
HAL Id: hal-00647613
https://inria.hal.science/hal-00647613

Submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Process for Optimizing an Application
Christine Eisenbeis, Andry Randrianatoavina, François Thomasset, Sid

Touati, Olivier Temam, Gregory Watts, Abella Jaume, Carlos Ciuraneta, J.M.
Codina, Antonio Gonzalez, et al.

To cite this version:
Christine Eisenbeis, Andry Randrianatoavina, François Thomasset, Sid Touati, Olivier Temam, et al..
Process for Optimizing an Application. [Research Report] M3.D3 - Part 1, 2000, pp.29. �hal-00647613�

https://inria.hal.science/hal-00647613
https://hal.archives-ouvertes.fr


MHAOTEU: Memory Hierarchy Analysis and Optimization Tools f or the
End−User

REPORT M3.D3

Task 3.4 Process for Optimizing an
Application

Christine Eisenbeis, Andry Randrianatoavina, François Thomasset, Sid Ahmed
Ali Touati, INRIA.
Olivier Temam, Gregory Watts, LRI, Paris South University (previously in
Versailles).
Jaume Abella, Carles Ciuraneta, Josep M. Codina, Antonio Gonzalez, Josep
Llosa, Xavier Vera, UPC.
Mark Bull and Michael O’Boyle, University of Edinburgh.
Philippe Guillen, ONERA.



MHAOTEU: Project No 24942

Contents

− I −



MHAOTEU: Project No 24942

I.UVSQ APPLICATION 1

1.GENERAL PRESENTATION OF THE APPLICATION 2
2.PERFORMANCE ANALYSIS OF THE ORIGINAL APPLICATION 3
3.STEP 1: BLOCKING TO REMOVE CAPACITY MISSES. 4
4.STEP 2: EXPLOITING A COALESCENT WRITE−BUFFER 6
5.FINAL RESULTS AND CONCLUSIONS 8

II.EDINBURGH APPLICATION 8

1. APPLICATION 8
2. PERFORMANCE ANALYSIS OF THE ORIGINAL APPLICATION 9

2.1 Analysis 9
3. OPTIMISATION 10
4. CONCLUSIONS 11

III.UPC APPLICATION 11

1. GENERAL PRESENTATION OF THE APPLICATION 11
2. INITIAL PERFORMANCE ANALYSIS OF THE APPLICATION 12
3. ANALYSIS AND OPTIMIZATION PROCESS 12
4. FINAL RESULTS AND CONCLUSIONS 18

IV.INRIA APPLICATION 20

1  GENERAL PRESENTATION OF THE APPLICATION 20
2  INITIAL PERFORMANCE OF THE APPLICATION 21
3  STEPS OF THE OPTIMIZATION (DEC−ALPHA) 24
4  FINAL RESULTS AND CONCLUSION 26

V.ONERA APPLICATION 27

In this document, we present the experience of several partners in the process of
analyzing and optimizing an application. This text describes shortly the effort of each
partner performed for the MHAOTEU demo workshop held in Barcelona in September
1999. Each partner looked for an application effectively used by academic or industrial
end−users (as defined in the MHAOTEU workprogramme), and attempted to optimize
that application. This work should not be considered as a description of a Process for
Optimizing an Application which is a planned deliverable for the third year. It should be
viewed as preliminary investigations on that topic.

The text is split in 5 sections, each corresponding to an application. For each
application, we provide a short description of the application, performance analysis of
the original program and the different steps of the analysis/optimization process.

I. UVSQ APPLICATION
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1. General presentation of the application
The application provided by Matra−BAe defense division is an electromagnetism code.
For confidentiality reasons, only selected routines have been provided that fulfill the
following criteria: the routines correspond to the largest share of the execution time and
the program spends a significant interval time within the set of provided routines. This
latter point is important as data reuse among routines can be critical. If we focus on a
routine that corresponds to a large share of the execution time but that is called a large
number of times, it is possible the bottleneck is not the routine itself but the transfer of
data between this routine and other ones in the program. 

However, the present case proved fairly simple as more than 90% of the execution time
is spent in one LU decomposition routine which core loops are shown below. Therefore
it is a well−known and concise example that is suitable for introducing the
analysis/optimisation problems of applications. Several programs discussed in latter
sections are more complex. The code was provided with a matrix dimension of N=550
but Matra indicated problem sizes vary between 100 and 4000.

 DO 2001 i1 = 1,NARETES−1
         PIVINV = 1 / ZMAT(i1,i1)
         DO 2003 i2 = i1+1,NARETES
            TEMP        = ZMAT(i2,i1) * PIVINV
            ZMAT(i2,i1) = TEMP
            DO 2004 i3 = i1+1,NARETES
               ZMAT(i2,i3)= ZMAT(I2,i3)−TEMP*ZMAT(i 1,i3)
 2004       ENDDO 
 2003    ENDDO
 2001 ENDDO

We have performed most of the optimizations with N=550 but we have also evaluated
performance improvements for N=2000, and they proved similar. The target
architecture for our analysis is an Alpha 21164 500MHz workstation with 512Mo
memory. Matra indicated they use an Origin 2000 to run most of their codes but they
could not allow external access to their server. However the code optimized for the
Alpha could be briefly tested on an Origin 2000 for the sake of comparison, but one
must keep in mind that transformations were targeted at the Alpha 21164 which
memory hierarchy differs significantly from that of the Origin. It is possible better
performance improvements can be achieved on the Origin with targeted optimizations.

Target architecture. We briefly recall the main characteristics of the target
architecture. The Alpha processor has a 3−level memory hierarchy with an 8k−byte 1−
way L0 cache (closest to the process) with a penalty of 5 cycles to the L1; the L1 is a
96−kbyte 3−way cache (shared by data and instructions) and it is on−chip with a
penalty of 20 cycles to the L2. The L2 is a 2−Mbyte 1−way cache off−chip (shared)
with approximately 50−cycle penalty to the memory. The L2 cache size and penalty can
vary depending on workstations configurations.  Finally, the TLB is a 64−entry fully−
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associative cache for page translations (4−kbyte pages).

2. Performance analysis of the original application
The execution time of the original application for N=550 on the Alpha is 24,01 seconds.
Using the Profiler tool we have measured misses on the different cache levels and the
TLB, as well as the nature of the misses. The breakdown of misses among cache levels
is shown below.

Obviously, the L0 cache and the TLB experience significant miss ratios and most
misses are capacity misses. Besides, even spatial loality is not properly exploited as the
L0 miss ratio is greater than 0,25 which corresponds to the case where only one miss
per cache line occurs and all words of the line are used. We can therefore assume that
the L0 cache, and most likely other caches, are heavily flushed. While the nature of
cache misses (capacity) already suggests optimizations (blocking), it is important to get
a better understanding of the reuse pattern of the routine.

For each value of i1, each matrix element in the lower left rectangle defined by row i1
and column i1 is used once. Besides, each matrix element in row i1 and column i1 are
used i1 times. Therefore, the lower left matrix elements are more heavily used than the
upper right elements, see figure below. On the other hand, as i1 increases, the reuse
distance between two uses of a matrix element in the lower left rectangle tends to
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decrease and therefore the reuse is more likely to be naturally exploited by the cache
without requiring any program transformation. Conversely, the reuse distance for
matrix elements located in the upper right part of the matrix tends to be high though the
number of reuses is smaller. The figure above provides an intuitive representation of
reuse distribution where darker means more reuse.

As many matrix elements are reused several times, there is a significant amount of
potential temporal locality that we can attempt to exploit using standard blocking
techniques. We present the first step of the optimization in the next section.

3. Step 1: Blocking to remove capacity misses.
The effect of blocking is to decrease the reuse distance for the reuses of a block of
matrix elements. All i1 computations are performed for a block, then the program
moves to another block and so on. The corresponding program is shown as well as a
graphical representation of blocking. While the above blocking transformation can be
performed with the 
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       do 2000 ii2 = 1, naretes, B
         do 2000 ii3 = 1, naretes, B
           do 2000 i1 = 1, NARETES−1
              pivinv = 1 / zmat(i1,i1)
              do 2000 i2 = max(i1 + 1,ii2), min(nar etes, ii2+B−1)
                temp = zmat(i2,i1) * pivinv
                zmat(i2,i1) = temp
                do 2000 i3 = max(i1 + 1,ii3), min(n aretes, ii3+B−1)
                  zmat(i2,i3) = zmat(i2,i3) − temp * zmat(i1,i3)
 2000         continue

Optimization Tool, the LU decomposition presents a special case that requires the
insertion of guards; for the moment, this transformation is perfomed manually. As
shown above, the blocking transformation is not legal as data dependences are crossed.
In the algorithm, each i1 column is divided by a coefficient only once. In the blocked
algorithm this division will take place several times because loops have been
interchanged. To prevent multiple column updates, the following guard must be
inserted:

       do 2000 ii2 = 1, naretes, B
         do 2000 ii3 = 1, naretes, B
           do 2000 i1 = 1, NARETES−1
              pivinv = 1 / zmat(i1,i1)
              do 2000 i2 = max(i1 + 1,ii2), min(nar etes, ii2+B−1)
                if (((ii3) .LE. (i1+1)) .AND. ((i1+1 ) .LE. (ii3+B−1))) then
                temp = zmat(i2,i1) * pivinv
                else
                temp = zmat(i2,i1)
                endif 
                zmat(i2,i1) = temp
                do 2000 i3 = max(i1 + 1,ii3), min(n aretes, ii3+B−1)
                  zmat(i2,i3) = zmat(i2,i3) − temp * zmat(i1,i3)
 2000         continue

The breakdown of misses is now the following:
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L0 misses are down to 21,63% and spatial locality is now exploited. The execution time
is now equal to 2,67s, i.e., a speedup of 9,00. Note that the number of conflict misses
has increased, both because blocking can have introduced some additional conflicts and
because the removed capacity misses could have been hiding conflict misses.

Blocking has globally reduced capacity misses because it has the effect of reducing
reuse distances. But it is actually a tradeoff as some other references can see an increase
of reuse distances. For instance, the reuse of the data in a i1 row or column are
increased. For that reason and because of conflict misses, blocking is very sensitive to
the block size. In this case, the block size has been computed using techniques by
Coleman and McKinley. Consider the above code with block sizes B=57, 58 and 59.
The corresponding execution times are shown below. As can be observed, a block size
variation of 2 can result in a 57% increase of the execution time.

Block Size Execution
Time

(seconds)

57 2,67

58 3,28

59 4,19

4. Step 2: Exploiting a coalescent write−buffer
As we have achieved significant miss reductions, we now focus on other memory
hierarchy bottlenecks, namely bus conflicts. In the above loop nests, we can notice that
the innermost loop nest (i3) is scanning the zmat array row−wise, i.e., not memory−
wise. In terms of misses, the impact is small as the block defined by i2 and i3 fits in the
different cache levels. Therefore, interchanging i2 and i3 does not improve significantly
the number of misses. On the other hand, the L0 cache of the 21164 is write−through,
and more important, the write−buffer is coalescent. In a normal write−buffer, each time
a word is sent back to memory for writing, it is stored in an entry and when the bus is
available, a request is issued. The higher the number of requests, the more often the bus
is used, the more likely a load request will be delayed by a write request inducing
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processor stalls. To alleviate that problem, coalescent write−buffers are used. The
principle is to have a tag for each write−buffer entry, and an entry corresponds to cache
line, not a word. When the cache sends a data to the write−buffer, it checks whether the
corresponding cache line already exists in the write−buffer, and in that case, only a
word of that cache line is updated and no new entry is added to the write−buffer.
Naturally, this mechanism can potentially reduce the number of write requests. It works
particularly well in the presence of strong spatial locality, i.e., numerous write requests
to consecutive memory addresses.

Because i2 and i3 do not scan zmat memory−wise, each write request zmat(i2,i3)
corresponds to a new cache line and therefore the fact the write−buffer is coalescent is
not exploited. Consequently, when the write−buffer is filled, additional write requests
are stalled until the write−buffer can access the bus. By simply interchanging i2 and i3,
this property is exploited and the new execution time is 1,47s, i.e., a speedup of 1,81.

Because of the code structure, the two innermost loops need actually to be split before
being interchanged and the resulting code is shown below.

       do 2000 ii3 = 1, naretes, B
         ub3 = min(naretes,ii3+B−1)
         do 2000 ii2 = 1, naretes, B
            ub2 = min(naretes, ii2+B−1)
            ub1 = min(naretes − 1, min(ub2, ub3))
            do 2000 i1 = 1,ub1
               if (((ii3) .LE. (i1+1)) .AND. ((i1+1 ) .LE. (ii3+B−1))) then
                  pivinv = 1 / zmat(i1,i1)
                  do 2001 i2 = max(i1 + 1,ii2), ub2
                     zmat(i2,i1) = zmat(i2,i1) * pi vinv
 2001             continue
                  do 2002 i3 = max(i1 + 1,ii3), ub3
                     temp = zmat(i1,i3)
                     do 2002 i2 = max(i1 + 1,ii2), ub2
                        zmat(i2,i3) = zmat(i2,i3) −  temp * zmat(i2,i1)
 2002                continue
               else
                  do 2003 i3 = max(i1 + 1,ii3), ub3
                     temp = zmat(i1,i3)
                     do 2003 i2 = max(i1 + 1,ii2), ub2
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                        zmat(i2,i3) = zmat(i2,i3) −  temp * zmat(i2,i1)
 2003                continue
                     endif              
 2000             continue

5. Final results and conclusions 
To a certain extent, reducing the number of misses is a very long process as new paths
of improvements always exist, even after drastic improvements. For instance, in the
present case, taking into account the triangular nature of the algorithm could lead to
further improvements. But optimizing an application is an uncertain and time−
consuming task so it is important to have a rough guess of the potential expected
benefits. Therefore, we lack a tool to evaluate the potential benefits of additional
optimizations, a task initially planned in MHAOTEU, but which has been removed at
the last review meeting.

Besides the determination of the potential optimal performance, our current approach is
also limited by the accuracy of our memory hierarchy model. We take into account all
components but we use a simplified view of the architecture where mostly miss issues
are highlighted. Timing issues (conflicts between miss requests to the bus…) and more
detailed characteristics of the memory hierarchy components are ignored. We have
shown that this approximation can hide significant potential improvements, so
providing a more detailed architectural model could be an important add−on to the
project.

II. EDINBURGH APPLICATION

1. Application

The application from Edinburgh is GAUGE, a lattice quantum−chromodynamics
application developed at EPCC in collaboration with the Physics Department at the
University of Edinburgh. A parallel version of this code, with some recent
enhancements, consumes a significant proportion of the CPU time on the 344 processor
T3E at Edinburgh.  The code consists of about 10,000 lines of Fortran77, and makes
significant use of include files and cpp macros. 

The code performs computations on a regular 4−D lattice, and features high
dimensional arrays, predominantly linear array accesses, and deep loop nests, with
some loops having short trip counts.  As this code is so heavily used on some of the
world’s most expensive machines, it has been extensively tuned for both cache based
and vector architectures.
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Due to this extensive tuning, any performance gained from the cache optimised version,
would be a significant gain, as all obvious performance problems should have been
already eliminated.

2. Performance Analysis of the Original Application

The key early decision was to decide on the size of system to investigate. The algorithm has
O(n**4 x s) time complexity and O(n**4) space complexity, where n is the size of the lattice
and s is the number of steps taking to converge. As the number of steps can typically be
thousands and the code run for weeks, it was important that it was scaled to an appropriate size
without effecting the validity of the analysis. Fortunately we could examine a realistic value
n=8 over a short number of time steps s=20, as the behaviour of each iteration after thefirst
iteration is identical in terms of control path and memory access. Once thedata size was
selected, this was fed into the pre−processing scripts and a 8 x 8 x 8 x 16 Fortran code was
generated.

2.1 Analysis

The principal tools used were dynamic analysis and the memory profiler.  After an
initial profiling we found that the total execution time was 132.24 seconds.  Further
investigation showed that the two most expensive routines were: make_random_su3 and
uni which took 23% and 17% of the execution time respectively.

A profile of the code showed that the most expensive routine, make_random_su3 was
not one where significant floating point computation was taking place.  The dynamic
analysis tool also showed that it was also not responsible for high numbers of cache
misses.  On closer inspection, it was seen that make_random_su3 contains mainly
nested if conditions and it was connected that branch delay penalties are the main cost −
an issue beyond the scope of the project.

After this disappointing start, we  turned our attention to the  next dominant routine  uni
where  dynamic analysis tool  showed that this routine was responsible for a very high
numbers of cache misses. On closer inspection it was seen that it had poor stride access,
within its inner loop nest, causing high numbers of L1 conflict misses.

        DO 23, l=0,Ncolour−1
           DO 22, k=0,Ncolour−2
              DO 21 j=0,Ncomplex−1
                 index = j + ( Ncomplex*( k + (Ncol our−1)*l ) )
                 DO 20 site=0,Max_body−1
                    su3_matrix(j,k,l,site,par) = rn (index,site)
   20            CONTINUE
   21         CONTINUE
   22      CONTINUE
   23   CONTINUE
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It appears that due to a a programmer oversight, there is poor spatial locality within this
loop nest. This was probably due to it being tuned mainly on Sparc based processors
where its cache behaviour is insignificant relative to the overall execution time.

3. Optimisation

The main problem here is that rn is a linearised array. What we would like to do, is
delinearised it and then apply loop interchange so that we have perfect stride access.
Such a data transformation is only possible, if we can propagate the transformation to
all other instances. In deliverable M2.D2, we showed how this may be achieved.  As  rn
was a local array within uni , this was easily achieved.

The first transformation required to correct this was data tiling on the local array
(expanding the array from 2 dimensions to 4). As this is not currently supported by the
transformation engine, data tiling was performed by hand:

        DO 23, l=0,Ncolour−1
           DO 22, k=0,Ncolour−2
              DO 21 j=0,Ncomplex−1
                 index = j + ( Ncomplex*( k + (Ncol our−1)*l ) )
                 DO 20 site=0,Max_body−1
                    su3_matrix(j,k,l,site,par) = rn (j,k,l,site)
                 END DO 
              END DO 
           END DO 
        END DO 

This was followed by a series of loop interchanges, already successfully implemented
with the loop transformation tool. This gave the following code:

        DO site=0,Max_body−1
           DO l=0,Ncolour−1
              DO k=0,Ncolour−2
                 DO j=0,Ncomplex−1
                    su3_matrix(j,k,l,site,par) = rn (j,k,l,site)
                 END DO 
              END DO 
           END DO 
        END DO 

− 10 −



MHAOTEU: Project No 24942

Following this, we performed a new dynamic analysis−−−this showed that the L1
capacity  misses had been greatly reduced in this routine.  The new execution time was
117.48secs − a 16% improvement in the code.  Thus as far as this one routine is
concerned we have over a 90% reduction in execution time.

Furthermore, dynamic analysis showed that the remainder of the code exhibited very
good locality properties, and confirmed that further efforts to tune the code in terms of
memory hierarchy exploitation were highly unlikely to be beneficial. This was further
confirmed by running the memory debugger on one of the critical routines. These
routines are at the computational core of the lattice gauge algorithm and are frequently
hand−written in assembler code. It was unlikely that they would have poor memory
behaviour.

However, this highlights a very important point, often ignored in performance tuning.
This dynamic analysis and memory profiling provided evidence to suggest that future
optimisation was unlikely to provide any further benefit. This type of information is
invaluable to those who must balance the expense of programmer time against possible
performance gains. As the porting and maintenance of the QCD code is a a significant
limit on the amount of new science implemented in each new version of the code at
EPCC, this was considered the most valuable result of the application study.

4. Conclusions

We found that the type of analysis provided by the MHAOTEU toolset to be very
useful for analysing the GAUGE application.  As this was a such highly tuned
application in the first place, it was thought unlikely that any significan performance
improvement was possible. However, we were able to improve the running time by
16% − a significant improvement.  This update has now been incorporated into the UK
QCD benchmark. Furthermore, we have confirmed that other routines are not memory−
bound and that further memory optimisations is unlikely to provide any further
improvement.

III. UPC APPLICATION

1. General presentation of the application
This chapter presents the detailed analysis and optimization process of a nuclear reactor
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application called VMEC (Variational Moments Equilibrium Code). VMEC is used in
some nuclear reactors in Spain (for instance: Tokamak in the CIEMAT (Madrid) and a
Stellarator in the Max Planck Institute). 

2. Initial performance analysis of the application
We have optimized this application for a Digital machine with an Alpha 21164 processor with
the following cache characteristics:
 Size bytes/line Associativity
1st level cache: 8Kb 32 direct mapped
2nd level cache: 96Kb 64 3 way set−associative
3rd level cache: 2Mb 64 direct mapped

The tools that we have used to obtain information about the application have been: Looptiming
(MHAOTEU), SPLAT(MHAOTEU), Alpha 21164 hardware counters and F77 time profiling.

LoopTiming statistics:

As figure 1 shows, the LoopTiming tool gives accurate statistics (compared to the
hardware counters statistics) about what the most important routines are with a
slowdown smaller than 1.

figure 1

SPLAT statitstics:

By means of the SPLAT tool we have observed that most of the misses produced in the
most important routines are capacity misses. It has also been used to identify which are
the memory references and loops responsible for the biggest number of misses of each
routine, so we have applied some transformations oriented to reduce the volume of each
iteration (for instance: blocking, loop distributing,...) getting a significant reduction in
the L1 miss ratio as the figure 2a shows.

3. Analysis and optimization process
Using these tools we got some statistics which were used to analyze the application and
to perform some transformations on the source code based on their information. After
every set of transformations we used the tools to get new information about how much
improvement we got in every one of the applied transformations.

Some different applied transformations are shown in the following lines.
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LOOP DISTRIBUTING + BLOCKING

Here we show an example of how the number of L1 cache misses in the routine
Tomnsp was decreased reducing the volume of each iteration by means of loop
distributing and blocking.

Original code

         do n = 0,nmax
            do k = 1,nzeta
               do js= jmin2(m),jmax
                  frcc(js,n,m) = frcc(js,n,m) 
     >                 + work3(js,k,01)*cosnv (k,n)
     >                 + work3(js,k,02)*sinnvn(k,n)
                  frss(js,n,m) = frss(js,n,m) 
     >                 + work3(js,k,03)*sinnv (k,n)
     >                 + work3(js,k,04)*cosnvn(k,n)
                  fzcs(js,n,m) = fzcs(js,n,m) 
     >                 + work3(js,k,05)*sinnv (k,n)
     >                 + work3(js,k,06)*cosnvn(k,n)
                  fzsc(js,n,m) = fzsc(js,n,m) 
     >                 + work3(js,k,07)*cosnv (k,n)
     >                 + work3(js,k,08)*sinnvn(k,n)
               enddo
               do js= jlam(m),ns
                  flcs(js,n,m) = flcs(js,n,m) 
     >                 + work3(js,k,09)*sinnv (k,n)
     >                 + work3(js,k,10)*cosnvn(k,n)
                  flsc(js,n,m) = flsc(js,n,m) 
     >                 + work3(js,k,11)*cosnv (k,n)
     >                 + work3(js,k,12)*sinnvn(k,n)
               enddo
            enddo
         enddo

Transformed code

      do k=1, nzeta, 4
       do js=jmin2(m),jmax,8

  do n=0, nmax        
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,jmax−js)
                  frcc(js+js_s,n,m) = frcc(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,01)*co snv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,02)*si nnvn(k+k_s,n)

    enddo
   enddo
  enddo

       enddo
      enddo
      do k=1, nzeta, 4
       do js=jmin2(m),jmax,8

  do n=0, nmax        
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,jmax−js)
                  frss(js+js_s,n,m) = frss(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,03)*si nnv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,04)*co snvn(k+k_s,n)

    enddo
   enddo
  enddo
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       enddo
      enddo
      do k=1, nzeta, 4
       do js=jmin2(m),jmax,8

  do n=0, nmax        
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,jmax−js)
                  fzcs(js+js_s,n,m) = fzcs(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,05)*si nnv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,06)*co snvn(k+k_s,n)

    enddo
   enddo
  enddo

       enddo
      enddo
      do k=1, nzeta, 4
       do js=jmin2(m),jmax,8

  do n=0, nmax        
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,jmax−js)
                  fzsc(js+js_s,n,m) = fzsc(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,07)*co snv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,08)*si nnvn(k+k_s,n)

    enddo
   enddo
  enddo

       enddo
      enddo
      do k=1, nzeta, 4
       do js=jlam(m),ns,8

  do n=0, nmax     
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,ns−js)
                  flcs(js+js_s,n,m) = flcs(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,09)*si nnv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,10)*co snvn(k+k_s,n)

    enddo
   enddo
  enddo

       enddo
      enddo
      do k=1, nzeta, 4
       do js=jlam(m),ns,8

  do n=0, nmax     
         do k_s=0,min(3,nzeta−k)

    do js_s=0,min(7,ns−js)
                  flsc(js+js_s,n,m) = flsc(js+js_s, n,m) 
     >                 + work3(js+js_s,k+k_s,11)*co snv (k+k_s,n)
     >                 + work3(js+js_s,k+k_s,12)*si nnvn(k+k_s,n)

    enddo
   enddo
  enddo

       enddo
      enddo

LOOP DISTRIBUTION + LOOP INTERCHANGE

We performed loop distribution and loop interchange in the routine Loplab in order to
reduce the number of capacity misses and L1 cache accesses because it has a high
locality which was not exploited.

Original code
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        do 30 i=1,3
         do 40 j=1,3
          do 50 n=1,nloops
50         db(i,j,n)=0.                               
          do 60 k=1,3
           do 70 l=1,3
            do 80 n=1,nloops
             db(i,j,n)=db(i,j,n)+amat(k,i,n)*amat(l ,j,n)*dbp(k,l,n)          
80          continue                                                        
70         continue                                                        
60        continue                                                        
40       continue                                                        
30      continue                                                        

Transformed code

        do n=1,nloops                                
         do j=1,3                                 
          do i=1,3            
           db(i,j,n)=0.
          enddo                                                        
         enddo                                                        
        enddo                                                    
        do n=1,nloops                                      
         do j=1,3                     
          do l=1,3                               
           do i=1,3              
            do k=1,3     
             db(i,j,n)=db(i,j,n)+amat(k,i,n)*amat(l ,j,n)*dbp(k,l,n)          
            enddo
           enddo
          enddo
         enddo
        enddo 

        

GLOBAL INDEX REORDERING

In the following code we show a part of the Analyt routine code which had no exploited
locality in the arrays conu, sinu, conv and sinv. As the code shows there was not many
possible transformations to do to improve it, but it was seen that this optimization was
able to reduce the number of L1 cache misses in Analyt and some other routines (for
instance: surface, precal,...).

   Original code

      common /precal2/  sinu(0:mf,nuv),conu(0:mf,nu v)
     $     ,sinv(−nf:nf,nuv),conv(−nf:nf,nuv)
   
      do 150 l = 0,mf+nf
      ...
      do 120 n = 0,nf   
      do 120 m = 0,mf   
      ...
      do  50 ip=nsta,nend
         va(ip)    =  −(zm(ip)+zp(ip))*conu(m,ip)*d e
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         vb(ip)    =   (zm(ip)+zp(ip))*sinu(m,ip)*d e
         vc(ip)    = (tm2(ip)+tp2(ip))*bexn(ip)*sin u(m,ip)
   50 continue
      ...
      do 70 ip=nsta,nend 
         va(ip)    = −(zm(ip)+zp(ip))*conv(n,ip)
         vb(ip)    =   (zm(ip)+zp(ip))*sinv(n,ip)
         vc(ip)    = (tm2(ip)+tp2(ip))*sinv(n,ip)*b exn(ip)
   70 continue
      ...
      do 90 ip=nsta,nend 
         cw     = conu(m,ip)*conv(n,ip)−sinu(m,ip)* sinv(n,ip)
         sw     = sinu(m,ip)*conv(n,ip)+conu(m,ip)* sinv(n,ip)
         va(ip  ) =   − zp(ip)*cw
         vb(ip)   =     zp(ip)*sw
         vc(ip)   = tp2(ip)*sw*bexn(ip)
   90 continue
      ...
      do 91 ip=nsta,nend 
         cwm    = conu(m,ip)*conv(n,ip)+sinu(m,ip)* sinv(n,ip)
         swm    = sinu(m,ip)*conv(n,ip)−conu(m,ip)* sinv(n,ip)
         va(ip)    =   −zm(ip)*cwm
         vb(ip)    =    zm(ip)*swm
         vc(ip)    =  tm2(ip)*swm*bexn(ip)
   91 continue
      ...
  120 continue
      ...
  150 continue

Transformed code

      common /precal2/  sinu(nuv,0:mf),conu(nuv,0:m f)
     $     ,sinv(nuv,−nf:nf),conv(nuv,−nf:nf)

      do 150 l = 0,mf+nf 
      ...
      do 120 n = 0,nf    
      do 120 m = 0,mf    
      ...
      do  50 ip=nsta,nend
         va(ip)    =  −(zm(ip)+zp(ip))*conu(ip,m)*d e
         vb(ip)    =   (zm(ip)+zp(ip))*sinu(ip,m)*d e
         vc(ip)    = (tm2(ip)+tp2(ip))*bexn(ip)*sin u(ip,m)
   50 continue
      ...
      do 70 ip=nsta,nend 
         va(ip)    = −(zm(ip)+zp(ip))*conv(ip,n)
         vb(ip)    =   (zm(ip)+zp(ip))*sinv(ip,n)
         vc(ip)    = (tm2(ip)+tp2(ip))*sinv(ip,n)*b exn(ip)
   70 continue
      ...
      do 90 ip=nsta,nend 
         cw     = conu(ip,m)*conv(ip,n)−sinu(ip,m)* sinv(ip,n)
         sw     = sinu(ip,m)*conv(ip,n)+conu(ip,m)* sinv(ip,n)
         va(ip  ) =   − zp(ip)*cw
         vb(ip)   =     zp(ip)*sw
         vc(ip)   = tp2(ip)*sw*bexn(ip)
   90 continue
      ...
      do 91 ip=nsta,nend 
         cwm    = conu(ip,m)*conv(ip,n)+sinu(ip,m)* sinv(ip,n)
         swm    = sinu(ip,m)*conv(ip,n)−conu(ip,m)* sinv(ip,n)
         va(ip)    =   −zm(ip)*cwm
         vb(ip)    =    zm(ip)*swm
         vc(ip)    =  tm2(ip)*swm*bexn(ip)
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   91 continue
      ...
  120 continue
      ...
  150 continue

LOOP INTERCHANGE + SCALAR VECTORIZATION

In order to exploit some Getiota’s loops locality we tried to perform loop interchange
but it was necessary to perform scalar vectorization in the scalars bot and top.

Original code

      do js = 2,ns
         top = jv(js)  
         bot = czero
         do lk = 1,nznt
            top = top − wint(js,lk)*(guu(js,lk)*lv( js,lk)
     >           +                    guv(js,lk)*lu (js,lk))
            bot = bot + wint(js,lk)*phipog(js,lk)*g uu(js,lk)
         enddo
         iotas(js) = top/bot
      enddo

Transformed code

      real top(nsd), bot(nsd)

      do js = 2,ns
         top(js) = jv(js)
         bot(js) = czero
      enddo      

      do lk = 1,nznt
         do js = 2,ns
            top(js) = top(js) − wint(js,lk)*(guu(js ,lk)*lv(js,lk)
     >           +                    guv(js,lk)*lu (js,lk))
            bot(js) = bot(js) + wint(js,lk)*phipog( js,lk)*guu(js,lk)
            if (lk.eq.nznt) iotas(js) = top(js)/bot (js)
         enddo
      enddo

LOOP MERGING + LOOP INTERCHANGE

As the following code shows, the routine precondn had some no exploited locality in
both nested loops (arrays ptau, wint,...) so we had to merge these loops to perform loop
interchange with the outermost loop.

Original code

      do js = 2,ns      
       do lk = 1,nznt 
        ptau(lk) = r12(js,lk)**2*(bsq(js,lk)−pres(j s))
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     >           * wint(js,lk)/gsqrt(js,lk)
        t1 = xu12(js,lk)*ohs
        t2 = cp25*(xue(js,lk)/shalf(js) + xuo(js,lk ))/shalf(js)
        t3 = cp25*(xue(js−1,lk)/shalf(js) + xuo(js− 1,lk))/shalf(js)
        ax(js,1) = ax(js,1) + ptau(lk)*t1*t1
        ax(js,2) = ax(js,2) + ptau(lk)*(−t1+t3)*(t1 +t2)
        ax(js,3) = ax(js,3) + ptau(lk)*(t1+t2)**2
        ax(js,4) = ax(js,4) + ptau(lk)*(−t1+t3)**2
       enddo
       do lk=1,nznt   
        t1 = cp5*(xs(js,lk) + cp5*xodd(js,lk)/shalf (js))
        t2 = cp5*(xs(js,lk) + cp5*xodd(js−1,lk)/sha lf(js))
        bx(js,1) = bx(js,1) + ptau(lk)*t1*t2
        bx(js,2) = bx(js,2) + ptau(lk)*t1**2
        bx(js,3) = bx(js,3) + ptau(lk)*t2**2
        cx(js) = cx(js) + cp25*lu(js,lk)**2*gsqrt(j s,lk)*wint(js,lk)
       enddo
      enddo

Transformed code

      do lk = 1,nznt  
       do js = 2,ns 
        ptau(lk) = r12(js,lk)**2*(bsq(js,lk)−pres(j s))
     >           * wint(js,lk)/gsqrt(js,lk)
        t1 = xu12(js,lk)*ohs
        t2 = cp25*(xue(js,lk)/shalf(js) + xuo(js,lk ))/shalf(js)
        t3 = cp25*(xue(js−1,lk)/shalf(js) + xuo(js− 1,lk))/shalf(js)
        ax(js,1) = ax(js,1) + ptau(lk)*t1*t1
        ax(js,2) = ax(js,2) + ptau(lk)*(−t1+t3)*(t1 +t2)
        ax(js,3) = ax(js,3) + ptau(lk)*(t1+t2)**2
        ax(js,4) = ax(js,4) + ptau(lk)*(−t1+t3)**2
        t1 = cp5*(xs(js,lk) + cp5*xodd(js,lk)/shalf (js))
        t2 = cp5*(xs(js,lk) + cp5*xodd(js−1,lk)/sha lf(js))
        bx(js,1) = bx(js,1) + ptau(lk)*t1*t2
        bx(js,2) = bx(js,2) + ptau(lk)*t1**2
        bx(js,3) = bx(js,3) + ptau(lk)*t2**2
        cx(js) = cx(js) + cp25*lu(js,lk)**2*gsqrt(j s,lk)*wint(js,lk)
       enddo
      enddo

4. Final results and conclusions
VMEC has a particular characteristic that allowed us to perform the analysis faster: it is
an iterative method so it can be run for 5100 iterations (normal execution taking more
than 4.5 hours) or for less iterations, reducing proportionally the execution time in all
the most important routines. For commodity we have performed all our analysis (except
hardware counters statistics) running the application for 200 iterations (it takes 10
minutes).

Figure 2a shows misses and time statistics before and after optimizations using
hardware counters and running VMEC for 5100 iterations.
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figure 2a

figure 2b

As figure 2 (a and b) shows, all the optimized routines except Forces have a reduction
in the number of L1 cache misses and their execution time. The routine Forces
increased the L1 miss ratio but we have analyzed why it spends less time than before
the optimizations and we have seen that it is due to a lower number of L2 cache misses.

Global information:

Total
exec.
Time
befor
e
opti
mizat
ion:

4:38:29

Total
exec.
Time
after
opti
mizat
ion:

3:43:48

Total
l1
cach
e
miss
es
ratio
befor
e
opti
mizat
ion:

20,00%
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Total
l1
cach
e
miss
es
ratio
after
opti
mizat
ion:

12,90%

The process we have used has consisted of:

• Obtaining the statistics (SPLAT, LoopTiming, hardware counters,…)
• Analyzing statistics to find where the main bottlenecks are.
• Perform the best transformation for every kind of problem.

It is possible to get more improvement optimizing other routines, but because of the
characteristics of these routines it has been impossible to reduce their execution time. It
seems that the only way to get more improvement in these routines is using data
prefetching, but by the way, this tool is being developed.

IV. INRIA APPLICATION

1  General presentation of the application
The code Osiris has been provided by Michel Kern, from project Estime in INRIA
(Rocquencourt). It is the two dimensional version of a code developped under a contract of the
Estime group with Gaz de France (GDF, the national french company for prospectionand
production of natural gas).

The purpose of the application is ‘‘Ground Penetrating Radar’’, for identifying objects under
ground1 , with many applications: petrol or gas prospection, exploration of polluted sites,
checking of structures such as bridges or dams, analysis of urban underground...

The physical apparatus consists of one box emitting impulses downwards, and an antenna
collecting the echos of these impulses reflected by the ground. By moving the first box along
axis x, one collects corresponding echos into a trace. From this trace (data in domain (x,y,t), the
problem is to compute properties of the ground, i.e. data in domain (x,y)). So this enters in the
class of inverse problems, usually considered as difficult problems.
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The physical system being modelled by Maxwell equations, the problem amounts to identifying
the coefficients of Maxwell equations, knowing an observed trace. For this purpose, one tries to
minimize the integrated sum of the difference between the observation and the estimated
solution. To find the optimum, the algorithm employed is m1qn3, from the modulopt library
developped at INRIA2 , which is a gradient−like method (quasi−Newton with BFGS strategy).

Finally the chief components of the application are3 : 

• solver of discretized 2D Maxwell equations (discretization using the finite differences
schema of Yee); 

• solver of adjoint equations, for computing the gradient; 

• m1qn3 routine for optimization. 

For our experiments, a numerical trace is generated beforehand. 

2  Initial performance of the application
We decided to measure 1 iteration of the algorithm for computing the optimum, after checking
that the time for 10 iterations is exactly ten times the time for one iteration. Initially we
measured that the application needed 7 seconds per iteration on the DEC−alpha processor.
Using the LoopTiming tool, we could find the files where most of the execution time was
spent: 

• yee.f: 35 % (solve Maxwell equations) 

• yee_adj.f: 8 % (compute the adjoint) 

• my_treeverse.f: 10 % 

• my_cal_Adj.f: 7 % (compute the adjoint, driver for yee_adj) 

• bdfaccla.f: 6 % (boundary conditions) 

Also we found that the following loop was consuming 23 % of the time passed in yee.f. 

C 320
      DO j=2,nz−1
           Hz(1,j) = Hz(1,j) − dtdx * ( Ey(2,j) − E y(1,j) )
           DO 12 i=2,nx−1
              Hz(i,j) = Hz(i,j) − dtdx * ( Ey(i+1,j ) − Ey(i,j) )
              Hx(i,j) = Hx(i,j) + dtdz * ( Ey(i,j+1 ) − Ey(i,j) )
 12     continue
      ENDDO
C 376
      DO j=2,nz−1
         DO 11 i=2,nx−1
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            Ey(i,j) = eps(i,j)*Ey(i,j)
     *           + ( ddz*(Hx(i,j)−Hx(i,j−1))
     *           −   ddx*(Hz(i,j)−Hz(i−1,j))  ) * s igma(i,j)
 11      continue
      ENDDO

Most of the other time consuming loops have a similar pattern.

Use of GRW (UltraSparc)
We know that if the size of the GRW is greater than the associativity, then we are sure that the
cache behavior will exhibit conflict misses in this loop. In the case of the last loop (# 376), we
find that the size of the window is 2 using our GRW tool. So, if the associativity is 1 (direct
mapped cache), conflict misses will certainly occur.

Also, after computing the size of GRW on the former loop (# 320), we find that the window has
size 2 if we assume that the scalars ( dtdx and dtdz) are in memory (implying conflicts when the
associativity is 1), and only size 1 if we assume they are in registers. So depending on the
location on these scalars, the cache behavior would vary. 

Use of CVT (UltraSparc)
We have performed cache simulation using CVT to verify our theorical deductions with GRW
analysis. The CVT tool allows us to have exact results provided by simulating a direct mapped
cache (the L1 cache of the 21164 Alpha processor). The simulation confirmed our theorical
results: 

• when the size of the GRW is strictly greater than 1 (loop # 376, and loop # 320 when
assuming scalar in memory), theoretically there should be conflict misses. The cache
simulation results show us that there is a significant amount of conflict misses between the
scalars ddz and the vector Hx in the latter loop and between the scalars (dtdx, dtdz) and the
vector Ey in the former loop (the two figures below).
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• in the case of the second loop, when we assume that  scalars are in memory, the size of the
GRW is equal to 1, so theoretically there should not be conflict misses. As a matter of fact,
cache simulation results do not report any conflict miss in this case. 

Using GRW guided us to detect conflicts in the two most important loops without simulation.
It also allowed us to see in certain case that scalars if located in memory could be a significant
source of conflicts. 

− 23 −



MHAOTEU: Project No 24942

3  Steps of the optimization (Dec−alpha)
We performed manually a number of optimizations, decreasing the execution time from 7 s to
4.75 s. 

Step 1: loop fusion
We applied loop fusion in several places, as in the example above, getting the following piece
of code4 . Of course we had manually checked that the transformation is valid. 

DO j=2,nz−1
           Hz(1,j) =  Hz(1,j) −
     &           dtdx * ( Ey(2,j) − Ey(1,j) )
      ENDDO
      DO j=2,nz−1
           DO 12 i=2,nx−1
           Hz(i,j) =  Hz(i,j) −
     &           dtdx * ( Ey(i+1,j) − Ey(i,j) )
           Hx(i,j) = Hx(i,j) + 
     &           dtdz * ( Ey(i,j+1) − Ey(i,j) )
           Ey(i,j) = eps(i,j)*Ey(i,j)
     *           + ( ddz*(Hx(i,j)−Hx(i,j−1))
     *           −   ddx*(Hz(i,j)−Hz(i−1,j))  )*sig ma(i,j)
 12      continue
      ENDDO

This gives a performance of 6.8 s. 

Step 2: unroll and jam fusion
In yee_par, we unrolled−and−jam these loops with different factors and with/witout fusion. In
the fusion version, there is no significant difference between the different factors (6.2 s for 2, 4
and 8). Without fusion, and by trying different pairs of unrolling factors (2−2, 2−1, 1−4, 1−8,
we did not get better than 6.5 s).
Now we started the same process of optimization in the yee_adj procedure. Already by unroll−
and−jamming the two loops twice, we got 5.8 s.  But found very fast that it is better not to
unroll the first one (5.5 s for 1−8 – no unrolling for the first one and unrolling 8 times for the
second one). It  happened also that unrolling with a prime factor gives very good results: 5.3s
when unrolling the second loop  or 7 or 15 or 17 times. Hence we got back to the yee_par
procedure and tried to unroll the fusionned loops 7 times, resulting in 5.26 s for 1−15 in
yee_adj, and then 5.19 s when trying 5−5 in yee_adj.
Best performance: 5.19 s. 

Step 3: scalar replacement
One of the loops in file bdfaccla.f had the following form: 

DO L=1,NL
      FA1  =  C(L)
      FA2  =  C(L   +   NL)
      ...
      FA4  =  C(L   + 6*NL)
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      FA8  =  C(L   + 7*NL)
      FA9  = 4*FA4
      DO I1=1, N1−1  
       F0 = FA9*F(I1,   L, T1P)  
     S   + (FA1 * F(I1, L, T1P)
     S   + ...
     S   +  FA4*( E(I1,1) − 2 * F(I1, NL+1, T1P)  
     S                    +     F(I1, NL+1, T1M) )
       F(I1,L, T1M) = F0
       E(I1,3) = E(I1,3) + FA8*( F0 − F(I1,L, T1P) ) 
      ENDDO    
      ENDDO                                              

The key observation here is that variables T1P and T1M always take values different from each
other5 , and therefore write accesses to F are independent from reads.

After scalar replacement we got: 

DO L=1,NL
      DO I1=1, N1−1  
       F(I1,L, T1M) = 4*C(L + 6*NL ) * F(I1, L, T1P )
     S   + (C(L) * F(I1, L, T1P)
     S   + ...
     S   +  C(L + 6*NL )*( E(I1,1)
     S                  − 2* F(I1, NL+1, T1P)  
     S                  +    F(I1, NL+1, T1M) )
       E(I1,3) = E(I1,3) + C(L + 7*NL) * ( F(I1,L, T1M) − F(I1,L, T1P)
) 
      ENDDO    
      ENDDO                                              

The figure for 1 iteration was now 5.06 s. 

Step 4: unroll and jam
By performing unroll and jam on previous loop, the time became 4.75s.

Hence the overall improvement is from 7 s to 4.75 s, that is about 32%. This is interesting since
this code is intended to run a very large number of iterations (in a very simple 2D case today
one is used to run  hundreds of iterations. This optimization may therefore save minutes per
run. One should also be aware that the final (very long term) goal is to have this model run in
3D and in real time …

 The performances obtained throughout this optimization process are summarized in the next
graphic.
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4  Final results and conclusion
We observed that several optimizations were able to significantly improve the performance.
The process for optimizing is not linear and we had to “try and test” a quite large number of
optimizations. We found that doing this manually is tedious and error−prone and suggest that
the unroll−and−jam transformation is implemented very soon (this is actually a combination of
loop fusion, loop unrolling and loop interchange)..

We used several tools from MHAOTEU: GRW, CVT, LoopTiming, and verified they were
useful. 

1 
D.J. Gunton, D.J. Daniels and H.F. Scott. ‘‘Introduction to subsurface radar’’. IEE Proceedings,
135F(4) :278−320, 1988. 

2 
J.F. Bonnans, J.C. Gilbert, C. Lemarechal, C. Sagastizabal. ‘‘Optimisation numérique : aspects
théoriques et pratiques’’. Springer, 1997. 

3 
For more details on the numerical scheme, see the INRIA report: ‘‘Imagerie du proche sous−sol
par un radar géologique’’, by Guillaume Vigo and Michel Kern. INRIA Research report RR−
3255, Septembre 1997. ftp://ftp.inria.fr/INRIA/publication/RR/RR−
3255.ps.gz  

4 
Note that we first have to perform loop splitting in order to obtain perfectly nested loops. 

5 
This fact would not be so obvious to detect from an automatic tool. T1P and T1M are updated in
another routine through permutation between integers 1, 2, 3, 4; being initialized at different
values, they remain distinct. 
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V. ONERA APPLICATION

The first thing we would like to underline is the quality and quantity of work achieved
by the different development partners. As end−users we fully agree with the
commission experts for the completion of a unique tool as we hope to be the first
beneficiaries. But as members of a research department (not in computer science but in
fluid mechanics) we have to admit that the amount of engineering work exhibited by
partners who are, we must recall, researchers first is really quite impressive, even with
the efficient help of EPC.
During the demo workshop ONERA could  test most of the MHAOTEU tools using the
FLU3M software. However, even if the different parsers could be successfully used on
the code or on the most important routines we could not yet achieved some first static
and dynamic analysis, nor apply efficiently the transformation tool. This is due tothe
two following main reasons which has lead to a new set of specifications to beincluded
in the new version of the MHAOTEU tool to be released in early December.

First, ONERA code is different from the other pieces of software by its rather important
size, more than 200000 lines, and 1200 routines which allows to test the limits of the
static and dynamic analysis tools. As it is rather usual for this kind of code just a few
number of routines need to be optimized. Most of the tools tested, considered that the
software to be optimized was in a single file, what leads to unrealistic times to
instrument the code with most of the instrumentation without real interest, and
unrealistic times to run the dynamic analysis.

Second, most of the CPU intensive loops in the code does not have constant bounds,
which at the moment of the demo−workshop was compulsory for applying most of the
transformation.
 
As a consequence, it was decided that the different tools will have to work with an
input set made of a directory with the different routines of the program split and that
they will be able to work on a limited subset of the routines. It was also decided to
extend the transformation tool to non−constant bounds loops.
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