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Abstract

Memory latency is one of the main reasons for performance degradation of current computers. This problem
is exacerbated by the fact that the relative memory latency increases by about 50% per year. On the other hand,
there is a lack of tools to help programmers to improve their applications from a memory perspective. This paper
presents the MHAOTEU toolset, a set of tools that are build to help the programmers to tune their applications
for a better use of the memory hierarchy.
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1 Introduction

Memory performance is becoming an important bottleneck in current microprocessors. Significant research effort has
been devoted to propose novel techniques to improve its performance. Some of these techniques require only hardware
support while others require some support of the programmer/compiler. Examples of the latter are prefetching,
blocking, copying, etc.

This type of optimizations require some knowledge of the behaviour of the program and the architecture. In
addition a programmer does not know what performance improvement he/she might expect from optimizing a code.
The situacion gets worse due to the lack of tools that allow the programmer to use existing memory optimizations.

The MHAOTEU Project (Memory Hierachy Analysis and Optimization Tools for the End-User) aims at developing
a set of tools that will help program developers to tune their applications for a better use of the memory hierarchy. The
purpose of this project is to build a set of analysis tools and a set of optimization tools which address the above issues
and are practical enough to be exploited in an industrial environment. The focus of the tools are Fortran numerical
applications for single processor platforms.

Different analysis techniques have been developed. These techniques provide different ways of analyzing memory
hierarchy behaviour. They range from very accurate but slow analysis to extremely fast but not so accurate analysis.
To give support to the analysis tools we have also developed a set of instrumentation tools. The toolset also implements
many code transformations and optimizations. These transformations are performed automatically under the control
of the user.
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The rest of the paper is organized as follows. The next section presents our approach to integrate the different
components in a single tool. The following sections introduce the different components that compose the tool. Section
3 presents the instrumentation modules. Section 4 overviews the different analysis approaches. The transformation
module is presented in Section 5 and a software prefetching module is described in Section 6. Finally, Section 7 shows
the main conclusions of our work.

2 Software architecture

The Mhaoteu tool began as a diverse set of components on many platforms and required a coordinated drive towards
integration. The objective was to allow the tools to interoperate on the users problem.

The original intention was to produce a single all-encompassing tool based on C++ and motif graphics. That
was completely unrealistic for tools of such diverse origin and a research budget. Instead we decided to use modern
principles of client server engineering. The tools would be grouped on servers, wrapped with a standard interface
and communicate across a local network. The command and graphic interfaces would be written in Java for speed of
implementation and provide HTML graphics via HTTP to a potentially remote browser as the user interface. Now we
were looking at a system of components that could be on one machine or spread around a network. The user could
be local or remote.

Related components were grouped in ”servers”. These were responsible for implementing a standard command
language, communicating via TCP /IP sockets across the network and operating their components.

Central to the overall design is the database in which are stored the potentially large performance statistics. The
data in the database is extracted or filtered by a JDBC SQL query and displayed in HTML.

A Java program known as Coordinator drove the tools and the database as well as projecting a graphical user
interface in the form of a Java applet to a users browser. Coordinator, database, tools and user interface were all
separable across a network. The only compromise made was to assume for the moment that bulk data exchanges
between the tools would take place via a shared filestore system.

A significant part of the integrative task was to define and enforce common definitions for data interchange between
the tools, whether via shared filestore or database tables.

The Coordinator presents a Command window to the user. Tools are selected and instructed through command
dialogs and the program is presented in a tree like form to aid navigation. There is a project system to manage the
versions of source files as they are experimentally transformed into a more highly optimised state. The source of
the program is presented in HTML through a browser window with links to related performance information. The
intention is to focus the user on the task and as far as possible disguise the diverse origins and nature of the tool
components.

3 Instrumentation component

The purpose of the Instrumentation component is to extract run-time information from the applications to optimize.
This information can be used either by the user in order to study the behaviour of an application, or by other tool
components in order to improve their accuracy or to obtain traces of the execution.

This component has as input the application source code to study, and as output the source code instrumented
with calls to particular subroutines that collect the run-time information. The instrumented code has to be linked
with a MHAOTEU library that contains the subroutines and, executed to obtain the desired information.

Under the MHAOTEU toolset we have developed three different types of instrumentation. They use the ICTINEO
experimental compiler [1].

High Level Instrumentation is the tool used by the Dynamic Analysis and the GRW [3]. It instruments the source
code in order to obtain memory traces of the execution and information about the non-scalar memory references. For
instance, for each memory instruction one may obtain the base address and the offset.

Profiler is the instrumentation used by the SPLAT tool [6] in order to improve the accuracy of the static memory
analysis. This component instruments the source code in order to obtain the number of iterations per loop, and the
number of executions per memory instruction.
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Figure 1: Profiler Figure 2: Debugger

Loop Timing is the instrumentation tool to obtain the execution time spent by the application in each loop. This
information is not required by other components but, is very useful for the end user in order to focus the optimizations
in the relevant parts of the application.

4 Analysis tools

4.1 Memory System Profiling

The purpose of this component is to provide a memory-wise program execution profile. The tool is focused on collecting
cache performance information. This memory system profiler provides hit/miss ratio and associated stall cycles for
several components of the memory system: all cache levels and TLB for a given memory system architecture. This tool
can be connected to Ictineo (in the MHAOTEU platform) which provides source-code traces or an object-code tracer
from the public domain like ATOM for Alpha processors. These profiling facilities are used to evaluate the nature
of misses: spatial, temporal, capacity, conflict, compulsory...to help finding the nature of performance degradations,
etc. (see Figure 1 for an example showing the statistics displayed). Unlike current analysis tools, the scope of profiling
is not only the whole code but also procedure or loop nest constructs since optimizations are usually performed at
that level.

4.2 Memory Performance Debugging

While profiling can be used to summarize the behavior of different code constructs (routines, loop nests, statements,
references. . .) and locate memory bottlenecks, it provides little assistance to explain the occurrence of these bottlenecks
and thus to find solutions. This problem can be compared to program optimization: profiling is used to find time-
consuming code sections, but if the cause of performance degradations does not clearly appear in the source code,
debugging must then be used to execute the program step and by step and to understand the workings of the bottleneck.
The cache performance debugger serves the same purpose for memory performance evaluation. It is a graphical tool
based on Java that shows, reference by reference, the inner workings of a cache for small code sections, as well as
numerous statistics to guide the analysis (see Figure 2 for a view of the tool). This component can then be used to
understand the workings of memory bottlenecks.

4.3 SPLAT

The SPLAT tool consists of a static locality analysis enhanced with very simple profiling data, which results in a
negligible slowdown. This feature allows the tool to be used for highly time-consuming applications and to include it
as a step in a typical iterative analysis-optimization process.

The static information is aimed at computing the different types of misses that will happen during the execution.
Compulsory misses require to compute the intrinsic reuse of data. Capacity misses require in addition to compute
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the volume of data referenced by each loop iteration. Finally, conflict misses are identified by computing interferences
among data references.

The profiling consists of just the number of executions of each basic block, which is a facility provided by many
current compilers. From this information, the number of executions of each memory instruction and the average
number of iterations of each loop can be derived. This profiling information is highly valuable in order to improve the
accuracy of the tool.

This static and dynamic information is used as an input to the locality analyzer. The locality analysis is divided
into three phases: (i) reuse phase, (ii) volume phase, and (iii) interference phase. The first phase identifies all the
reuse exhibited by the program. This information is the basis for computing misses. In particular, compulsory misses
do not require any additional analysis: they consist of all references without any reuse. The volume phase is targeted
to identify capacity misses. Finally, the interference phase computes the conflict misses.

SPLAT has been compared with techniques based on simulation, showing that it is highly accurate for numeric
codes. In addition the SPLAT tool provides a detailed evaluation of the reuse exhibited by a program, quantifying
and qualifying the different types of misses either globally or detailed by program sections, data structures, memory
instructions, etc.

4.4 Cache Miss Equations

Cache Miss Equations [5] are a very accurate analytical model of the cache memory. They describe the cache behavior
by means of diophantine equations, which allows us to use mathematical techniques to compute the locality of each
memory reference. For instance, by solving CME one could compute the different types of cache misses that each
reference will cause. Even though the computation cost of generating CME is a linear function of the number of
references, to solve them is a NP-Hard problem and thus trying to study a whole program may be unfeasible.

CME allow us to study each reference in a particular iteration point independently of all other memory references.
Deciding whether a reference causes a miss or a hit for a given iteration point is equivalent to deciding whether it
belongs to the polyhedra defined by the CME. The total number of cache misses can be computed by analyzing all
iteration points [7, 2].

Our implementation is based on estimating the result of the CME by means of sampling techniques. This technique
is very fast and accurate, and the error can be bounded with a given confidence. For example, for a loop nest with
one million of iteration points, studying only 1000 iteration points allows us to know the number of misses with an
error less than 5% with a 95% confidence.

We have also developed efficient techniques to count the number of integer points inside the polyhedra defined by
the CME. By exploiting some intrinsic properties of the particular types of polyhedra generated by CME, we reduce
the complexity of the algorithm, which results in very high speed-ups. We show that the proposed technique can
compute the miss ratio of most SPECfp95 benchmarks just in a few seconds on a typical workstation. This opens the
possibility to include this analysis framework in production compilers in order to support many optimizations.

4.5 Generalize Reference Windows

Reference windows have been primarily introduced by Gannon, Jalby and Gallivan in [4] for designing a criterion
intended to evaluate locality properties of a code and guiding optimizing transformations. In today’s language reference
window evaluates the number of capacity misses. It is therefore more adapted to the management of software-controlled
local memories.

We have extended reference windows in order to take into account also conflicts misses, i.e. these misses caused
by numerous reuse of the same cache line set. The main idea is to consider each set of the cache as some local
memory and evaluate the reference window associated to this set. Typically in a direct-mapped cache, if the size of
this generalized reference window (GRW) is more than 1 at some program point for some cache set then some miss
will occur eventually after that point. For instance consider the following sequence of memory accesses.

DO I=0,99
X (I+1)
X (I
X (-1

ENDDO

We assume a cache line size of 8 words, and 32 sets in the cache. Figure 3 shows the behaviour of GRW size over time
and over sets. It can be observed that the window size is never larger than 2. This means that if associativity is more
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than 2 no cache misses, apart compulsory misses, will occur.

Current status of work is the generation of equations that define the general reference window from some loop and
fixed program point. We are exploring both static and dynamic approaches for computing GRW. We expect that a
static approach gives parameterized formula for GRW and hence guides optimization. However GRW computation
gives rise to a number of theoretical, possibly open, problems. A graphical dynamic approach gives a very useful
feeling to the programmer about data locality behaviour of the code. It can act as a performance debugging tool,
which is under development.

Ortow

Figure 3: Evolution of the reference window over time and sets.

5 Transformation tools

In order that users may improve their code once they have tracked down a memory hierarchy problem, they must
have a means of sensibly changing their code. A transformation toolbox based on a simple GUI is currently supported
which allows users to select a wide range of loop and data modifying transformations. These include loop distribution,
array padding, loop tiling, global index reodering, loop splitting etc. A transformation may be selected and if legal,
applied to the code. If a particular transformation has a negative effect, there is an undo operation to return the code
to its original state.

5.1 Transformation Infrastructure

At the heart of the transformation infra-structure is the MARS internal representation which is an extended linear
algebraic framework. This is a high level abstraction of the key components of the program namely iteration spaces,
arrays and access functions. Iteration spaces and the index domain of the arrays are represented as integer lattice
points within convex polyhedra, stored as an ordered set of linear constraints. Access functions are stored as linear
transformations on the iteration vector. This representation allows high-level rapid analysis of program structure
and the simple application of high level transformations (and checking of validity) via the transformation toolbox.
For instance unimodular and non-singular loop transformations, are implemented as a simple matrix multiplication
with the appropriate loop constraint matrix and enclosed access matrices. Data transformations such as global index
reordering, array padding etc. can also be similarly achieved, this time by multiplication of the appropriate index
domain and all corresponding accesses. The key benefit of this formulation for user directed optimisation, is that
we may apply long sequences of transformations without making the transformed program unanalysable. Uniform
program representations will become increasingly important when we wish to deal with more optimisations based on
more complex transformations.
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5.2 Integrating analysis and Transformation

At present the tool allows the user, in effect, to navigate an optimisation space. We are currently investigating how
static and dynamic analysis may be examined in order to suggest good optimisations to the user. Furthermore, we
wish to have the facility that certain standard optimisation heurestics may be automatically tried, possibly overnight,
removing the burden form the programmer.

6 Software Data Prefetching

Software data prefetching is a technique suported by new processors but not enough exploited by the programmers.
The concept of software prefetching is basically to add new memory instructions in the original code. With these new
instructions we can split apart the request of the data and the use of the data, while finding enough parallelism to keep
the processor busy in between. To hide the latency within a single thread, the request of data has to be performed
far in advance of the use of the data in the execution stream. This requires the ability to predict what data is needed
ahead of time. Software prefetch requires explicit prefetch instructions to move data into the cache. The challenges
of software-controlled prefetching include the fact that some criteria is needed to insert the prefetches into the code,
and also that the new prefetch instructions involve some amount of execution overhead.

To be sure that prefetches are not unnecessary we need to know which dynamic references misses in the cache. To
determine the references to prefetch we use the locality analysis performed by the SPLAT tool since it is the fastest
analysis in the toolset.

Once the locality analysis is performed, the Ictineo compiler provides us information about the low-level code in
order to insert the prefetch instructions far enough in advance. We also consider the information about the stride of
the loop and the factor that multiplies the loop index variable to be sure that a cache line is prefetched only once.

7 Conclusions

In this paper we describe the MHAOTEU Toolset, a set of tools to help the end users to tune their applications in order
to improve performance from the memory hierarchy’s point of view. The tool provides analysis modules to indicate
the user where memory performance degradations occur in applications and explain the possible causes. They allow
a programmer to use existing memory optimizations without requiring the user to perform them by hand. Finally we
expect that the tool will suggest possible optimizations to the user in the next release.
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