Speaker Identication Using Discriminative Learning of Large Margin GMM

Abstract : Gaussian mixture models (GMM) have been widely and suc- cessfully used in speaker recognition during the last decades. They are generally trained using the generative criterion of maximum likelihood estimation. In an earlier work, we proposed an algorithm for discrimi- native training of GMM with diagonal covariances under a large margin criterion. In this paper, we present a new version of this algorithm which has the major advantage of being computationally highly e cient, thus well suited to handle large scale databases. We evaluate our fast algo- rithm in a Symmetrical Factor Analysis compensation scheme. We carry out a full NIST speaker identi cation task using NIST-SRE'2006 data. The results show that our system outperforms the traditional discrimina- tive approach of SVM-GMM supervectors. A 3.5% speaker identi cation rate improvement is achieved.
Type de document :
Communication dans un congrès
International Conference on Neural Information Processing (ICONIP), Nov 2011, Shanghai, China. 2011
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00647990
Contributeur : Khalid Daoudi <>
Soumis le : dimanche 4 décembre 2011 - 16:32:17
Dernière modification le : mercredi 23 mai 2018 - 17:58:06
Document(s) archivé(s) le : lundi 5 décembre 2016 - 06:54:16

Fichier

ICONIP-2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00647990, version 1

Collections

Citation

Khalid Daoudi, Reda Jourani, Régine André-Obrecht, Driss Aboutajdine. Speaker Identication Using Discriminative Learning of Large Margin GMM. International Conference on Neural Information Processing (ICONIP), Nov 2011, Shanghai, China. 2011. 〈hal-00647990〉

Partager

Métriques

Consultations de la notice

307

Téléchargements de fichiers

188