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Abstract-In this paper we investigate two new decoding
schemes for Reed-Solomon codes, which allow to decode beyond
half the minimum distance. One isSudan'slist-decoding prin­
ciple, based oninterpolation with a degree-restrictedbivariate
polynomial. We show asyndrome-basedapproach of it. We
compare Sudan'sprocedurewith a schemethat is based on
an extension toInterleaved Reed-Solomon codes. Wepresent
theoretical parallels and outline bothalgorithms in a unique
comparableway. Furthermore,we show the connection of both
schemes to the classicalLinear FeedbackShift Registeranalysis.
Afterwards, we compare the performanceof the considered
schemes.

Index Terms-InterleavedReed-Solomon (IRS) codes,Sudan
interpolation,Multi-Sequence/Multi-LevelShift Register,Funda­
mental IterativeAlgorithm (FIA), Berlekamp-MasseyAlgorithm
(BMA)

I. INTRODUCTION

Guruswami and Sudan [1], [2] found the first non­
exponential-time list-decoding algorithms for Reed-Solomon
(RS) codes in 1997 respectively 1999. They consistof an
interpolation step and a factorization stepof bivariate polyno­
mials. While the work was focused on the existenceof such
an polynomial-time algorithm, an efficient implementation is
in the focusof many researchers.
Recently Sudan's andGuruswami-Sudan'sapproach were re­
formulated to a univariate problem ([3], [4], [5]). In this
contribution we consider Sudan's original approach which is
applicable to RS codes with rateR :s; 1/3. The algorithm
of Schmidt et ale [6], [7] is based on a virtual extension to
Interleaved Reed-Solomon (IRS) codes and also allows an
increaseof the decoding radius for low-rate RS codes only. In
fact, the rate-restriction is the same.
Recently, for both schemes a syndrome-based decoding
method was derived [3], [6]. We compare them and their
decoding algorithm, which is, for both schemes, an extension
of the Fundamental Iterative Algorithm (FIA)of Feng and
Tzeng [8]. The FIAitself can be seen as a generalizationof
the well-known Berlekamp-Massey Algorithm (BMA).
In the next section we introduce basic notations and the
assumption under which we can compare both schemes. In
Section III we outline the basic ideaof virtual extension
to an Interleaved Reed-Solomon (IRS) code, this decoding
approach will be called IRS scheme throughout the paper.

The syndrome-based Sudan decoding approach (or Sudan
scheme) is explained in Section IV. Both algorithms and their
connection to the classical BMA are presented in Section V.
We compare their performance analytically and with some
simulations in Section VI. Section VII concludes this con­
tribution.

II. PRINCIPAL IDEA OF THE COMPARISON

A. Notation

By RS(n, k, d) a (generalized) Reed-Solomon code over a
field F = GF(q) with n < q is denoted and given by

RS(n, k, d) = {c = (f(aI)'.'.' f(an ) ) : degf(x) < k},
(1)

whereaI, a2, .. . ,an are distinct nonzero elementsof F (the
code-locators). RS codes are in the classof MDS-codes and
the minimum distance is given byd = n - k + 1. In the
classical decoding process the received vectorr = c + e =
(rI,r2, ••• ,rn ) can contain up toTO = l(n - k)/2J errors.
The coreof the decoding process is solving the classical key
equation:

S(x)· A(x) =n(x) mod xn - k , (2)

where the degreeof the error-locator polynomialA(x) is here
denoted byTO. The so-called error-evaluator polynmialn(x)
satisfies degn(x) < TO. The key equation can be solved using
the BMA that performs linear-feedback shift-register synthesis
or by the extended Euclidean Algorithm.

B. Assumptions for the Comparabilityofboth schemes

The decoding resultof the decoder based on a virtual
extension to an IRS code returns either a unique result,
where the returned error-locator gives us the locationof the
errors (increased decoding radiusT), or the decoder declares
a decoding failure. In contrast to this a list-decoder returns
a list (where the maximum numberof possible codewords is
limited to l) with all codewordsof maximal distanceT to the
received word. Note, that the Sudan approach [1] guarantees
that the sent codeword is always on the list. For comparability
we "simplify" our list-decoder. It declares a decoding failure
if the outputted list contains more than one codeword.
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III. IRS SCHEME

I Due to the properties of finite fields there is a certain probability that the
new error word is of less weight or linearly dependent to e.

...! 0,0, .. . , 0

...
A(x )

S(l)(x) •. . . ,S(2)(x) ,S<')(x)

errors.

Fig. 1. IRS Scheme as Multi-Sequence Shift Register Problem

of the polynomial f[2] (x) = j2(x) at the same code locators
used for the original RS code. Fromdegf[2](x) S 2(k - 1)
the dimensionof the code follows.

Continuing this reasoning, one finds that when raising
the received word to the tth power it is possible to write
the result as sumof a (generally) independenterror word
and the codewordof a RS(n, k[t] = t(k - 1) + 1,d) code.
Consequently, the degreeof the tth syndromepolynomial is

degS(t)(x) < n - k[t] = n - t(k -1) -1 (10)

accordingto the classicalsyndromedefinition. The tth syn­
drome contributesn - t(k - 1) - wt(e) equations for the
determination of the error locator polynomial. Using the
syndromesS(x), S(2) (x), . . . , s»(x) it is possible to correct
up to (see [7]):

T= l2ln-l(l+1)k+l U-1)J (11)
2(l + 1)

B. Homogeneous Setof Equations asMulti-SequenceShift
Register Problem

The setof homogeneousequations (4) is aMulti-Sequence
Linear Shift Register Problem . Figure 1 illustrates this prob-

lem. It is an extensionof the classical BMAalgorithm,where
only one sequence occurs. For details see [9].

IV. SUDAN-SCHEME

A. Reformulationofthe interpolation problem to akey equa­
tion

Sudan's originallist-decodingalgorithm([1]) wasreformu­
lated by Roth andRuckenstein[3], [4] to a key equation
which is anextensionof the classical key equation for half­
minimum distance decoding. We directly present this equation
in the following (for the derivation thereader is referred
to [3], [4], [10]). The focus of this section is set to the
Berlekamp-Massey[11] like algorithmsolving the resulting set
of homogeneousequations for the Sudan principle efficiently.
In the Sudandecodingprocedurefor RS codes, we search
a bivariate polynomial Q(x , y) = �L�~�=�o Q(t)(x)yt, where
Q(o. ,r i) = 0Vi = 1, ... , n . Furthermore,the degreeof
Q(t)(x) is smaller thanN; = n - T - t(k - 1). The y­
roots (at mostl) give us the possible sent codewords. Let
A(t) (x) denote thereciprocalpolynomialsof Q(t)(x) . Then
the reducedset (without Q(O) (x) /A(O) (x)) can be written as
(for details see [3]):

I
I::A(t)(x). X(t- l )(k- l ) . S(t)(x) = n(x) mod xn- k, (12)
t=1

(5)

(8)

(7)

(6)

(9)

(i)
Swt(e)
(i )

Swt(e)+1

[2] _ (2 2 2)C - Cl, C2, ... , Cn

[2] _ (2 2 2)r - r 1, r2, .. . , rn

Due to theelement-wiseoperation, the errorscannotpropagate
and hencee[2] is (generally)an error with the same weight as
e at the same error positions, yet linearlyindependent'.

On the other hand, C[2] is a codeword of a
RS(n, kl2] = 2k - 1,d) code: Each elementof C[2] can
be written asci2] = c; = f(O:i)2, hence it is the evaluation

S(i) S(i)
di- wt(e) d;

wheredi is the degreeof the i-th syndromepolynomialS(i ) (x)
and wt(e) the numberof errors. As the name indicates, this
decodingapproachwas originally developed for IRS code, and
in order to apply it to ordinary RS codes, it isnecessaryto
constructadditional syndromesfrom the received word. One
method to do this has first beendescribedin [6]: The received
word is raisedelement-wiseto the tth power(t = 2, .. . , l) .
The resultingcodeword and error will be described exemplary
in the following for the caseof element-wisesquaring, yet the
result can easily be extended to higher powers. By element­
wise squaringr one obtains

and

We interpretr[2] as the sumof the newcodewordC[2] and the
new error worde[2], so we have

where

which are all solved by the sameerror-locatorpolynomial
A(x) . So comparedto the caseof classical decoding the
numberof equations available for thedeterminationof A(x)
is increased allowing fordecodingbeyondhalf the minimum
distance . The systemof equations now takes the following
form

(s(1) S(2) ... S(l)) T . A = O. (4)

We denote bySIRS= (S(I)S(2) ... S(l))T . Note, each matrix
S(i) has the formof a Hankel matrix :

S(i) S (i) S(i)o 1 2

�s�~�i�) �S�~ �i�)

A. Principal Idea

The decodingwith the IRS scheme relies on havingl errors
that occurredin the same positions yet haveindependenterror
values. Hence there existl key equations:

S(t)(x).A(x)=n(t)(x) mod xn- k,Vt=l, .. . . l (3)
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holds.

Fig. 2. Sudan's interpolation constraints asMulti-Level Shift Register
Problem

0,0, . . . , 0

U '"
A(ll( x)

S(ll(x) •••

U "'n '"A(l)(X)

S(l l( x) ••• • ••

••• k+ I

A(2)(x) �~
S(2l(X)--6--0-...

Problem1 (Sudanscheme)Let Sex,y) = �L�~�=�1 S(t)(x)yt
be the bivariate Sudan syndrome polynomial, where each
S(t)(x) Vt = 1, .. . .l as defined in(14). Then we search a
nonzero bivariatepolynomialT(x, y) such that:

(xI<T(x,y),S(x,y))=O V",=O, .. . ,7-1, (17)

i + t(k - 1) < i ' + t'Ck - 1)
or (16)

i + t(k - 1) = i ' + t'Ck - 1) and t < t' ,

By >--< (i, t) the pair that immediately follows (i, t) with
respectto orderdefinedby -< is denoted.Now we will describe
bothalgorithmsbasedon the FIA andshowtheir connectionto
the classicalLinear FeedbackShift Register(LFSR) analysis.
Preliminary,let us redefineboth problemswith the help of the
inner-product.The inner-product(a(x), b(x)) oftwo univariate
polynomials a(x) = �L�~�=�o aixi and b(x) = �L�~�=�o bixi is
definedas �L�~�~ (a,b) aibi. The inner-product(a(x, y), b(x, y))
for two bivariatepolynomialsa(x,y) = �L�~�~�o �L�;�~�o ai,jXiyj

andb(x, y) = �L�~�~�o L;::o bi,jXiyj is definedas L L ai,jbi,j.

B. Unique presentationofboth algorithms

The Fundamental Iterative Algorithm (FIA) of Feng­
Tzeng [8] finds the minimal numberof first columns of an
arbitrarymatrix which are linearly dependent.It is well-known
that when the FIA is tailored to a Hankel matrix (such as
in (5» it coincideswith the BMA. In this section we will
showan extensionof the FIA for boththe homogeneoussetof
equationscoming from the IRS-schemeand thereformulated
Sudaninterpolationconstraints.In the IRS-schemel Hankel
matricesare arrangedvertically (see(4», while for Sudanthe
syndromematricesare arrangedhorizontally (see (15».
In both schemes,the rows respectivethe columns of the
syndromematrices SIRS/SSudanwill be interchangedin a
similar manner.First we define the ordering -<, which occurs
in bothalgorithms.Let -< denotethe orderover the setofpairs
{(i, t)li E {I , .. . ,l}, t E IN}, where(i, t) -< (i' , t/) if andonly
if:

where

B. Homogeneous SetofEquations as Multi-Level Shift Regis­
ter Problem

Similar to the IRS-basedschemewe can representthe
reformulatedSudaninterpolationproblemin termsof a Linear
FeedbackShift Register problem. In contrast to the IRS­
scheme the syndrome polynomials and the corresponding
polynomials A(t) (x) form a Multi-Level Shift Register as
shownin Figure2. Wepoint out that wesearchherel different
polynomialsA(t)(x) (with different degree)and that the sum
of the linear combinationshouldbe zero. Now, weinvestigate
both problemsand show algorithmssolving them.

V. PARALLELS AND DIFFERENCESOF BOTH SCHEMES

A. On the parameters

As already mentionedthe syndromepolynomials S(t) (x)
are thesamefor both consideredschemes.Also the parameter
l and theincreaseddecodingradius7 (see (1I) are equaland
dependon thecodelengthn and itsdimensionk. Nevertheless
the basic ideas and theresulting sets of homogeneousequa­
tions are different.Both schemescan bereduced(for l = 1) to
the classicalcase(see (2». Both algorithmsare anextension
of the BMA and we will comparethem in the following.

(5(1) 5(2) 5(1)) . Q* = 0, (15)

where Q* = (Q(1)Q(2) . . . Q(l)f and Q(t)

(Q(t) Q(t) Q(t))T' h . f
0' 1" '" N

t-1
IS t e vector representation0

the bivariate interpolationpolynomial in the shortenedform
Q*(x, y) = �L�~�=�I Q(t)(x)yt.

The missing Q(O)(x) can be interpolatedwith No = n - 7

pairs (ai, r i) becauseof the relation:

I

Q(O)(ai) = -Q*(ai,ri) = - LQ(t)(ai)yf, i = 1, .. . ,n.
t=1

Note, that SSudan= (5(1)5(2) · .·5(1)) is a 7 x �L�~�=�1�N�t
matrix.

deg!l(x) <n-k-7. (13)

Furthermorethe l Sudansyndromepolynomials S(t) (x) are
the first termsof the well-definedformal powerseriess22(x)
definedas:

R(x)t = x(t-1)(n-1) . S(t)(x)+ U(t)(x) (14)
�G�~�) 00 ,

where R(x) is the Lagrange interpolation polynomial, s.t,
R(ai) = ri Vi = 1, . . . ,n, and R(x) is its reciprocal
counterpart.The polynomialG(x) is G(x) = �I�1�~�=�1�(�I�-�a�i�x�)�.
We emphasizethat the syndromesare the same than for
the scheme discussedin Section III. Clearly, for l = 1
Equation(12) becomes(2).
The resulting set of 7 homogeneousequations(we consider
the terms of (12) with the highestdegree)can bewritten in
matrix form:
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Note thatT(x, y) is the shortened Sudan interpolation polyno­
mial Q*(x, y). The IRS scheme can be formulated as follows.
Note that the dimensionof the matrix SIRSdepends on the
numberof errors (see (5)). LetN[RS denote the numberof
rows of the matrixsi» for the IRS-scheme. It is:

N{RS = N; - 1 + (7 - wt(e)), (18)

where 7 is according to (11) the numberof maximal cor­
rectable errorsof the IRS/Sudan-scheme andwt( e) ::; 7 is the
numberof errors that really occurred.

Problem2 (IRS scheme)Let the l syndromepolynomials
S(t)(x) Vt = 1, ... , l as defined in(14) and let NJRS be as
defined in(18). Thenfor the IRS scheme we search a nonzero
univariatepolynomialT(x) such that:

�(�x�~�T�(�x�)�, S(19)(x)) = 0 �V�~ = 0, ... , NJRS- IIi) = 1, ... , l
(19)

holds.

Note thatT(x) is the reciprocal polynomialof extended error­
locator polynomial with 0< wt( e) ::; 7 roots indicating the
error locations.

C. Multi-Level Algorithmfor Sudan

Algorithm 1 solves Problem efficiently.
Algorithm 1: Algorithm for the Multi-Level Problem

Input: Biv. polynomialsS(x, y) == �L�~�=�l S(t)(x)yt;
Output: Bivariate polynomialT(x, y);

Data: T(x, y), Column pointer(v, J-l), Row pointer«,
Arrays D[i], A[i], R[i], Variable �~�;

1 while '" < T do
2 if computethen
3 I �~ �~ �(�x�~ . T(x, y), S(x, y));
4 else
5 if R[v] < 1 then
6 T(x, y) �~ yV . x";

�~�~�S�(�v�)�.
J.l ,

8 �"�,�~�o�;

9 else
10 T(x, y) �~ x . A[R[v]](x, y);
11 �~ �~ D[R[v]];
12 '" �~ R[v] - 1;
13 end
14 compute�~ TRUE;
15 end
16 if �~ == 0 or D[",] i= 0 then
17 if �~ i= 0 then
18 I T(x, y) �~ T(x, y) - �D�[�~�] .A[",](x, y);
19 end

20 '" �~ '" + 1;
21 else /* �~ i= 0 and D[",] == 0 */
22 A [",](x,y) �~ T(x, y);
23 D[",] �~�~�;

24 R[v] �~ n;
25 compute�~ FALSE;
26 ( u, J-l) �~ >- -< (v, J-l);
27 end
28 end

Paper 4

In contrast to the classical FIA, Algorithm 1 scans thel
Hankel matricesS( i) in parallel. The columnsof S( i) are
virtually interchanged according to the-<-ordering. The
discrepancy calculation (Line 3) and the update rule (Line 18)
are suited for bivariate polynomials. The discrepancy is
stored in the arrayD and the intermediate polynomial inA.
The row-pointer for every sub-matrixS( i) is stored in the
array R. Similar to the FIA for one Hankel matrix we can
jump in each sub-matrixS(19) to the previous row�~ - 1
insteadof row zero (see Line 12). This is the point where the
complexity reduction comes from. For more details see [3],
[10]. Without a proof we state that Algorithm 1 has time
complexity 0 (7 2l ) . Note that0 (72) is the complexity for
one 7 x (7 + 1) Hankel matrix (classical decoding). We
illustrate the functioningof Algorithm 1 in the following
example.

D. Multi-SequenceAlgorithmfor the IRS-scheme

Algorithm 2 solves Problem 2 efficiently. We will describe
the extension Algorithm 2 to the FIA tailored for one Hankel
matrix in the following (for details see [8], [10]).

Algorithm 2: Algorithm for theMulti-SequenceProblem

Input: UnivariatepolynomialsS(t)(x) V t E {I, ... , l}
Output: Univariate polynomialT(x);

Data: T(x), Column pointer'l/J, Row pointer (iJ,"')' Row
counterp, Arrays D[i] [j], A[i] [j], R[i], Variable�~�;

1 while (iJ, "') < (l, N{) - 1) do
2 if computethen
3 I �~�~�(�x�~�·�T�(�x�)�,�S�(�{�}�)�(�x�)�)�;

4 else
5 if '" < 1 and iJ == 0 then
6 T(x) �~ x1/1;

�~ �~ S({}).
1/1 '

8 (iJ, "') �~ (1,0);
9 else

10 T(x) �~ x- T(x);
11 if '" == 0 then
12 I («. "') �~ (iJ - 1,k - 1);
13 �~ �~ 0;
14 end
15 '" �~ '" - 1;
16 end
17 compute�~ TRUE;
18 end
19 if �~ == 0 or D[iJ]["'] i= 0 then
20 if �~ i= 0 then
21 I T(x) �~ T(x) - �D�[�~�[�~�] • A[iJ][",](x);
22 end
23 (iJ, "') �~�>�-�-�< (iJ, x);
24 else /* �~ i= 0 and D[iJ]["'] == 0 */
25 A[iJ][",](x) �~ T(x); D[iJ][",] �~ �~�;

26 'l/J �~ 'l/J + 1;
27 compute�~ FALSE;
28 end
29 end

The row pointer(i), �~�) is ordered with respect to (16) and used
to index the two dimensional discrepancy arrayD. This stores
(in contrast to the classical FIA) the discrepancy for each sub-
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Fig. 4. Illustration of the discrepancy-calculation for IRS-scheme for an
R.S (31,4) virtually extended tol = 3 Reed-Solomon codes.

Fig. 3. Illustration of the discrepancy-calculation for the Sudan decoding
procedure for an R.S( 31, 4) withl = 3 code.

in -c-order,Let us considerthe point (14,14) in Figure 4.
Algorithm 2 calculates a nonzero discrepancy for the second
row of the third sub-matrixS (3) (indicated with the column
pointer (fJ = 3,K. = 1)). Due to the Hankel property
Algorithm 2 can start in the next column with the first rowof
S (3) ( fJ = 3,K. = 0)).
Algorithm 1 and Algorithm 2 take advantageof the Hankel
structure in a similar manner and achieve a comparable time
complexity.
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enters column(v = 1,/1= 3) and can start in row 2 (Hankel
property) .
If Algorithm 1 examines the partof the matrixS S udanwhere
the columns areinterchanged, it "jumps" more than one
column. See point(v = 1,/1 = 5) to (v = 1,/1 = 6), or
(v = 1,/1= 7) to (v = 1,/1= 8) as indicated in Figure 3.
The discrepancy calculationof Algorithm 2 when applied to
the 18 x 19 syndrome matrixSIRS with the syndromesof (21)
is illustrated in Figure 4. Here the rows are interchanged

TABLE I
ORDERING -< FOR THE ROW/COLUMN POINTER

ColumnlRow of the syndrome matrices
and thecorresponding-e-ordering

0 (0,1) 7 (5,1) 14 (1,3)
I (1,1) 8 (2,2) 15 (8,1)
2 (2,1) 9 (6,1) 16 (5,2)
3 (3,1) 10 (3,2) 17 (2,3)
4 (0,2) II (0,3) 18 (9,1)
5 (4,1) 12 (7,1) 19 (6,2)
6 (1,2) 13 (4,2) 20 (3,3)

matrix S(i) Vi = 1, ... , l . The arrayA stores the intermediate
connection polynomialT (x) .
The discrepancy calculation in Line 3 and the update rule
of the connection polynomialT(x) (Line 21) are suited for
Problem 2.
In the presentationof Algorithm 2 and the following example
we assumed thatwt (e) = T errors occurred.In general the
rank of the matrix SIRS should becalculatedfirst and then
the stop-condition(Line 1) has to be adjusted.

E. Example
We consider anRS(31 ,4, 28) code over GF(31). From the

parameteranalysis we obtain a list sizel = 3 and an increased
decoding radiusT = 18. The information polynomialf( x) =
�L �7�'�:�~ l x i is encoded according to Equation (1) and an error
of weight 18 is added. We obtain the following values:

c (4,9 ,14,11 ,17,20, 29,12,20,26,1 , 24,27,10,26 ,0 ,
11,26, 23,25,1,20,10,7,15,11, 6,10, 28, 21,1)

e (1,2,3,4 , 5,6,7,8,9 ,10,11,1 2,13,
14,15,16,17,18,0,0,0,0,0,0,0 ,0,0,0,0,0,0)

r (5,11,17,15,22, 26, 5,20, 29, 5,1 2, 5,9,24 ,10,16, 28,
13,23, 25,1 ,20,10,7,15,11,6,10,28,21,1). (20)

The correspondingl = 3 syndromes for both schemes (in
vector notation) are:

S (l ) (15,19,18,6,8,3,1 ,11 ,17,4 ,7 ,5 ,18,5 ,
17,9,24,15, 26, 9,11,8, 6,24,18,15, 5)

S (2) (22,0 ,30,8,16,26,15,22,21 ,28,12,27,15,
29,5,9,13,0, 2,20, 27,14,1,2)

S (3) (27,25,7 ,12,4 ,2,7, 5,3 ,0 ,24 ,26, 21,23,4 , 24,
1,16,15, 29,14) . (21)

The ordering according to-< as defined in (16) for the
RS(31,4, 28) code and our decoding schemes is listed in Ta­
ble I. The Sudan syndrome matrixS S udanfor the considered
RS-code has 18 rows and 21 columns. For the IRS-scheme
the corresponding syndrome matrixSIRS is a 18 x 19 matrix.
In Figure 3 the column pointer(/1,v) for the syndrome matrix
S S udanfor the syndromes (21) is illustrated. The dots indicate
the positions where in Algorithm 1 a non-zero discrepancy was
calculated and no intermediatepolynomialwas stored before
and so we can enter next column. Let us consider the point
(2, 2) : Algorithm 1 examines column 3of the first matrixS (1)

(column pointer is(v = 1,/1 = 2)) in the 3rd row. Then it
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VI. PERFORMANCEANALYSIS

A. Sudan-List-IDecoder

In [12, Appendix D] several bounds for a Guruswami­
Sudan list-decoder were derived. As the Sudan decoding
procedure can be seen as a special case of GS, we can
use them here, too. The considered bound is denoted by
£1(wt(e),7), where wt(e) is the number of erros occured
and 7 is the maximum decoding radius.£1(wt(e) ,7) gives
us the probability for more than one codeword on the list and
therefore is the probability that our modified list-decoder fails

- 1 ",rPSudan(wt(e)),:S L 1(wt(e ),7) = (q-W LJs=d-wt(e)(q -
l)S ("'s (n-wt(e»)(wt(e»)) (where r = n - k andLJw=d-wt(e) w s- w
d = n - k + 1).
Note that for a list-decoder the list can contain more than
one codeword even if the number of errors is smaller
than l n"2k J.For both schemes the failure probability for a
RS(255, 63,193) code is plotted in Figure 5. Forl = 2

Sud an--

1e-20 In S ----------

�~ 1e-40�~

�~ 1e-GO

j 1e-80
""'0

�~
1e-100

�~ 1e-120�~

d:
1e-140

1e-HiO :--------
no 95 100 105

Number of erro rswt(e)

Fig. 5. Probability of decoding failureof both considered schemes for a
RS(255, 63 , 193) code.

we get from (11) for both schemes7 = l107.33J = 107
(where 70 = 96). The decoding failure probability for the
IRS-scheme is zero, if the number of errorswt(e ) ::; 70 .

Contrary a list-decoder can output several codewords even if
wt(e) ::; 70. With our assumption the decoder fails in this case.
Nevertheless even with this oversimplification the performance
of the list-decoder is better (the complexity is similar), because
the decoding failure probability is very low over the whole
range of correctable error-weights.

B. Failure probabilityfor IRSScheme

An upper bound for the failure probability of an IRS
decoder were derived in [7]. For virtual extension, this bound
does not necessarily hold any more as the errors are no
longer independent. However, simulations have shown a good
coincidenceof the actual failure probability to the upper
bound derived. This probability of the IRS scheme given
a certain number of errorswt(e) can be approximated by
PIRs(wt(e)),:S �q�~�1 q-(l+l)(r-wt(e».

Paper 4

VII. CONCLUSION

We compared two decoding schemes that allow to decode
beyond half the minimum distance. Both approaches are
extensions of the classical Berlekamp-Massey approach. The
increased decoding radius7 and thel syndromes are the same.
Both schemes are comparable, but solve different problems:
While the reformulated Sudan interpolation conditions lead to
a Multi-Level Shift Register, the IRS-based scheme is a Multi­
Sequence Shift Register problem.
Based on the Fundamental Iterative Algorithm an efficient
implementation was presented and the complexity is similar.
The case where the listof the Sudan-decoder contains more
than one possible codeword on the list and the case when the
IRS-based scheme fail do not coincide.
Note that our modified list-decoder fails when more than one
codeword is on the list, but still outperforms the IRS-based
scheme. It is more practical to choose the codeword on the
list with the smallest hamming distance to the received word.
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