende.
For confidentiality reasons, only selected routines have been providédlfiiahe
following criteria: the routines correspond to the largest shateeaéxecution time and
the program spends a significant interval time within the set of gedwioutines. This
latter point is important as data reuse among routines can losalctitwe focus on a
routine that corresponds to a large share of the execution time bist¢hfied a large
number of times, it is possible the bottleneck is not the routiel st the transfer of
data between this routine and other ones in the program.

However, the present case proved fairly simple as more than 90 exécution time
is spent in one LU decomposition routine which core loops are shown bdievefdre
it is a well-known and concise example that is suitable for intragubie
analysis/optimisation problems of applications. Several programs sksturslatter
sections are more complex. The code was provided with a matrix domerisN=550
but Matra indicated problem sizes vary between 100 and 4000.

DO 2001 i1 = 1,NARETES-1
PIVINV = 1/ ZMAT(i1,i1)
DO 2003 i2 = i1+1,NARETES
TEMP =ZMAT(i2,i1) * PIVINV
ZMAT(i2,i1) = TEMP
DO 2004 i3 = i1+1,NARETES
ZMAT(i2,i3)= ZMAT(12,i3)-TEMP*ZMAT (i 1,i3)
2004 ENDDO
2003 ENDDO
2001 ENDDO

We have performed most of the optimizations with N=550 but we havew$saated
performance improvements for N=2000, and they proved similar. The target
architecture for our analysis is an Alpha 21164 500MHz workstation with 512Mo
memory. Matra indicated they use an Origin 2000 to run most of their batésey
could not allow external access to their server. However the codezgut for the
Alpha could be briefly tested on an Origin 2000 for the sake of comparisocondut
must keep in mind that transformations were targeted at the Alpha @hi&#
memory hierarchy differs significantly from that of the Originisipossible better
performance improvements can be achieved on the Origin with targetetizepbns.

Target architecture. We briefly recall the main characteristics of the target
architecture. The Alpha processor has a 3-level memory hierarthamBk—byte 1-
way LO cache (closest to the process) with a penalty of 5 cyctee L1; the L1 is a
96-kbyte 3—way cache (shared by data and instructions) and it is on—dhi@ wit
penalty of 20 cycles to the L2. The L2 is a 2-Mbyte 1-way cache off{shared)
with approximately 50—cycle penalty to the memory. The L2 cache sizpenalty can
vary depending on workstations configurations. Finally, the TLB is a 64+kitiy—

MHAOTEU: Project N 24942

Target Architecture: 21164

——

8k, 1-way, 5 cycles
TLB [

96k, 3-way, 20 cycles

2M, 1-way, 50 cycles

associative cache for page translations (4—kbyte pages).

2. Performance analysis of the original application

The execution time of the original application for N=550 on the Alpha &lZ&kconds.
Using theProfiler tool we have measured misses on the different cache levels and the
TLB, as well as the nature of the misses. The breakdown oésressong cache levels

is shown below.

5 Misses (vatio) Load misgses Wiite misses Nuowy. of conflicts . Num, of capacity
RIEL BS024 - 99.0%% {225 830 - D0%0% EE,#N,'FEIB‘ -308% 1
2w 3816457 - 98.30% E'IS—.Z,BI |

577 - 9. 1t%

TLE 166,340,274 60,566 605 - 5 845 | 0805311 - 98.69% 670702 - 0110% | D-00A®m| 0-podW

Obviously, the LO cache and the TLB experience significant missratid most
misses are capacity misses. Besides, even spatial Icatitt properly exploited as the
LO miss ratio is greater than 0,25 which corresponds to the case arigrone miss
per cache line occurs and all words of the line are used. Waaafidre assume that
the LO cache, and most likely other caches, are heavily flushede Whihature of
cache misses (capacity) already suggests optimizations (blockirsg)nportant to get
a better understanding of the reuse pattern of the routine.

For each value dfl, each matrix element in the lower left rectangle defined byitow
and columnl is used once. Besides, each matrix element int@amd columnl are
usedil times. Therefore, the lower left matrix elements are rhesily used than the
upper right elements, see figure below. On the other hantljrageases, the reuse
distance between two uses of a matrix element in the loweettfingle tends to

Memory

Reuse Pattern of LU

i3

Decomposition

iZL

iZL

MHAOTEU: Project N 24942

decrease and therefore the reuse is more likely to be naturalbjtesgdy the cache
without requiring any program transformation. Conversely, the reuse @idtanc
matrix elements located in the upper right part of the matrix tenlls high though the
number of reuses is smaller. The figure above provides an intuigixesentation of

reuse distribution where darker means more reuse.

As many matrix elements are reused several times, tharggsificant amount of
potential temporal locality that we can attempt to exploit usingdstal blocking
techniques. We present the first step of the optimization in thesaetion.

3. Step 1: Blocking to remove capacity misses.

The effect of blocking is to decrease the reuse distance foeubes of a block of
matrix elements. Alil computations are performed for a block, then the program

moves to another block and so on. The corresponding program is shown asawell as

graphical representation of blocking. While the above blocking transforncatiobe
performed with the

MHAOTEU: Project N 24942

Blocking

iZL

do 2000 ii2 = 1, naretes, B
do 2000 ii3 = 1, naretes, B
do 20001 = 1 NARETES-1
plvmv 1/ zmat(ll i1)
do 2000 i2 = max(ll + 1,ii2), min(nar etes, ii2+B-1)
temp = zmat(i2,i1) * pivinv
zmat(i2,i1) = temp
do 2000 i3 = max(ll + 1,ii3), min(n aretes, ii3+B-1)
zmat(i2,i3) = zmat(i2, |3) - temp * zmat(i1,i3)
2000 continue

Optimization Tool, the LU decomposition presents a special case that requires the
insertion ofguards; for the moment, this transformation is perfomed manually. As
shown above, the blocking transformation is not legal as data dependencesssaed.
In the algorithm, eactl column is divided by a coefficient only once. In the blocked
algorithm this division will take place several times because Ibaps been
interchanged. To prevent multiple column updates, the following guard must be
inserted:

do 2000 ii2 = 1, naretes, B
do 2000 ii3 = 1, naretes, B
do 2000i1 =1, NARETES-1
pivinv = 1 / zmat(i1,i1)

do 2000 i2 = max(il + 1,ii2), min(nar etes, ii2+B-1)
if (((ii3) .LE. (i1+1)) .AND. ((i1+1) .LE. (ii3+B-1))) then
temp = zmat(i2,i1) * pivinv
else
temp = zmat(i2,i1)
endif
zmat(i2,i1) = temp
do 2000 i3 = max(ll + 1,ii3), min(n aretes, ii3+B-1)
zmat(i2,i3) = zmat(i2, |3) - temp * zmat(i1,i3)

2000 continue

The breakdown of misses is now the following:

MHAOTEU: Project N 24942

ﬂiﬂﬁﬁﬁgﬂzé Misses ratin} Lﬂﬁ“ﬂ! é“’m’e ses ;Em of ity | M wn. of capagity

0 172,569 050 37, 40,40 - .1}5&% 36,694,537 - D827 BASET0 - D1T2% 9,181 709 - 24.58% 23158694 - ?Sdl%f
1D BS36315] 1,763,595 - 0186% | 1532316 - DGS9 231,279 - IBLIN | 265,545 - ISAST | 1496.050 - B4.04% |
3l 715729 - 2735%5 563,200 - TRIDW 152409 - TLI9T . 33095 - 0A.63% 68C6 - 95.0THE |
i} 1669200 -00.96% 1063197 - 63.73% 605003 - 36.26% D-000% 0 DOD%

LO misses are down to 21,63% and spatial locality is now exploitedexdweition time
is now equal to 2,67s, i.e., a speedup of 9,00. Note that the number |t coiskes
has increased, both because blocking can have introduced some additionzkcomdli
because the removed capacity misses could have been hiding confleg. miss

Blocking has globally reduced capacity misses because it has tbieoéffeducing

reuse distances. But it is actually a tradeoff as some @feFences can see an increase
of reuse distances. For instance, the reuse of the data mow or column are

increased. For that reason and because of conflict misses, blkiny isensitive to

the block size. In this case, the block size has been computed w$inigjtes by
Coleman and McKinley. Consider the above code with block sizes B=57, ©®and
The corresponding execution times are shown below. As can be observak siz#
variation of 2 can result in a 57% increase of the execution time.

Block Size| Execution
Time
(seconds)
57 2,67
58 3,28
59 4,19

4. Step 2: Exploiting a coalescent write—buffer

As we have achieved significant miss reductions, we now focus onnogmeory
hierarchy bottlenecks, namely bus conflicts. In the above loop nestsjnwetice that
the innermost loop nedt3] is scanning themat array row-wise, i.e., not memory—
wise. In terms of misses, the impact is small as the lwetiked byi2 andi3 fits in the
different cache levels. Therefore, interchanghgndi3 does not improve significantly
the number of misses. On the other hand, the LO cache of the 2116#tgtwough,
and more important, the write—bufferasalescent. In a normal write—buffer, each time
a word is sent back to memory for writing, it is stored in an earid/when the bus is
available, a request is issued. The higher the number of reqhestsote often the bus
is used, the more likely a load request will be delayed by a redieest inducing

MHAOTEU: Project N 24942

processor stalls. To alleviate that problem, coalescent writéers are used. The
principle is to have a tag for each write—buffer entry, and an eatrgsponds to cache
line, not a word. When the cache sends a data to the write—buéieecks whether the
corresponding cache line already exists in the write—buffer, andtinake, only a
word of that cache line is updated and no new entry is added to thebuffts.
Naturally, this mechanism can potentially reduce the number of reqteests. It works
particularly well in the presence of strong spatial locality, nemerous write requests
to consecutive memory addresses.

Coalescent Write-Buffer

| Words
Coalescent

TLB

Write Buffer

I

Because2 andi3 do not scammat memory-wise, each write requestat(i2,i3)
corresponds to a new cache line and therefore the fact the writerisufoalescent is
not exploited. Consequently, when the write—buffer is filled, additioamiaé requests
are stalled until the write—buffer can access the bus. By gimigrchanging2 andi3,
this property is exploited and the new execution time is 1,47s, speealup of 1,81.

Because of the code structure, the two innermost loops need aauadisplit before
being interchanged and the resulting code is shown below.

do 2000 ii3 = 1, naretes, B

ub3 = min(naretes,ii3+B-1)
do 2000 ii2 = 1, naretes, B

ub2 = minEnaretes, ii2+B-1)

ubl = min(naretes — 1, min(ub2, ub3))

do 2000 i1 = 1,ubl

if (((ii3) .LE. (i1+1)) .AND. ((i1+1
pivinv =1/ zmat(i1,i1)
do 2001 i2 = max(il + 1,ii2), ub2

) .LE. (ii3+B-1))) then

zmat(i2,i1) = zmat(i2,i1) * pi
continue
do 2002 i3 = max(il + 1,ii3), ub3
temp = zmat(i1,i3)
do 2002 i2 = max(il + 1,ii2),
zmat(i2,i3) = zmat(i2,i3) -
continue

2001

2002

else
do 2003 i3 = max(il + 1,ii3), ub3
temp = zmat(i1,i3)
do 2003 i2 = max(il + 1,ii2),

vinv

ub2
temp * zmat(i2,i1)

ub2

MHAOTEU: Project N 24942

zmat(i2,i3) = zmat(i2,i3) - temp * zmat(i2,il)
2003 continue
endif
2000 continue

5. Final results and conclusions

To a certain extent, reducing the number of misses is a very longpExaew paths
of improvements always exist, even after drastic improvementsngtance, in the
present case, taking into account the triangular nature of the algeotiichlead to
further improvements. But optimizing an application is an uncertainiuee t
consuming task so it is important to have a rough guess of the potentictieeixpe
benefits. Therefore, we lack a tool to evaluate the potentialibeeogadditional
optimizations, a task initially planned in MHAOTEU, but which hasbesoved at
the last review meeting.

Besides the determination of the potential optimal performancepo@nt approach is
also limited by the accuracy of our memory hierarchy model. We saeccount all
components but we use a simplified view of the architecture whestdynmiss issues
are highlighted. Timing issues (conflicts between miss requesis taus...) and more
detailed characteristics of the memory hierarchy components aredgige have
shown that this approximation can hide significant potential improvensents,
providing a more detailed architectural model could be an important adaoltoa t
project.

[I. EDINBURGH APPLICATION

1. Application

The application from Edinburgh is GAUGE, a lattice quantum—chromodynamics
application developed at EPCC in collaboration with the Physics Degarahthe
University of Edinburgh. A parallel version of this code, with somenec
enhancements, consumes a significant proportion of the CPU time on theo8ddsor
T3E at Edinburgh. The code consists of about 10,000 lines of Fortran77, ared make
significant use of include files and cpp macros.

The code performs computations on a regular 4-D lattice, and fehighes
dimensional arrays, predominantly linear array accesses, and dee&t®pwith
some loops having short trip counts. As this code is so heavily used onfstrae
world’s most expensive machines, it has been extensively tuned for obthlzased
and vector architectures.

MHAOTEU: Project N 24942

Due to this extensive tuning, any performance gained from the cacheseptiversion,
would be a significant gain, as all obvious performance problems shoulthémve
already eliminated.

2. Performance Analysis of the Original Application

The key early decision was to decide on the size of system to investigate. |ginihen has
O(n**4 x s) time complexity and O(n**4) space complexity, where n is iteeaf the lattice

and s is the number of steps taking to converge. As the number of steps can typically be
thousands and the code run for weeks, it was important that it was scaled to an igp@isipe
without effecting the validity of the analysis. Fortunately we could examineabstie value

n=8 over a short number of time steps s=20, as the behaviour of each iteration afiestthe
iteration is identical in terms of control path and memory access. Onceldtee size was
selected, this was fed into the pre—processing scripts and a 8 x 8 x 8 x TarFodde was
generated.

2.1 Analysis

The principal tools used were dynamic analysis and the memory prdfifiesr. an
initial profiling we found that the total execution time was 132.24 secoRdgher
investigation showed that the two most expensive routines were: make_raudoamd
uni which took 23% and 17% of the execution time respectively.

A profile of the code showed that the most expensive routine, make_randonassu3
not one where significant floating point computation was taking place.dyiiremic
analysis tool also showed that it was also not responsible for high rsioflearche
misses. On closer inspection, it was seen that make_random_suBscoramly
nested if conditions and it was connected that branch delay penadtibe amain cost —
an issue beyond the scope of the project.

After this disappointing start, we turned our attention to the nexindmitroutine uni
where dynamic analysis tool showed that this routine was respdiwsibl@ery high
numbers of cache misses. On closer inspection it was seenhtadtpoor stride access,
within its inner loop nest, causing high numbers of L1 conflict misses.

DO 23, I=0,Ncolour-1
DO 22, k=0,Ncolour-2
DO 21 j=0,Ncomplex-1

index = j + (Ncomplex*(k + (Ncol our-1)*1))
DO 20 site=0,Max_body-1
su3_matrix(j,k,l,site,par) = rn (index,site)
20 CONTINUE

21 CONTINUE
22 CONTINUE
23 CONTINUE

MHAOTEU: Project N 24942

It appears that due to a a programmer oversight, there is poot kmaiigy within this
loop nest. This was probably due to it being tuned mainly on Sparc basedspreces
where its cache behaviour is insignificant relative to the ovexaltution time.

3. Optimisation

The main problem here is that rn is a linearised array. Whatouéd like to do, is
delinearised it and then apply loop interchange so that we have perterascess.
Such a data transformation is only possible, if we can propagatamiséormation to
all other instances. In deliverable M2.D2, we showed how this magtbeved. As rn
was a local array within uni , this was easily achieved.

The first transformation required to correct this was datagtin the local array
(expanding the array from 2 dimensions to 4). As this is not currently sadpgayr the
transformation engine, data tiling was performed by hand:

DO 23, I=0,Ncolour-1
DO 22, k=0,Ncolour-2
DO 21 j=0,Ncomplex-1
index = j + (Ncomplex*(k + (Ncol our-1)*1))
DO 20 site=0,Max_body-1
su3_matrix(j,k,l,site,par) = rn (,k,I,site)
END DO
END DO
END DO
END DO

This was followed by a series of loop interchanges, already sudbggsiplemented
with the loop transformation tool. This gave the following code:

DO site=0,Max_body-1
DO |=0,Ncolour-1
DO k=0,Ncolour-2
DO j=0,Ncomplex-1
su3_matrix(},k,l,site,par) = rn (,k,I,site)
END DO
END DO
END DO
END DO

MHAOTEU: Project N 24942

Following this, we performed a new dynamic analysis——-this showethehatl
capacity misses had been greatly reduced in this routine. Thexaewtien time was
117.48secs — a 16% improvement in the code. Thus as far as this ame isout
concerned we have over a 90% reduction in execution time.

Furthermore, dynamic analysis showed that the remainder of the cotigeskiaery
good locality properties, and confirmed that further efforts to tunedtie in terms of
memory hierarchy exploitation were highly unlikely to be beneficial. Wais further
confirmed by running the memory debugger on one of the critical routines. These
routines are at the computational core of the lattice gauge algaittrare frequently
hand—-written in assembler code. It was unlikely that they would havenpeaory
behaviour.

However, this highlights a very important point, often ignored in performamoeg.
This dynamic analysis and memory profiling provided evidence to suggesitinat f
optimisation was unlikely to provide any further benefit. This type of médion is
invaluable to those who must balance the expense of programmer timst agasible
performance gains. As the porting and maintenance of the QCD codesigraficant
limit on the amount of new science implemented in each new verstbe obde at
EPCC, this was considered the most valuable result of the ajuplisaidy.

4. Conclusions

We found that the type of analysis provided by the MHAOTEU toolset torye ve
useful for analysing the GAUGE application. As this was a suchyhighed
application in the first place, it was thought unlikely that any sicgmfiperformance
improvement was possible. However, we were able to improve the rummdgy
16% - a significant improvement. This update has now been incorporatedaniK
QCD benchmark. Furthermore, we have confirmed that other routinestamemory-
bound and that further memory optimisations is unlikely to provide any further
improvement.

[1l. UPC AppLICATION

1. General presentation of the application
This chapter presents the detailed analysis and optimization pod@essiclear reactor

MHAOTEU: Project N 24942

application called VMEC (Variational Moments Equilibrium Code). E®is used in
some nuclear reactors in Spain (for instance: Tokamak in the CTEMiadrid) and a
Stellarator in the Max Planck Institute).

2. Initial performance analysis of the application

We have optimized this application for a Digital machine with an Alpha 21164 procesth
the following cache characteristics:

Size bytes/line Associativity
1st level cache: 8Kb 32 direct mapped
2nd level cache: 96Kb 64 3 way set—-associative
3rd level cache: 2Mb 64 direct mapped

The tools that we have used to obtain information about the application have been: Lagptimi
(MHAOTEU), SPLAT(MHAOTEU), Alpha 21164 hardware counters and FTié& fprofiling.

LoopTiming statistics:

As figure 1 shows, the LoopTiming tool gives accurate statistwmagared to the
hardware counters statistics) about what the most important roatmesth a
slowdown smaller than 1.

figure 1
SPLAT statitstics:

By means of the SPLAT tool we have observed that most of the rpisshsced in the
most important routines are capacity misses. It has also begtoudentify which are
the memory references and loops responsible for the biggest numbesed ofiach
routine, so we have applied some transformations oriented to reduasduime of each
iteration (for instance: blocking, loop distributing,...) getting a sigaiit reduction in
the L1 miss ratio as the figure 2a shows.

3. Analysis and optimization process

Using these tools we got some statistics which were used to arlaé/application and
to perform some transformations on the source code based on their tidarmAéter
every set of transformations we used the tools to get new infornaddan how much
improvement we got in every one of the applied transformations.

Some different applied transformations are shown in the following lines

MHAOTEU: Project N 24942

LOOP DISTRIBUTING + BLOCKING

Here we show an example of how the number of L1 cache missesoutime
Tomnsp was decreased reducing the volume of each iteration by meaog of |
distributing and blocking.

Original code

do n = 0,nmax
do k = 1,nzeta
do js= jmin2(m),jmax
frce(js,n,m) = frce(js,n,m)

> + work3(js,k,01)*cosnv (k,n)

> + work3(]s,k,02)*sinnvn(k,n)
frss(js,n,m) = frss(js,n,m)

> + work3(js,k,03)*sinnv (k,n)

> + work3(]s,k,04)*cosnvn(k,n)
fzcs(js,n,m) = fzcs(js,n,m)

> + work3(js,k,05)*sinnv (k,n)

> + work3(]s,k,06)*cosnvn(k,n)
fzsc(js,n,m) = fzsc(js,n,m)

> + work3(js,k,07)*cosnv (k,n)

> + work3(]s,k,08)*sinnvn(k,n)

enddo

do js= jlam(m),ns
fles(js,n,m) = flcs(js,n,m)

> + work3(js,k,09)*sinnv (k,n)
> + work3(]s,k,10)*cosnvn(k,n)
flsc(js,n,m) = flsc(js,n,m)
> + work3(js,k,11)*cosnv (k,n)
> + work3(js,k,12)*sinnvn(k,n)

enddo
enddo
enddo

Transformed code

do k=1, nzeta, 4
do js=jmin2(m),jmax,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,jmax-ijs)
frecc(js+js_s,n,m) = frcc(js+js_s, n,m)
+ work3(js+js_s,k+k_s,0T)*co snv'(k+k_s,n)
+ work3(js+js_s,k+k_s,02)*si nnvn(k+k_s,n)
enddo
enddo
enddo
enddo
enddo
do k=1, nzeta, 4
do js=jmin2(m),jmax,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,jmax-ijs)
frss(js+js_s,n,m) = frss(js+js_s, n,m)
+ work3(js+js_s,k+k_s,03)*si nnv (k+k_s,n)
+ work3(js+js_s,k+k_s,04)*co snvn(k+k_s,n)
enddo
enddo
enddo

VvV VvV

VvV Vv

MHAOTEU: Project N 24942

enddo
enddo
do k=1, nzeta, 4
do js=jmin2(m),jmax,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,jmax-ijs)

fzcs(js+js_s,n,m) = fzcs(js+js_s, n,m)
> + work3(js+js_s,k+k_s,05)*si nnv (k+k_s,n)
> + work3(js+js_s,k+k_s,06)*co snvn(k+k_s,n)
enddo
enddo
enddo
enddo
enddo

do k=1, nzeta, 4
do js=jmin2(m),jmax,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,jmax-ijs)

fzsc(js+js_s,n,m) = fzsc(js+js_s, n,m)
> + work3(js+js_s,k+k_s,07)*co snv (k+k_s,n)
> + work3(js+js_s,k+k_s,08)*si nnvn(k+k_s,n)
enddo
enddo
enddo
enddo
enddo

do k=1, nzeta, 4
do js=jlam(m),ns,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,ns—js)

fles(js+js_s,n,m) = flcs(js+js_s, n,m)
> + work3(js+|s_s,k+k_s,09)*si nnv (k+k_s,n)
> + work3(js+)s_s,k+k_s,10)*co snvn(k+k_s,n)
enddo
enddo
enddo
enddo
enddo

do k=1, nzeta, 4
do js=jlam(m),ns,8
do n=0, nmax
do k_s=0,min(3,nzeta-k)
do js_s=0,min(7,ns—js)
flsc(js+js_s,n,m) = flsc(js+js_s, n,m)
+ work3(js+)s_s,k+k_s,11)*co snv (k+k_s,n)
+ work3(js+js_s,k+k_s,12)*si nnvn(k+k_s,n)
enddo
enddo
enddo
enddo
enddo

VvV Vv

LOOP DISTRIBUTION + LOOP INTERCHANGE

We performed loop distribution and loop interchange in the routine Loplab intorder
reduce the number of capacity misses and L1 cache accesses hidtaischigh
locality which was not exploited.

Original code

do 30i=1,3
do 40 j=1,3
do 50 n=1,nloops
50 db(i,j,n)=0.
do 60 k=1,3
do701=1,3
do 80 n=1,nloops
db(i,j,n)=db(i,j,n)+amat(k,i,n)*amat(l

80 continue
70 continue
60 continue

40 continue
30 continue

Transformed code

do n=1,nloops
doj=1,3
doi=1,3
db(i,j,n)=0.
enddo
enddo
enddo

do n=1,nloops
doj=1,3

do 1=1,3

db(i,j,n)=db(i,j,n)+amat(k,i,n)*amat(l
enddo
enddo
enddo
enddo
enddo

GLOBAL INDEX REORDERING

MHAOTEU: Project N 24942

J,n)*dbp(k,l,n)

J,n)*dbp(k,l,n)

In the following code we show a part of the Analyt routine code which hadploited
locality in the arrays conu, sinu, conv and sinv. As the code showsathsnmeot many
possible transformations to do to improve it, but it was seen tlsabphimization was
able to reduce the number of L1 cache misses in Analyt and someauttiees (for

instance: surface, precal,...).

Original code

common /precal2/ sinu(0:mf,nuv),conu(0:mf,nu
$,sinv(—nf:nf,nuv),conv(-nf:nf,nuv)

do 150 | = O,mf+nf

do 120 n = 0,nf
do 120 m = O,mf

do 50 ip=nsta,nend
va(ip) = —(zm(ip)+zp(ip))*conu(m,ip)*d

V)

vb(ip) = (zm(ip)+zp(ip))*sinu(m,ip)*d
ve(ip) = (tm2(ip)+tp2(ip))*bexn(ip)*sin
50 continue

do 70 ip=nsta,nend

va(ip) = —(zm(ip)+zp(ip))*conv(n,ip)

vb(ip) = (zm(ip)+zp(ip))*sinv(n,ip)

ve(ip) = (tm2(ip)+tp2(ip))*sinv(n,ip)*b
70 continue

do 90 ip=nsta,nend

cw = conu(m,ip)*conv(n,ip)—sinu(m,ip)*

sw = sinu(m,ip)*conv(n,ip)+conu(m,ip)*

va(ip) = - zp(ip)*cw

vb(ip) = zp(ip)*sw

ve(ip) = tp2(ip)*sw*bexn(ip)

90 continue

do 91 ip=nsta,nend
cwm = conu(m,ip)*conv(n,ip)+sinu(m,ip)*
swm = sinu(m,ip)*conv(n,ip)—conu(m,ip)*

va(ip) = -zm(ip)*cwm

vb(ip) = zm(ip)*swm

ve(ip) = tm2(ip)*swm*bexn(ip)
91 continue

120 continue

150 continue

Transformed code

common /precal2/ sinu(nuv,0:mf),conu(nuv,0:m
$,sinv(nuv,—nf:nf),conv(nuv,—nf:nf)

do 150 | = O,mf+nf

do 120 n = O,nf
do 120 m = O,mf

do 50 ip=nsta,nend

va(ip) = —(zm(ip)+zp(ip))*conu(ip,m)*d

vb(ip) = (zm(ip)+zp(ip))*sinu(ip,m)*d

ve(ip) = (tm2(ip)+tp2(ip))*bexn(ip)*sin
50 continue

do 70 ip=nsta,nend

va(ip) = —(zm(ip)+zp(ip))*conv(ip,n)
vb(ip) = (zm(ip)+zp(ip))*sinv(ip,n)
ve(ip) = (tm2(ip)+tp2(ip))*sinv(ip,n)*b

70 continue

do 90 ip=nsta,nend

cw = conu(ip,m)*conv(ip,n)—sinu(ip,m)*
sw = sinu(ip,m)*conv(ip,n)+conu(ip,m)*
va(ip) = - zp(ip)*cw
vb(ip) = zp(ip)*sw
ve(ip) = tp2(ip)*sw*bexn(ip)

90 continue

do 91 ip=nsta,nend
cwm = conu(ip,m)*conv(ip,n)+sinu(ip,m)*
swm = sinu(ip,m)*conv(ip,n)—conu(ip,m)*

va(ip) = -zm(ip)*cwm
vb(ip) = zm(ip)*swm
ve(ip) = tm2(ip)*swm*bexn(ip)

MHAOTEU: Project N 24942

e
u(m,ip)

exn(ip)
sinv(n,ip)

sinv(n,ip)

sinv(n,ip)
sinv(n,ip)

f)

e

e

u(ip,m)
exn(ip)
sinv(ip,n)

sinv(ip,n)

sinv(ip,n)
sinv(ip,n)

MHAOTEU: Project N 24942

91 continue
120 continue

150 continue

LOOP INTERCHANGE + SCALAR VECTORIZATION

In order to exploit some Getiota’s loops locality we tried to perflmwp interchange
but it was necessary to perform scalar vectorization in tharsdabt and top.

Original code

dojs=2,ns
top = jv(js)
bot = czero
do Ik =1,nznt
top = top wint(js,Ik)*(guu(js,Ik)*Iv(js,1k)
> guv(js,lk)*lu (is,Ik))
bot = bot + wint(js,Ik)*phipog(js,Ik)*g uu(js,lk)
enddo
iotas(js) = top/bot
enddo

Transformed code

real top(nsd), bot(nsd)

dojs=2,ns
tOp(JS) jv(s)
bot(js) = czero

enddo
do Ik = 1,nznt
dojs=2,ns
tOp(JS) = top(js) — wint(js, Ik)*(guu(Js JK)*Iv(js, k)
guv(s,Ik)*lu (is. 1K)
bot(Js) = bot(js) + wint(js,Ik)*phipog(is, Ik)*guu(Js 1K)
if (Ik.eq.nznt) iotas(js) = top(js)/bot (is)
enddo
enddo

LOOP MERGING + LOOP INTERCHANGE

As the following code shows, the routine precondn had some no exploitedylotalit
both nested loops (arrays ptau, wint,...) so we had to merge theséd@apirm loop
interchange with the outermost loop.

Original code

dojs=2,ns
dolk = 1,nznt
ptau(lk) = r12(js,Ik)**2*(bsq(js,|k)—pres(j s))

MHAOTEU: Project N 24942

> * wint(js,Ik)/gsqrt(js, k)
t1 = xul2(js,Ik)*ohs
t2 = cp25*(xue(js,lk)/shalf(js) + xuo(js,lk))/shalf(js)
t3 = cp25*(xue(js—1,Ik)/shalf(js) + xuo(js— 1,Ik))/shalf(js)
ax(js,1) = ax(js,1) + ptau(lk)*t1*t1
ax(]s,2) = ax(|s,2) + ptau(lk)*(-t1+t3)*(t1 +t2)

ax(Js,3) = ax(]s,3) + ptau(lk)*(t1+t2)**2

ax(Js,4) = ax(]s,4) + ptau(lk)*(-t1+t3)**2

enddo

do Ik=1,nznt

tl = cp5*(xs(js,Ik) + cp5*xodd(js,Ik)/shalf @is)
t2 = cp5*(xs(]s,lk) + cp5*xodd(js—-1,lk)/sha If(js))
bx(js,1) = bx(js,1) + ptau(lk)*t1*t2

bxgs,Zg = bxgs,Z; + ptauEIk *t1**2

bx(]s,3) = bx(]s,3) + ptau(lk)*t2**2

cx(Js) = cx(js) + cp25*lu(js,Ik)**2*gsqrt(j s,Ik)*wint(js, k)
enddo
enddo

Transformed code

do Ik = 1,nznt
- JS(Tk)2 125 JKy2*(bsa s, IK)-pres()
ptau =r12(js,lk)**2*(bsq(js,|k)—pres S
* wint(js, Ik)/gsqrt(Js (18
tl = xul2(js,Ik)*ohs
t2 = cp25*(xue(js,lk)/shalf(js) + xuo(js,lk))/shalf(js)
t3 = cp25*(xue(js—1,Ik)/shalf(js) + xuo(js— 1,Ik))/shalf(js)
ax(js,1) = ax(js,1) + ptau(lk)*t1*t1
ax(]s,2) = ax(|s,2) + ptau(lk)*(-t1+t3)*(t1 +t2)

ax(Js,3) = ax(]s,3) + ptau(lk)*(t1+t2)**2

ax(Js,4) = ax(Js,4) + ptau(lk)*(-t1+t3)**2

tl = cp5*(xs(Js,lk) + cp5*xodd(js,Ik)/shalf @is)

t2 = cp5*(xs(]s,lk) + cp5*xodd(js—-1,lk)/sha If(js))

bx(js,1) = bx(js,1) + ptau(lk)*t1*t2

bx(]s,2) = bx(s,2) + ptau(lk)*t1**2

bx(js,3) = bx(Js,3) + ptau(lk)*t2**2

cx(s) = ex(js) + cp25*lu(js,Ik)**2*gsqrt(j s,Ik)*wint(js, k)
enddo
enddo

4. Final results and conclusions

VMEC has a particular characteristic that allowed us to partbe analysis faster: it is
an iterative method so it can be run for 5100 iterations (normal exed¢aking more
than 4.5 hours) or for less iterations, reducing proportionally the exetutiem all

the most important routines. For commodity we have performed all olyssen@xcept
hardware counters statistics) running the application for 200 itergtidakes 10
minutes).

Figure 2a shows misses and time statistics before and afterizgitons using
hardware counters and running VMEC for 5100 iterations.

MHAOTEU: Project N 24942

figure 2a

figure 2b

As figure 2 (a and b) shows, all the optimized routines except Foasesa reduction
in the number of L1 cache misses and their execution time. The réwatioes
increased the L1 miss ratio but we have analyzed why it spendsriegtan before
the optimizations and we have seen that it is due to a lower numb2rcathe misses.

Global information:

Total 4:38:29
exec.
Time
befor
e

opti
mizat
ion:
Total 3:43:48
exec.

Time

after

opti

mizat

ion:

Total 20,0009
1

cach

e

miss

es

ratio

befor

e

opti

mizat

ion:

MHAOTEU: Project N 24942

Total 12,909
11
cach
e
miss
es
ratio
after
opti
mizat
ion:

The process we have used has consisted of:

* Obtaining the statistics (SPLAT, LoopTiming, hardware counters,...)
* Analyzing statistics to find where the main bottlenecks are.
» Perform the best transformation for every kind of problem.

It is possible to get more improvement optimizing other routines, batube®f the
characteristics of these routines it has been impossible to rergicexecution time. It
seems that the only way to get more improvement in these routimgagsdata
prefetching, but by the way, this tool is being developed.

V. INRIA ApPpPLICATION

1 General presentation of the application

The codeOsiris has been provided by Michel Kern, from projEstime in INRIA
(Rocquencourt). It is the two dimensional version of a code developped uraldract of the
Estime group with Gaz de France (GDF, the national french compapyo&pectionand
production of natural gas).

The purpose of the application‘i$sround Penetrating Radar’’, for identifying objects under
ground , with many applications: petrol or gas prospection, exploration of polites,
checking of structures such as bridges or dams, analysis of urban underground..

The physical apparatus consists of one box emitting impulses downwards anténna
collecting the echos of these impulses reflected by the ground. By mbeifigst box along
axis X, one collects corresponding echos into a trace. From treqdata in domain (x,y,t), the
problem is to compute properties of the ground, i.e. data in domain &oydhis enters in the
class of inverse problems, usually considered as difficult problems.

MHAOTEU: Project N 24942

The physical system being modelled by Maxwell equations, the problem anwigwstifying
the coefficients of Maxwell equations, knowing an observed tracehBopurpose, one tries to
minimize the integrated sum of the difference between the obgenaatd the estimated
solution. To find the optimum, the algorithm employed is m1qgn3, frormdatelopt library
developped at INRIA, which is a gradient-like method (quasi—Newton with BFGS sjyate

Finally the chief components of the applicatiorare

» solver of discretized 2D Maxwell equations (discretization usindjrtite differences
schema of Yee);

» solver of adjoint equations, for computing the gradient;
* mlgn3 routine for optimization.

For our experiments, a numerical trace is generated beforehand.

2 Initial performance of the application

We decided to measure 1 iteration of the algorithm for computing thawnpti after checking
that the time for 10 iterations is exactly ten times the fonene iteration. Initially we
measured that the application needed 7 seconds per iteration on thalptadsrocessor.
Using the LoopTiming tool, we could find the files where most of thewgian time was
spent:

» yee.f: 35 % (solve Maxwell equations)

» yee_ad].f: 8 % (compute the adjoint)

* my_treeverse.f: 10 %

 my_cal_Adj.f: 7 % (compute the adjoint, driver for yee_ad))
» bdfaccla.f: 6 % (boundary conditions)

Also we found that the following loop was consuming 23 % of the time pasgeé.f.

C 320
DO j=2,nz-1 _ _ _
Hz(1,j) = Hz(1,)) - dtdx * (Ey(2,)) - E y(1.)))
DO 12 i=2,nx-1
Hz(i,j) = Hz(i,j) — dtdx * (Ey(i+1,])~ Ey(i.]))
Hx(i,j) = Hx(i,J) + dtdz * (Ey(i,j+1) —Ey(i.))
12 continue
ENDDO
C 376
DO j=2,nz-1

DO 11i=2,nx-1

MHAOTEU: Project N 24942

Ey(i.j) = eps(i.)*Ey(i,))

* + (ddz*(Hx(i,))—Hx(i,j-1))

* = ddx*(Hz(i,))-Hz(i-1,)))) *s igma(i,j)
11 continue

ENDDO

Most of the other time consuming loops have a similar pattern.

Use of GRW (UltraSparc)

We know that if the size of the GRW is greater than the assttyiathen we are sure that the
cache behavior will exhibit conflict misses in this loop. In the @ighe last loop (# 376), we
find that the size of the window is 2 using our GRW tool. So, if sedativity is 1 (direct
mapped cache), conflict misses will certainly occur.

Also, after computing the size of GRW on the former loop (# 320)jneeliat the window has
size 2 if we assume that the scaladdk anddtdz) are in memory (implying conflicts when the
associativity is 1), and only size 1 if we assume they are isteegi So depending on the
location on these scalars, the cache behavior would vary.

Use of CVT (UltraSparc)

We have performed cache simulation using CVT to verify our theoridaictiens with GRW
analysis. The CVT tool allows us to have exact results provided wading a direct mapped
cache (the L1 cache of the 21164 Alpha processor). The simulation cahfiun theorical
results:

* when the size of the GRW is strictly greater than 1 (loop # 376 capd# 320 when
assuming scalar in memory), theoretically there should be confises The cache
simulation results show us that there is a significant amount diaanfsses between the
scalarsddz and the vectoHx in the latter loop and between the scaldidx(dtdz) and the
vectorEy in the former loop (the two figures below).

Statistics of cache level 1

'__ Mg e, confic

Dro

EY

_Zoomin | Zoom out |
Amourt | Fraction |
_Aocesses | His |

Misses | HM:‘ESE;

 Capacty | _Confies_|

HA

MHAOTEU: Project N 24942

Statislics of cache level 1

Zoom in | Zoom out J
Amount | Fradion |

Aocesses | His |
Misses | Hitssisses |
Capacty | Conficts

Compulsory | All misses |

Afray Falareios ‘.I_,

* in the case of the second loop, when we assume that scalarsrmammory, the size of the
GRW is equal to 1, so theoretically there should not be conflicesiigs a matter of fact,
cache simulation results do not report any conflict miss in thes cas

Statistics of cache level 1
I - Arey eeace, coflioe

HZ
HE 1

Zoomin | Foom out |
Amount | Fradion |

Acesses | His |
Misses | Hits+Misses |
Capacty | Conficts

Compulsory | Al misses |

Hrw | Balare s J.I_,

Using GRW guided us to detect conflicts in the two most important Mithsut simulation.
It also allowed us to see in certain case that scalaysatdd in memory could be a significant

source of conflicts.

MHAOTEU: Project N 24942

3 Steps of the optimization (Dec—alpha)

We performed manually a number of optimizations, decreasing the exetuaie from 7 s to
4.75 s.

Step 1: loop fusion
We applied loop fusion in several places, as in the example aboweg ge# following piece
of codé . Of course we had manually checked that the transformationds vali

DO j=2,nz-1
Hz(1,) = Hz(l 1) -
dtdx * (Ey(2,J)— Ey(1.)))
ENDDO
DO j=2,nz-1
DO 12 i=2,nx-1
Hz(i,j) = Hz(|) -
& dtdx * (Ey(|+1 D — Ey(i,))
HXUJ)_ HXO i)+
& dtdz * (Ey(I,J+1) Ey(i.J))
Ey(I,J) eps(i,)*Ey(i,)

* + ((ddz*(Hx(i,))—Hx(i,j-1))
* - ddx*(Hz(i,))-Hz(i-1,))))*sig mayi,j)
12 continue
ENDDO

This gives a performance of 6.8 s.

Step 2: unroll and jam fusion

In yee_par, we unrolled—and-jam these loops with different factora/igivivitout fusion. In
the fusion version, there is no significant difference between tfezadif factors (6.2 ®r 2, 4
and 8). Without fusion, and by trying different pairs of unrolling factor® (2—1, 1-4, 1-8,
we did not get better than 6.5 s).

Now we started the same process of optimization in the yee_adgprecélready by unroll-
and—jamming the two loops twice, we got 5.8 s. But found very fasit ilsdtetter not to
unroll the first one (5.5 ®r 1-8 — no unrolling for the first one and unrolling 8 times for the
second one). It happened also that unrolling with a prime factor gimegaed results: 5.3s
when unrolling the second loop or 7 or 15 or 17 times. Hence we got backytethpar
procedure and tried to unroll the fusionned loops 7 times, resulting in R&-<15 in
yee_adj, and theh19 swhen trying 5-5 in yee_ad;.

Best performance: 5.19 s.

Step 3: scalar replacement
One of the loops in file bdfaccla.f had the following form:

DO L=1,NL
FAL = C(L)
FA2 = C(L + NL)
FA4 = C(L +6*NL)

MHAOTEU: Project N 24942

FA8 = C(L +7*NL)
FA9 = 4*FA4
DO 11=1, N1-1

FO = FA9*F(I1, L, T1P)

S +(FAL*F(1, L, T1P)

S +..

S + FA4*(E(I1,1) - 2 * F(I1, NL+1, T1P)

S + F(I1, NL+1, TIM))

F(I1,L, TIM) = FO

E(I1,3) = E(11,3) + FA8*(FO - F(I1,L, T1P))
ENDDO

ENDDO

The key observation here is that variablé® andT1Malways take values different from each
otheP , and therefore write accesses to F are independent from reads.

After scalar replacement we got:

DO L=1,NL
DO i1=1, N1-1
F(IL.L, TIM) = 4*C(L + 6*NL) * F(I1, L, T1P)
S '+ (C(L) *F(1, L, T1P)
S +

S + C(L+6*NL)*(E(I1,1)
S — 2% F(I1, NL+1, T1P)

S + F(1, NL+1, TIM))

E(11,3) = E(11,3) + C(L + 7*NL) * (F(I1,L, T1M) - F(IL,L, T1P)
ENDDO

ENDDO

The figure for 1 iteration was now 5.06 s

Step 4: unroll and jam
By performing unroll and jam on previous loop, the time became 4.75s

Hence the overall improvement is from 7 s to 4.75 s, that is aboutT3#%6is interesting since
this code is intended to run a very large number of iterations (iryasieple 2D case today
one is used to run hundreds of iterations. This optimization may treessfee minutes per
run. One should also be aware that the final (very long term) gmah#sve this model run in
3D and in real time ...

The performances obtained throughout this optimization process are seeshiathe next
graphic.

MHAOTEU: Project N 24942

[Sé

5,,i N B I

4’5 f [\D\D\D
ori fus fus un un un un un un un un fus sc sc

gin ion ion roll roll roll roll roll roll roll roll ion ala ala
al un un an an an an an an an an uj:r r
rollrold d d d d d d d 7

4 Final results and conclusion

We observed that several optimizations were able to significanfdyove the performance.
The process for optimizing is not linear and we had to “try and aegtiite large number of
optimizations. We found that doing this manually is tedious and error—pnonguggest that
the unroll-and—-jam transformation is implemented very soon (thigualgca combination of
loop fusion, loop unrolling and loop interchange)..

We used several tools from MHAOTEU: GRW, CVT, LoopTiming, andfieerthey were
useful.

1
D.J. Gunton, D.J. Daniels and H.F. Scott. “Introduction to subsenfadar”. IEE Proceedings,
135F(4) :278-320, 1988.

2
J.F. Bonnans, J.C. Gilbert, C. Lemarechal, C. Sagastizdbpfimisation numérique : aspects
théoriques et pratiques”. Springer, 1997.

3
For more details on the numerical scheme, see the INRIA réfhrodgerie du proche sous—sol
par un radar géologique”, by Guillaume Vigo and Michel Kern. INRIA&Resh report RR-
3255, Septembre 199p://ftp.inria.fr/INRIA/publication/RR/RR-
3255.ps.gz

4
Note that we first have to perform loop splitting in order to obtaifeptly nested loops.

5

This fact would not be so obvious to detect from an automaticTt@®l.andT1Mare updated in
another routine through permutation between integers 1, 2, 3, 4; beindgzedtiat different

values, they remain distinct.

26

MHAOTEU: Project N 24942

ONERA APPLICATION

The first thing we would like to underline is the quality and quantity of work achieved
by the different development partners. As end-users we fully agree with the
commission experts for the completion of a unique tool as we hope to be the first
beneficiaries. But as members of a research department (not in competeresbiut in

fluid mechanics) we have to admit that the amount of engineering work exhibited by
partners who are, we must recall, researchers first is really quipessssive, even with

the efficient help of EPC.

During the demo workshop ONERA could test most of the MHAOTEU toahg tise
FLU3M software. However, even if the different parsers could be successidid on

the code or on the most important routines we could not yet achieved some first static
and dynamic analysis, nor apply efficiently the transformation tool. This is dtieeto
two following main reasons which has lead to a new set of specificationsitewheled

in the new version of the MHAOTEU tool to be released in earleDéer.

First, ONERA code is different from the other pieces of sofiviogy its rather important

size, more than 200000 lines, and 1200 routines which allows to test the limits of the
static and dynamic analysis tools. As it is rather usual for this kind of code juesta f
number of routines need to be optimized. Most of the tools tested, considered that the
software to be optimized was in a single file, what leads to unrealigtiest to
instrument the code with most of the instrumentation without real interest, and
unrealistic times to run the dynamic analysis.

Second, most of the CPU intensive loops in the code does not have constant bounds,
which at the moment of the demo—-workshop was compulsory for applying most of the
transformation.

As a consequence, it was decided that the different tools will have to work with a
input set made of a directory with the different routines of the program split and that
they will be able to work on a limited subset of the routines. It was also dedile
extend the transformation tool to hon—constant bounds loops.

