I. Araya, G. Trombettoni, and B. Neveu, Exploiting Monotonicity in Interval Constraint Propagation, Proc. AAAI, pp.9-14, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00654400

F. Benhamou and F. Goualard, Universally Quantified Interval Constraints, Proc. CP, pp.67-82, 2000.
DOI : 10.1007/3-540-45349-0_7

URL : http://arxiv.org/pdf/cs/0007002v1.pdf

F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, Revising Hull and Box Consistency, Proc. ICLP, pp.230-244, 1999.

G. Chabert and N. Beldiceanu, Sweeping with Continuous Domains, Proc. CP, pp.137-151, 2010.
DOI : 10.1007/978-3-642-15396-9_14

URL : https://hal.archives-ouvertes.fr/hal-00915701

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

H. Collavizza, F. Delobel, and M. Rueher, Extending Consistent Domains of NCSP, IJCAI, pp.406-413, 1999.

DOI : 10.1016/B978-0-12-505630-4.50021-3

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, 1966.

R. Kearfott, I. Novoa, and M. , Algorithm 681: INTBIS, a portable interval Newton/bisection package, ACM Transactions on Mathematical Software, vol.16, issue.2, pp.152-157, 1990.
DOI : 10.1145/78928.78931

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. B. Kearfott, Rigourous Global Search: Continuous Problems, 1996.
DOI : 10.1007/978-1-4757-2495-0

Y. Lebbah, C. Michel, and M. Rueher, An efficient and safe framework for solving optimization problems, Journal of Computational and Applied Mathematics, vol.199, issue.2, pp.372-377, 2007.
DOI : 10.1016/j.cam.2005.08.037

URL : https://hal.archives-ouvertes.fr/hal-00510304

Y. Lin and M. Stadtherr, LP Strategy for the Interval-Newton Method in Deterministic Global Optimization, Industrial & Engineering Chemistry Research, vol.43, issue.14, pp.3741-3749, 2004.
DOI : 10.1021/ie034073d

R. E. Moore and O. Shcherbina, Interval Analysis Safe Bounds in Linear and Mixed-Integer Programming, Mathematical Programming, vol.99, pp.283-296, 1966.

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

J. Ninin, F. Messine, P. Hansen, and F. Benhamou, A Reliable Affine Relaxation Method for Global Optimization Mathematical Programming, accepted for publication A Branch and Bound Algorithm for Numerical Max-CSP, Normand, J.-M Constraints, vol.15, issue.2, pp.213-237, 2010.

H. Sherali, A. , and W. , Reformulation- Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, 1999.
DOI : 10.1007/978-1-4757-4388-3

URL : http://dx.doi.org/10.1016/s0898-1221(99)91233-6

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Mathematical Programming, vol.14, issue.2, pp.225-249, 2005.
DOI : 10.1007/s10107-005-0581-8

G. Trombettoni, C. , and G. , Constructive Interval Disjunction, Proc. CP, pp.635-650, 2007.
DOI : 10.1007/978-3-540-74970-7_45

URL : https://hal.archives-ouvertes.fr/hal-00936654

P. Van-hentenryck, L. Michel, and Y. Deville, Numerica : A Modeling Lang. for Global Optim, 1997.