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Abstract Gaussian mixture models (GMM), trained using the generative cri-
terion of maximum likelihood estimation, have been the most popular ap-
proach in speaker recognition during the last decades. This approach is also
widely used in many other classification tasks and applications. Generative
learning in not however the optimal way to address classification problems.
In this paper we first present a new algorithm for discriminative learning of
diagonal GMM under a large margin criterion. This algorithm has the ma-
jor advantage of being highly efficient, which allow fast discriminative GMM
training using large scale databases. We then evaluate its performances on a
full NIST speaker verification task using NIST-SRE’2006 data. In particular,
we use the popular Symmetrical Factor Analysis (SFA) for session variability
compensation. The results show that our system outperforms the state-of-the-
art approaches of GMM-SFA and the SVM-based one, GSL-NAP. Relative
reductions of the Equal Error Rate of about 9.33% and 14.88% are respec-
tively achieved over these systems.
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SAMoVA Group, IRIT - UMR 5505 du CNRS
University Paul Sabatier, 118 Route de Narbonne, Toulouse, France
E-mail: {jourani, obrecht}@irit.fr

K. Daoudi
GeoStat Group, INRIA Bordeaux-Sud Ouest
351, cours de la libération, Talence. France
E-mail: khalid.daoudi@inria.fr

R. Jourani · D. Aboutajdine
Laboratoire LRIT. Faculty of Sciences, Mohammed 5 Agdal University
4 Av. Ibn Battouta B.P. 1014 RP, Rabat, Morocco
E-mail: aboutaj@fsr.ac.ma



2 R. Jourani et al.

1 Introduction

Most of state-of-the-art speaker recognition systems rely on the generative
training of Gaussian Mixture Models (GMM) using maximum likelihood esti-
mation and maximum a posteriori estimation (MAP) [1]. A speaker indepen-
dent world model (UBM) is first trained with the Expectation-Maximization
algorithm from hundreds of hours of speech data. The parameters of that
model are then MAP adapted to the feature distribution of a target speaker.
In speaker recognition applications, mismatch between the training and testing
conditions can decrease considerably the performances. The session variability
remains the most challenging problem to solve. The Factor Analysis tech-
niques [2,3], e.g., Symmetrical Factor Analysis (SFA) [4,5], were proposed to
address that problem in GMM based systems, by compensating for speaker
and channel variability in the GMM supervector space.

The generative training of the GMM does not however directly optimize
the classification performance. It was therefore of interest to develop alterna-
tive discriminative approaches that address directly the classification problem
[6,7], as they should lead to better performances than generative methods. For
instance, Support Vector Machines (SVM) combined with GMM supervectors
are among state-of-the-art approaches in speaker verification [8,9]. The Nui-
sance Attribute Projection (NAP) [10] compensation technique is designed for
the SVM based systems. NAP is a pre-processing method that aims to remove
the directions of undesired sessions variability, before the SVM training.

Recently a new discriminative approach for multiway classification has been
proposed, the Large Margin Gaussian mixture models (LM-GMM) [11]. As in
SVM, the parameters of LM-GMM are trained by solving a convex optimiza-
tion problem. However they differ from SVM by using ellipsoids to model the
classes directly in the input space, instead of half-spaces in an extended high-
dimensional space (no kernel trick/matrix is required). While LM-GMM have
been used in speech recognition, they have not been used in speaker recog-
nition (to the best of our knowledge). In an earlier work [12], we proposed a
simplified version of LM-GMM which exploit the fact that traditional GMM
systems use diagonal covariances and only the mean vectors are MAP adapted.
We then applied this simplified version to a ”small” speaker identification task.
While the resulting training algorithm is more efficient than the original one,
we found however that it is still not efficient enough to process large databases
such as in NIST Speaker Recognition Evaluation (NIST-SRE) campaigns [13].

In order to address this problem, we propose in this paper a new approach
for fast training of Large-Margin GMM which allows efficient processing in
large scale applications. To do so, we exploit the fact that in general not all
the components of the GMM are involved in the decision process, but only the
k-best scoring components. We also exploit the property of correspondence
between the MAP adapted GMM mixtures and the UBM mixtures. In order
to show the effectiveness of the new algorithm, we carry out a full NIST speaker
verification task using NIST-SRE’2006 (core condition) data. We evaluate our
fast algorithm in a Symmetrical Factor Analysis compensation scheme, and
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we compare it with the NAP compensated GMM supervector Linear Kernel
(GSL-NAP) [9] and GMM-SFA [4] systems. The results show that our Large
Margin compensated GMM outperform the state-of-the-art approaches GMM-
SFA and GSL-NAP.

The paper is organized as follows. After an overview on Large-Margin
GMM training with diagonal covariances in section 2, we describe our new
fast training algorithm in section 3. The compensation technique SFA and
the GSL-NAP system are then described in sections 4 and 5, respectively.
Experimental results are reported in section 6.

2 Overview on Large Margin GMM with diagonal covariances
(LM-dGMM)

In this section we start by recalling the original Large Margin GMM training
algorithm developed in [11,14]. We then recall the simplified version of this
algorithm that we introduced in [12].

In Large Margin GMM [11,14], each class c is modeled by a mixture of
ellipsoids in the D- dimensional input space. The mth ellipsoid of the class c
is parametrized by a centroid vector µcm (mean vector), a positive semidefi-
nite (orientation) matrix Ψcm and a nonnegative scalar offset θcm ≥ 0. These
parameters are then collected into a single enlarged matrix Φcm:

Φcm =

(
Ψcm −Ψcmµcm

−µT
cmΨcm µT

cmΨcmµcm + θcm

)
. (1)

A GMM is first fit to each class using maximum likelihood estimation. Let
{ont}Tn

t=1 (ont ∈ RD) be the Tn feature vectors of the nth segment (i.e. nth

speaker training data). Then, for each ont belonging to the class yn, yn ∈
{1, 2, ..., C} where C is the total number of classes, we determine the index
mnt of the Gaussian component of the GMM modeling the class yn which has
the highest posterior probability. This index is called proxy label.

The training algorithm aims to find matrices Φcm such that ”all” examples
are correctly classified by at least one margin unit, leading to the LM-GMM
criterion:

∀c 6= yn, ∀m, zTntΦcmznt ≥ 1 + zTntΦynmnt
znt, (2)

where znt =

[
ont
1

]
. Eq. (2) states that for each competing class c 6= yn the

match (in term of Mahalanobis distance) of any centroid in class c is worse
than the target centroid by a margin of at least one unit.

In speaker recognition, most of state-of-the art systems use diagonal co-
variances GMM. In these GMM based speaker recognition systems, a speaker-
independent world model or Universal Background Model (UBM) is first trained
with the EM algorithm [15] from tens or hundreds of hours of speech data
gathered from a large number of speakers. The background model represents
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speaker-independent distribution of the feature vectors. When enrolling a new
speaker to the system, the parameters of the UBM are adapted to the feature
distribution of the new speaker. It is possible to adapt all the parameters, or
only some of them from the background model. Traditionally, in the GMM-
UBM approach, the target speaker GMM is derived from the UBM model by
updating only the mean parameters using a maximum a posteriori (MAP)
algorithm [1], while the (diagonal) covariances and the weights remain un-
changed.

Following the same philosophy of traditional GMM, we proposed in [12] to
neglect the orientation of the covariance matrices in training. We showed in
[12] that the resulting simplified algorithm has the advantage of being more
efficient than the original one while it still yielded similar or better perfor-
mances on a speaker identification task. In our Large Margin diagonal GMM
(LM-dGMM), each class (speaker) c is initially modeled by a GMM with M
diagonal mixtures trained by MAP adaptation of a world model. For each
class c, the mth Gaussian is parametrized by a mean vector µcm, a diagonal
covariance matrix Σm = diag(σ2

m1, ..., σ
2
mD), and the scalar factor θm which

corresponds to the weight of the Gaussian.

With this relaxation on the covariance matrices, for each example ont, the
goal of the training algorithm is now to force the log-likelihood of its proxy
label Gaussian mnt to be at least one unit greater than the log-likelihood of
each Gaussian component of all competing classes. That is, given the training
examples {(ont, yn,mnt)}Nn=1, we seek mean vectors µcm which satisfy the LM-
dGMM criterion:

∀c 6= yn, ∀m, d(ont, µcm) + θm ≥ 1 + d(ont, µynmnt
) + θmnt

, (3)

where d(ont, µcm) =

D∑
i=1

(onti − µcmi)
2

2σ2
mi

.

Afterward, these M constraints are fold into a single one using the soft-

max inequality minm am ≥ −log
∑
m

e−am . The segment-based LM-dGMM

criterion becomes thus:

∀c 6= yn,

1
Tn

Tn∑
t=1

(
− log

M∑
m=1

exp(−d(ont, µcm)− θm)

)

≥ 1 + 1
Tn

Tn∑
t=1

d(ont, µynmnt) + θmnt .

(4)
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The loss function to minimize for LM-dGMM is then given by:

 L =

N∑
n=1

∑
c6=yn

max

(
0 , 1 +

1

Tn

Tn∑
t=1

(
d(ont, µynmnt

)

+ θmnt
+ log

M∑
m=1

exp(−d(ont, µcm)− θm)

))
.

(5)

3 LM-dGMM training with k-best Gaussians

3.1 Description of the new LM-dGMM training algorithm

Despite the fact that our LM-dGMM is computationally much faster than the
original LM-GMM of [11,14], we still encountered efficiency problems when
dealing with high number of Gaussian mixtures. Indeed, even for an easy 50
speakers identification task as the one presented in [12], we could not run
the training in a relatively short time with our current implementation. This
would imply that large scale applications such as NIST-SRE, where hundreds
or thousands of target speakers are available, would be infeasible in reasonable
time.

In order to develop a fast training algorithm which could be used in large
scale applications, we propose to drastically reduce the number of constraints
to satisfy in Eq. (4). By doing so, we would drastically reduce the computa-
tional complexity of the loss function and its gradient, which are the quantities
responsible for most of the computational time. To achieve this goal we pro-
pose to use another property of state-of-the-art GMM systems, that is, decision
is not made upon all mixture components but only using the k-best scoring
Gaussians.

In other words, for each on and each class c, instead of summing over the
M mixtures in the left side of equation Eq. (4), we would sum only over the k
Gaussians with the highest posterior probabilities selected using the GMM of
class c. In order to further improve efficiency and reduce memory requirement,
we exploit the property reported in [1] about correspondence between MAP
adapted GMM mixtures and UBM mixtures. We use the UBM to select one
unique set Snt of k-best Gaussian components per frame ont, instead of (C−1)
sets. This leads to a (C−1) times faster and less memory consuming selection.
Thus, the higher the number of target speakers is, the greater computation
and memory saving is. More precisely, we now seek mean vectors µcm that
satisfy the large margin constraints in Eq. (6):

∀c 6= yn,

1
Tn

Tn∑
t=1

(
− log

∑
m∈Snt

exp(−d(ont, µcm)− θm)

)

≥ 1 + 1
Tn

Tn∑
t=1

d(ont, µynmnt) + θmnt .

(6)
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The loss function becomes:

 L =

N∑
n=1

∑
c 6=yn

max

(
0 , 1 +

1

Tn

Tn∑
t=1

(
d(ont, µynmnt)

+ θmnt + log
∑

m∈Snt

exp(−d(ont, µcm)− θm)

))
.

(7)

This loss function remains convex and can still be solved using dynamic pro-
gramming.

During test, we compute a match score depending on both the target model
{µcm, Σm, θm} and the UBM {µUm, Σm, θm} for each test hypothesis. We use
again the same principle to achieve fast scoring. Given a test segment of T
frames, for each test frame ot we use the UBM to select the set Et of k-best
scoring proxy labels and compute the average log likelihood ratio using only
these k labels:

LLRavg = 1
T

T∑
t=1

(
log

∑
m∈Et

exp(−d(ot, µcm)− θm)

− log
∑

m∈Et

exp(−d(ot, µUm)− θm)

)
.

(8)

This quantity provides a score for the test segment to be uttered by the target
model/speaker c. The higher the score is, the greater the probability that the
test segment was uttered by the target speaker is.

3.2 Handling of outliers

We adopt the strategy of [11] to detect outliers and reduce their negative
effect on learning. Outliers are detected using the initial GMM models. We
compute the accumulated hinge loss incurred by violations of the large margin
constraints in Eq. (6):

hn =
∑
c 6=yn

max

(
0 , 1 +

1

Tn

Tn∑
t=1

(
d(ont, µynmnt)

+ θmnt + log
∑

m∈Snt

exp(−d(ont, µcm)− θm)

))
.

(9)

hn measures the decrease in the loss function when an initially misclassified
segment is corrected during the course of learning. We associate outliers with
large values of hn. We then re-weight the hinge loss terms in Eq. (7) by using
segment weights sn = min(1, 1

hn
):

 L =

N∑
n=1

snhn. (10)
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We solve this unconstrained non-linear optimization problem using the second
order optimizer LBFGS [16].

In summary, our new and fast training algorithm of LM-dGMM is the fol-
lowing:

- For each class (speaker), initialize with the GMM trained

by MAP adaptation of the UBM,

- select Proxy labels using these GMM,

- select the set of k-best UBM Gaussian components for each

training frame,

- compute the segment weights sn,
- using the LBFGS algorithm, solve the unconstrained

non-linear minimization problem:

min  L. (11)

4 Symmetrical Factor Analysis (SFA)

In this section we describe the symmetrical variant of the Factor Analysis
model (SFA) [4,5] (Factor Analysis was originally proposed in [2,3]).

Given an M -components GMM adapted by MAP from the UBM, one forms
a GMM supervector by stacking theD-dimensional mean vectors, leading to an
MD supervector. This GMM supervector can be seen as a mapping of variable-
length utterances into a fixed-length high-dimensional vector, through GMM
modeling:

φ(x) =

 µx1

...
µxM

 , (12)

where the GMM {µxm, Σm, wm} is trained on the utterance x.
In the mean supervector space, a speaker model can be decomposed into

three different components:

– a session-speaker independent component (the UBM model),
– a speaker dependent component,
– a session dependent component.

In the following, (h, s) will indicate the session h of the speaker s. The
session-speaker model, can be written as [4]:

M(h,s) = M + Dys + Ux(h,s), (13)

where

– M(h,s) is the session-speaker dependent supervector mean (an MD vector),
– M is the UBM supervector mean (an MD vector),
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– D is a MD × MD diagonal matrix, where DDT represents the a priori
covariance matrix of ys,

– ys is the speaker vector (speaker offset), an MD vector assumed to follow
a standard normal distribution N (0, I),

– U is the session variability matrix of low rank R (an MD × R matrix),
– x(h,s) are the channel factors (session offset), an R vector (theoretically, not

dependent on s) assumed to follow a standard normal distribution N (0, I).

Dys and Ux(h,s) represent respectively the speaker dependent component
and the session dependent component [5].

The factor analysis modeling starts by estimating the U matrix, using
several recordings (sessions) of various speakers. Given the fixed parameters
(M,D,U), the target models are then compensated by eliminating the session
mismatch directly in the model domain. Whereas, the compensation in the test
is performed at the frame level (feature domain).

5 The GSL-NAP system

In this section we briefly describe the GMM supervector linear kernel SVM
system (GSL)[8] and its associated channel compensation technique, the Nui-
sance attribute projection (NAP) [10].

5.1 SVM-GMM supervector

The GMM supervector concept (a mapping from the feature space to a high-
dimensional space) fits well with the idea of an SVM sequence kernel. The
development of distance metrics in the GMM space led to the use of the
Kullback-Leibler divergence to propose a linear kernel in the GMM supervector
space. For two utterances x and y, the Kullback-Leibler divergence kernel is
defined as:

K(x, y) =

M∑
m=1

(√
wmΣ

−(1/2)
m µxm

)T(√
wmΣ

−(1/2)
m µym

)
. (14)

The UBM weight and variance parameters are used to normalize the Gaussian
means before feeding them into a linear kernel SVM training. This system is
referred to as GSL in the rest of the paper.

5.2 Nuisance attribute projection (NAP)

NAP is a pre-processing method that aims to compensate the supervectors
by removing the directions of undesired sessions variability, before the SVM
training [10]. NAP transforms a supervector φ to a compensated supervector

φ̂:
φ̂ = φ − S(STφ), (15)
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using the eigenchannel matrix S, which is trained using different recordings
per speakers.

Given a set of expanded recordings:

{φ(1, s1) · · ·φ(h1, s1) · · ·φ(1, sN ) · · ·φ(hN , sN )}, (16)

of N different speakers, with hi different sessions for each speaker si, one first
removes the speakers variability by subtracting the mean of the supervectors
within each speaker {φ(si)}:

∀si,∀h, φ(h, si) = φ(h, si) − φ(si). (17)

The resulting supervectors are then pooled into a single matrix:

C =
[
φ(1, s1) · · ·φ(h1, s1) · · ·φ(1, sN ) · · ·φ(hN , sN )

]
, (18)

representing the intersession variations. One identifies finally the subspace of
dimension R where the variations are the largest by solving the eigenvalue
problem on the covariance matrix CCT , getting thus the projection matrix S
of a size MD × R. Theoretically, the matrix S is similar to the channel matrix
U of SFA. This system is referred to as GSL-NAP in the rest of the paper.

6 Experimental results

We perform experiments on the NIST-SRE’2006 [17] speaker verification task
and compare the performances of the baseline GMM, the LM-dGMM and the
SVM systems, with and without using channel compensation techniques. The
comparisons are made on the male part of the NIST-SRE’2006 core condition
(1conv4w-1conv4w). Performances are assessed using Detection Error Tradeoff
(DET) plots and measured in terms of equal error rate (EER) and minimum
of detection cost function (minDCF). The latter is calculated following NIST
criteria [18].

The feature extraction is carried out by the filter-bank based cepstral anal-
ysis tool Spro [19]. Bandwidth is limited to the 300-3400Hz range. 24 filter
bank coefficients are first computed over 20ms Hamming windowed frames at
a 10ms frame rate and transformed into Linear Frequency Cepstral Coefficients
(LFCC) [20]. Consequently, the feature vector is composed of 50 coefficients
including 19 LFCC, their first derivatives, their 11 first second derivatives and
the delta-energy. The LFCCs are preprocessed by Cepstral Mean Subtraction
and variance normalization [21]. We applied an energy-based voice activity
detection to remove silence frames, hence keeping only the most informative
frames. Finally, the remaining parameter vectors are normalized to fit a zero
mean and unit variance distribution.

We use the state-of-the-art open source software ALIZE/Spkdet [5,22] for
GMM, SFA, GSL and GSL-NAP modeling. A male-dependent UBM is trained
using all the telephone data from the NIST-SRE’2004. Then we train a MAP
adapted GMM for the 349 target speakers belonging to the primary task. The
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Fig. 1 EER and minDCF performances for GMM, Large Margin diagonal GMM and GSL
systems with and without channel compensation.

Table 1 EERs(%) and minDCFs(x100) of GMM, Large Margin diagonal GMM and GSL
systems with and without channel compensation.

System EER minDCF

GMM 9.79 4.19
LM-dGMM 9.66 4.12
GSL 7.23 3.44
GSL-NAP 5.90 2.73
GMM-SFA 5.53 2.18
LM-dGMM-SFA 5.02 2.18

corresponding list of 22123 trials (involving 1601 test segments) are used for
test. Score normalization techniques are not used in our experiments. The so
MAP adapted GMM define the baseline GMM system, and are used as initial-
ization for the LM-dGMM one. The GSL system uses a list of 200 impostor
speakers from the NIST-SRE’2004, on the SVM training. The LM-dGMM-
SFA system is initialized by model domain compensated GMM, which are
then discriminated using feature domain compensated data. The session vari-
ability matrix U of SFA and the channel matrix S of NAP, both of rank
R = 40, are estimated on NIST-SRE’2004 data using 2934 utterances of 124
different male speakers.

Figure 1 and table 1 provide the EER and minDCF performances of all
systems, with and without channel compensation, for models with 512 Gaus-
sian components (M = 512). All the LM-dGMM systems scores are obtained
with the 10 best Gaussian components selected using the UBM, k = 10.

The results show that, without SFA channel compensation, the LM-dGMM
system outperforms the classical generative GMM one, however it does yield
worse performances than the discriminative approach GSL. Nonetheless, when
applying channel compensation techniques, compensated models outperform
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Fig. 2 DET plots for Large Margin diagonal GMM and GSL systems with and without
channel compensation.

Table 2 EER(%) performances for LM-dGMM systems with different margins.

Margin 1 1.125 1.5 2 3 5 9
EER 5.02 4.85 5.53 5.53 5.52 5.53 5.53

the non-compensated ones as expected, but the LM-dGMM-SFA system signif-
icantly outperforms the GSL-NAP and GMM-SFA ones. Our (compensated)
system achieves 5.02% equal error rate, while the GSL-NAP and GMM-SFA
achieve respectively 5.90% and 5.53%. This leads to relative reductions of EER
of about 14.88% and 9.33% over these systems. Figure 2 shows DET plots for
LM-dGMM and GSL systems with and without channel compensation.

Table 2 shows the EER scores of LM-dGMM-SFA models with different
minimal margin values to satisfy. Like in SVM, one can see that an improved
margin selection can improve the LM-dGMM (+SFA) performance (an ERR
of 4.82 here instead of 5.02 with a unit margin). All these results show that
our fast Large Margin GMM discriminative learning algorithm not only allows
efficient training but also achieves better performances than the state-of-the-
art techniques GSL-NAP and GMM-SFA.

7 Conclusion

We presented a new fast algorithm for discriminative training of Large-Margin
diagonal GMM by using the k-best scoring Gaussians selected form the UBM.
This algorithm is highly efficient which makes it well suited to process large
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scale databases such as in NIST-SRE. We carried out experiments on a full
speaker verification task under the NIST-SRE’2006 core condition. Combined
with the SFA channel compensation technique, the resulting algorithm signif-
icantly outperforms the state-of-the-art speaker recognition approaches GSL-
NAP and GMM-SFA. Our future work will consist in improving margin se-
lection and outliers handling. This should indeed significantly improve the
performances.
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