
HAL Id: hal-00649205
https://inria.hal.science/hal-00649205

Submitted on 7 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability and Performance Assessment of Dynamic
CONNECTed Systems

Antonia Bertolino, Antonello Calabro, Felicita Di Giandomenico, Nicola
Nostro

To cite this version:
Antonia Bertolino, Antonello Calabro, Felicita Di Giandomenico, Nicola Nostro. Dependability and
Performance Assessment of Dynamic CONNECTed Systems. 11th International School SFM 2011,
Jun 2011, Bertinoro, Italy. pp. 350-392. �hal-00649205�

https://inria.hal.science/hal-00649205
https://hal.archives-ouvertes.fr

Dependability and Performance Assessment of

Dynamic CONNECTed Systems

Antonia Bertolino, Antonello Calabró,
Felicita Di Giandomenico, and Nicola Nostro

Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche
via Moruzzi 1, I-56124, Italy
{name.surname }@isti.cnr.it

Abstract. In this chapter we present approaches for analysis and mon-
itoring of dependability and performance of Connected systems, and
their combined usage. These approaches need to account for dynam-
icity and evolvability of Connected systems. In particular, the chap-
ter covers the quantitative assessment of dependability and performance
properties through a stochastic model-based approach: first an overview
of dependability-related measurements and stochastic model-based ap-
proaches provides the necessary background. Then, our proposal in Con-

nect of an automated and modular dependability analysis framework
for dynamically Connected systems is described. This framework can
be used off-line for system design (specifically, in Connect, for Con-

nector synthesis), and on-line, to continuously assess system behaviour
and detect possible issues arising at run-time. For the latter purpose,
a generic, flexible and modular monitoring infrastructure has been de-
veloped. Monitoring is at the core of the Connect vision, in order to
ensure run-time observation of specified quantitative properties and pos-
sibly trigger adequate reactions. We focus here on the interaction chain
between monitoring and analysis, to allow for on-line continuous valida-
tion of specified dependability and performance properties. Illustrative
examples of applications of analysis and monitoring are provided with
reference to the Connect Terrorist Alert scenario.

1 Introduction

Modern software applications are more and more conceived as dynamically
adaptable and evolvable sets of components that must be able to modify their
behaviour at run-time to tackle the continuous changes in the unpredictable
open-world settings [BGD06]. On the other hand, these systems are increasingly
pervasive and their improper behaviour will produce effects on our everyday
lives and business, which can range from annoying ones up to sometime even
critical consequences. Therefore, we need to ensure that these dynamic systems
provide the required non-functional properties, such as reliability, availability,
performance, security and trust, and so on, and continue to do so even after
evolution and adaptation.

2 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

In such partially unknown and evolving contexts, dependability analysis [Lap95]
calls for on-line support to enhance the accuracy of preliminary estimates per-
formed at design time. Indeed, as we entrust more and more responsibilities to
distributed software systems, the need arises to augment them with powerful
oversight and management functions in order to allow continuous and flexible
monitoring of their behaviour.

In this chapter we tackle the challenge of dependability and performance
analysis in dynamic Connected systems. We present our preliminary results
obtained in the context of the European Project Connect [CON13], which
considers dynamic environments populated by heterogeneous Networked Sys-
tems within disconnected isles, willing to communicate with each other despite
differing and evolving technologies.

In Connect, communication between heterogeneous systems is seamlessly
supported by Connect Enablers, which make on-the-fly interoperation possible
by synthesising and deploying mediating software bridges, called Connectors.
Specifically, the main Enablers in the Connect architecture include (please re-
fer to [GG11] for a complete description): Discovery, which discovers mutually
interested Networked Systems (NSs), and retrieves information on the NS inter-
faces; Learning, which possibly completes the specifications of the NSs through a
learning procedure; Synthesis and Deployment, which perform, respectively, the
dynamic synthesis of the mediating Connectors and their deployment; Depend-
ability&Performance, which uses a model-based analysis to support Synthesis in
the definition of a dependable Connector; Security&Trust, which assess and en-
force security, privacy and trust aspects, and finally Monitoring, which continu-
ously monitors the deployed Connector to update the Connector specification
used by the other Enablers with run-time data.

To accomplish dependability and performance analysis in such a complex
and evolving context, both off-line and on-line approaches are pursued, to cover
a wider range of needs. As commonly intended in the literature, off-line analysis
refers to activities devoted to analyse the system at hand before deployment, or
even after its deployment but in isolation with respect to the system in operation.
On the contrary, on-line analysis refers to activities performed while the system
is in operation, so accounting for the detailed system and environment aspects
during that specific system execution. We adopt the off-line and on-line terms
with such meanings.

Analysis at the early stage of a development process is of paramount impor-
tance to achieve the required functional and non-functional properties. In fact,
early evaluation of the concepts and architectural choices prevents wasting time
and resources by promptly identifying possible design deficiencies or helping
in performing design decisions by comparing different alternative architectural
solutions and selecting the most suitable one.

Nevertheless, the incomplete a priori knowledge about the operating sys-
tem and environment unavoidably undermines the accuracy of the considered
elements and, hence, of the analysis results. In this perspective, monitoring be-
comes a key technological enabler for dependability assurance, as it provides

Dependability and Performance Assessment 3

the enabling infrastructure to prolong software lifecycle after deployment, by
supporting run-time verification and on-line adaptation.

Therefore, in Connect, both an automated approach to off-line dependabil-
ity analysis adopting model-based analysis, to support the design of dependable
connectors, and event-based monitoring, to support dependability and perfor-
mance run-time analysis, are under definition and development. In this chapter,
the two approaches are first individually presented, pointing out their respec-
tive architectures and their role in the Connect framework. Then, we focus on
their synergic use, to allow refining model-based dependability and performance
analysis in distributed dynamic systems through monitoring.

The continuous interplay and refinement between model-based analysis and
run-time monitoring is today emerging as an irremissible direction of software
development. A software module (the whole software system or part of it) is
repeatedly analysed through model-based analysis and refined in its design un-
til it proves to satisfy specified non-functional quantitative requirements. Once
such a proper design is obtained, it is deployed in a suitable computing environ-
ment and put in operation. At run-time, the deployed software system must be
monitored to be sure that its execution respects the required properties. Data
collected through monitoring constitute invaluable information to be exploited
for: i) validating the models generated through model-based software engineering
sub-process, and ii) continuously refining the analysis by overcoming the possible
inaccuracy in the values of the model parameters due to incomplete knowledge
or to evolution of the elements involved in the analysis.

The rest of the chapter is structured as follows. Section 2 presents some
background material about dependability and performance properties and re-
lated analysis approaches. The approaches undertaken in Connect to perform
dependability and performance assessment of Connected systems are dealt
with in Section 3, namely model-based analysis and event-based monitoring. In
addition to presenting them individually, emphasis is put on their synergic use
and the current steps towards their integration are illustrated. A case-study ac-
counting for representative aspects of the Connect context is then elaborated
in Section 4, which allows to provide preliminary illustrative examples of the
analysis performed both off-line and on-line. Related work is briefly overviewed
in Section 5, while conclusions and future perspectives are drawn in Section 6.

2 Background

In this section we provide some background material about dependability, per-
formance and monitoring.

2.1 Dependability, performance and related assessment metrics

Dependability has been defined in the 90’s as the ability of a system to pro-
vide its intended services in a justifiable way [Lap95,ALRL04]. Such ability of
the system is generally measured against the following attributes (see Figure 1):

4 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

availability, reliability, safety, integrity, maintainability. Availability is defined as
the readiness for correct service and is generally computed as the ratio between
the up-time of the system to the duration of the considered time period. Reli-
ability is defined as the continuity of correct service and is typically expressed
by using the notions of mean time between failures (MTBF) and mean time to
recover (MTTR) for repairable systems, and with mean time to failure (MTTF)
for non-repairable systems. Safety is the absence of catastrophic consequences.
This attribute is a special case of reliability: a safe state, in this case, can be
either a state in which a proper service is provided, or a state where an improper
service is provided due to non-catastrophic failures. Integrity is defined as the
absence of improper system state alterations. Maintainability is the ability to
undergo modifications and repairs.

Fig. 1. Classical dependability attributes and resilience

Dynamic and evolvable systems generally need to cope with unanticipated
conditions that might cause system failures. In these cases, the concept of de-
pendability can be naturally extended to Resilience, i.e., the persistence of ser-
vice delivery that can justifiably be trusted when facing changes [Lap08]. Possible
changes can be classified according to their nature (e.g., functional, environmen-
tal, technological), prospect (e.g., foreseen, foreseeable, unforeseen), and timing
(e.g., short, medium or long term).

Performance is the ability of a system to accomplish its intended services
within given non-functional constraints (e.g., time, memory) [iee90]. Typically,
performance of a system can be characterised with the following attributes (see

Dependability and Performance Assessment 5

Figure 2): timeliness, precision, accuracy, capacity and throughput. Timeliness is
the ability of the system to provide a service according to given time require-
ments, e.g., at a given time and within a certain time frame. Precision is the
ability of the system to provide the same results when repeating measurements
under unchanged conditions. Accuracy is the ability of the system to provide
exact results, i.e., results that match the actual value of the quantity being mea-
sured. Capacity is the ability of the system to hold a certain amount of data
or handle a certain amount of operations. Throughput is the ability to handle a
certain amount of operations or data in a given time period.

Fig. 2. Performance attributes

Quantification of dependability and performance attributes is of paramount
importance in the process of determining whether a system meets its specification
and to compare possible alternative design solutions leading to the most effective
system realization. This is accomplished through the definition of appropriate
metrics for the dependability and performance attributes. In general, a number
of metrics can be defined for a given attribute; as an example, the following
metrics allow to quantify Availability, that is the alternation between deliveries
of proper and improper service:

– A(t) is 1 if service is proper at time t, 0 otherwise;
– E[A(t)] (Expected value of A(t)) is the probability that service is proper at

time t;

6 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Fig. 3. Performability and its relation with Dependability and Performance

– A(0,t) is the fraction of time the system delivers proper service during [0,t];
– E[A(0,t)] is the expected fraction of time the system delivers proper service

during [0,t].

Similarly, Performance metrics typically include:

– the number of jobs processed per time unit, as a measure of throughput;
– the time to process a specific job, as a measure of the response time;
– the maximum number of jobs that may be processed per time unit, as a

measure of the capacity.

Most practical Performance measures are very application specific, and mea-
sure times to perform particular functions or, more generally, the probability
distribution function of the time to perform a function.

A measure of special interest introduced to evaluate degradable systems,
i.e., systems that are still able to provide a proper service when facing faults,
but with degraded level of performance, is Performability. This indicator com-
bines the concepts of performance and dependability and represents the ability
of a system to accomplish its intended services in the presence of faults over
a specified period of time [Mey92]. Performability allows to evaluate different
application requirements and to assess dependability-related attributes in terms
of risk versus benefit.

2.2 Stochastic model-based approaches for early prediction of
dependability and performance metrics

Fault forecasting and evaluation approaches are very suited to detect errors
and deficiencies at design time, that could otherwise be very costly or even
catastrophic when discovered at later stages.

Modelling is composed of two phases:

– The construction of a model of the system from the elementary stochastic
processes that model the behaviour of the components of the system and

Dependability and Performance Assessment 7

their interactions. These elementary stochastic processes relate to failures,
to repair, service restoration and possibly to system duty cycle or phases of
activity;

– Processing the model to obtain the expressions and the values of the de-
pendability measures of the system.

Research in dependability analysis has developed a variety of models, each
one focusing on particular levels of abstraction and/or system characteristics.
As reported in [NST04], important classes of model representation include: i)
Combinatorial Methods (such as Reliability Block Diagrams); ii) Model Check-
ing; and iii) State-Based Stochastic Methods. In the Connect project, ap-
proaches at both points ii) and iii) are employed; in this chapter the emphasis
is on State-Based Stochastic Methods, which support the explicit modelling of
complex relationships (e.g., concerning failure and repair processes), and their
transition structure encodes important sequencing information; for discussing
Stochastic Model-Checking and for a compared evaluation of their usefulness in
the Connect environment instead we refer to [CON10]. Concerning Combina-
torial Methods, they have not been considered in Connect, since they do not
easily capture certain features relevant for the project’s context such as stochas-
tic dependence and imperfect fault coverage,

State-Based Stochastic Methods use state-space mathematical models ex-
pressed with probabilistic assumptions about time durations and transition be-
haviours. State-based stochastic models can be classified in Markovian and non-
Markovian according to the underlying stochastic process [CGL94,Hav01,Tri02].
A wide range of dependability modelling problems fall in the domain of Marko-
vian models, for example when only exponentially distributed times occur. Markov
chains (DTMC and CTMC) [How71,MFT00,Hav01,Tri02], Stochastic Petri nets
(SPN) [Mol82,CBC+93,Bal01] and Generalized Stochastic Petri nets (GSPN)
[ABC84] are among the major Markovian models. However, there is also a
great number of real circumstances in which the Markov property is not valid,
for example when deterministic times occur; non-Markovian models are used
for this type of problems. In past years, several classes of non-Markovian ap-
proaches have been defined [BT98], such as Semi-Markov Stochastic Petri Net
(SMSPN’s) [CGL94], Markov Regenerative Stochastic Petri Nets (MRSPN’s)
[CKT94] and Deterministic and Stochastic Petri Nets (DSPN’s) [AC87]. Some
major methods for analytically solving the non-Markovian models are discussed
in [BPTT98,MFT00,Ger01]. A short survey on State-Based Stochastic Methods
and automated supporting tools for the assisted construction and solution of
dependability models can be found in [BCG05].

The proposal of an automated dependability analysis framework for dynam-
ically Connected systems will be discussed in 3.1. Two implementation of the
analysis engine are being pursued: one based on the Stochastic Activity Net-
works (SAN) formalism and related Möbius tool, and the other on the PRISM
tool. In this chapter, we focus on the Möbius implementation only; details on the
PRISM-based implementation can be found in [CON11b]. The Stochastic Activ-
ity Networks (SAN) formalism is one of the most powerful (in term of modelling

8 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

capabilities) stochastic extensions to Petri nets and is supported by the Möbius
tool. SAN formalism and the Möbius tool are very commonly used in depend-
ability analysis and therefore they have been initially chosen for dependability
analysis in Connect. In the following, we provide some background on SAN
and Möbius to get the reader more familiar with (part of the) dependability
models we are going to define in this chapter.

Stochastic Activity Networks (SAN) SAN are stochastic extensions of Petri
Nets introduced in [MM84] and formally defined in [SM02]. They have a graph-
ical representation and consist of four primitive objects: places, activities, input
gates and output gates. Places in SANs have the same interpretation as in Petri
Nets, i.e., they hold tokens. The number of tokens in a place is referred to as
the marking of that place, and the marking of the SAN is the set of all place
markings.

There are two types of activities: instantaneous and timed. Timed activities
represent actions that have a duration that impacts the performance of the
modelled system, e.g., message transmission time, recovery time, time to fail.
The duration of each timed activity is expressed via a time distribution function.
Both instantaneous and timed activities may have case probabilities. Each case
probability stands for a possible outcome of the activity, and can be used to
model probabilistic aspects of the system, e.g., probability for a component to
fail.

Gates connect activities and places. Input gates (indicated as red/grey tri-
angles) are connected to one or more places and one single activity. They have
a predicate, a boolean function of the markings of the connected places, and
an output function. When the predicate is true, the gate holds. Output gates
(indicated as black triangles) are connected to one or more places, and to the
output side of an activity. If the activity has more than one case, output gates
are connected to a single case. Output gates have only an output function. Gate
functions (both for input and output gates) provide flexibility in defining how the
markings of connected places change when the delay represented by an activity
expires.

Properties of interest. Properties of interest are specified with reward func-
tions. Each reward function is a C++ function that specifies how to measure a
property on the basis of the marking of the SAN. There are two kinds of reward
functions: rate reward and impulse reward. Rate rewards can be evaluated at any
time instant. Impulse rewards are associated with specific activities and they can
be evaluated only when the associated activity completes. Measurements can be
conducted at specific time instants, over periods of time, or when the system
reaches the steady state.

Möbius Möbius [CCD+01] provides an infrastructure to support multiple inter-
acting modelling formalisms and solvers. The main features of the tool include:

Dependability and Performance Assessment 9

– Multiple modelling languages, based on either graphical or textual represen-
tations. Supported model types include stochastic extensions to Petri nets
(e.g. SAN), Markov chains and extensions, and stochastic process algebras.

– Hierarchical modelling paradigm. Models are built from the ground up. First
the behaviour of individual components is specified, and then a model of the
complete system is created by combining these components.

– Customized measures of system properties, with ability to construct detailed
expressions that measure the exact information desired about the system
(e.g., reliability, availability, performance, and security). Measurements can
be conducted at specific time points, over periods of time, or when the system
reaches steady state.

– Study the behaviour of the system under a variety of operating conditions.
The functionality of the system can be defined as model input parameters,
and then the behaviour of the system can be automatically studied across
wide ranges of input parameter values.

– Distributed discrete-event simulation. The tool evaluates the custom mea-
sures using efficient simulation algorithms to repeatedly execute the system.

– Numerical solution techniques. Exact solutions can be calculated for many
classes of models, and advances in state-space computation and generation
techniques make it possible to solve models with tens of millions of states.

Möbius allows to combine (atomic) models to form the Composed model.
To this purpose, it supports the two operators Rep and Join to compose sub-
networks. Join is used to compose two or more SANs. Rep is a special case of
Join, and is used to construct a model consisting of a number of replicas of a
SAN. Models in a composed system interact via Place Sharing. Place Sharing
is a composition formalism based on the notion of sharing places via an equiva-
lence relation. It supports the transient and steady-state analysis of Markovian
models, the steady-state analysis of non-Markovian DSPN-like models [Sha93],
and transient and steady-state simulation. More information can be found in the
web site: http://www.crhc.uiuc.edu/PERFORM.

2.3 Run-time Analysis via Monitoring

The ultimate goal of Connect, i.e., achieving automated and eternal interop-
erability among heterogeneous and evolvable Networked System, strongly relies
on the adoption of on-line approaches, and therefore on a pervasive monitoring
infrastructure.

More in general, as systems become more and more dynamic, distributed
and evolvable, the capability of effectively gathering run-time information about
their execution and/or their surrounding environment becomes an indispens-
able tool for many functionalities. Schroeder [Sch95], for example, identified
the following seven monitor functionalities: Control, Correctness checking, De-
bugging&Testing, Dependability, Performance evaluation, Performance enhance-
ment, and Security. In modern applications certainly further functionalities can
be identified, such as Learning, Accounting, Trust management, and so on.

10 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Although in this chapter we focus on the use of monitoring for dependabil-
ity and performance evaluation, the monitoring infrastructure that we built in
Connect (described in the next section) has been conceived to be general and
flexible, and not restricted to this purpose. Here below, as a background we
provide a basic introductory overview of monitoring concepts.

For the purpose of monitoring, the actions performed by the object under ob-
servation are abstracted into events. In particular, simple or primitive events are
directly produced by the observed object, whereas complex events can be defined
from simple events by using operators of a suitable event algebra [Zim99]. Event
specification requires a careful design and configuration activity that is central
to the overall setup of a monitoring system. In [SK88], events that may hap-
pen in a distributed system are divided in local, non-local, global. Local events
are produced on a single node, which means that observing them does not re-
quire addressing the problems that are related to distribution and inter-node
synchronization. Non-local events, on the other hand, are (composite) events
whose observation requires considering and correlating events originated from
more than a single node. Global events are a special case of non-local events,
and require considering all the nodes of a system. Recognizing complex events
in distributed loosely-coupled environments is not trivial [Fid96], as it requires
establishing in which order two or more constituent events (originated from dif-
ferent nodes) happened. As noted by Lamport in his well-known 1978 paper,
in a distributed system it is sometimes impossible to say that one of two events
happened first [Lam78]. Fortunately, the observability problem does not neces-
sarily arise in all distributed systems. For example, if one aims at identifying the
service that takes the maximum average response time among a set of services,
the problem is not really distributed, as the observation is in fact local and there
is no need for aggregated interpretation.

Even though more than 20 years old, Joyce definition of monitoring as the
process of dynamic collection, interpretation, and presentation of information
concerning objects or software processes under scrutiny [JLSU87] remains still
relevant and suggests some reflections.

Firstly, it qualifies monitoring as a dynamic activity, to underline that it is
inherently concerned with the execution phase of a system, as opposed to (static)
activities that are carried out in the development/coding phase. With this same
meaning we also speak of run-time monitoring. Secondly, the definition identifies
several different activities, namely collection, interpretation, and presentation, as
part of monitoring. Each of these activities is meant to address a specific problem
and may use dedicated techniques. This is why research on monitoring appears
fragmented: the many works on monitoring are hard to compare as most of them
focus only on some of the aspects of monitoring. A first attempt to overview the
most important problems and issues about monitoring in distributed systems
is [MSS94].

Dependability and Performance Assessment 11

Monitor generic architecture Figure 4 depicts the main architectural ele-
ments of a generic monitoring system. Elaborating on [MSS94], we identified
the following five core functions.

Fig. 4. Architectural elements of a monitoring system

Raw data collection. The lowest layer of a monitoring framework is realized by a
set of sensors or probes: these fire a primitive event whenever the observed entity
performs some specified computation steps (actions). This is done locally on the
entity under observation. Therefore, data collection is the function through which
a monitor can produce the largest impact on the system under observation. We
expand more on it later.

Local interpretation. The process of local interpretation is concerned with mak-
ing sense (locally) of the information extracted by probes. This is achieved by
applying a filter that extracts interesting sequences of events out of the raw data
collected by probes. In practical implementations, data collection and filtering
can overlap to some extent: a sort of rough preliminary filtering is done if the
events emitted in the data collection step are not just the result of reaching a
given point in the execution but also of some other logic or processing embedded
in the probe.

Data transmission and storage. In distributed systems, the relevant events that
are revealed locally need to be collected at one or more sites where they can be
aggregated with analogous data coming from other nodes. Transmission may oc-
cur immediately, to reduce detection latency, or may be delayed, using buffering,
e.g., to cope with network congestion (at the expense of memory occupation or
CPU cycles if compression is used).

12 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Global interpretation (also known as “correlation” or “aggregation”). This func-
tion makes sense of pieces of information that come from several nodes and puts
them together in order to identify interesting conditions/events that can be ob-
served only at an aggregated level. Architectures with more than one level of
aggregation are possible, and are usually adopted when enhanced scalability is
necessary [MCC04]. When moving from local to global observation, observability
issues must be taken into account. Suitable timestamping and synchronization
facilities must be used as appropriate.

Reporting. The information provided as the output of monitoring can be used for
a variety of purposes and should be presented in a way that is meaningful to the
“consumer” of the monitoring system. The consumer can be a piece of software
itself or a human. In both cases the results of the final interpretation phase must
undergo an elaboration in order to express output data in a suitable format. In
the former case, this format should be machine-readable; in the latter, it must
be shown either as a textual report or it may use interactive GUIs, graphics,
animations and so on.

The first core function, data collection, determines the monitoring system in-
trusiveness [Sch95], i.e., the level of interference imposed upon the observed ap-
plication. Intrusive monitors may alter the behaviour that they want to observe.
This phenomenon is referred to as the probe effect (or sometime the “Heisenberg
effect”) [Gai86]. It concerns especially monitoring of performance-related char-
acteristics, but may also impact functional properties, since the process might
alter the timing of events and therefore cause wrong behaviour that otherwise
would not happen [JLSU87]. Analogously, faults (that would have happened oth-
erwise) can be masked as an effect of the interplay of the subject system and
the monitoring.

The collection of data can be done according to two styles [HBPU06]:

– Instrumentation: some code is inserted in the application to be monitored
in order to emit an event when the control flow reaches a certain point in
the execution. This can be realized in different forms at different levels of
abstraction. For example, source code instrumentation techniques include
statements in the original program to be monitored. Their outcome can be
guarded by a condition, whereby it is possible to refine the event definition
and to emit an event only when the guard condition is satisfied.

– Interception: when adopting this style, data collection is achieved through a
proxy-like probe that is put on the wire and snoops interactions, as in [BGG04].
Although this approach may not be as flexible as the previous, it has the
advantage of being non-intrusive, therefore it is well suited in other contexts
where the control over the system is distributed/partioned across several
organizations.

Orthogonally to the instrument/intercept criterion, the techniques for col-
lecting monitoring data can also be distinguished according to whether the col-
lection is based on sampling or complete executions are observed. Most sampling

Dependability and Performance Assessment 13

Fig. 5. Input-Output Relations between DePer and the Other Enablers

approaches sample on a time basis; however certain (composite) events may go
undetected if some of the constituent events are discarded by the sampling. A
possible way to address this problem is by sampling in space, rather than in
time, i.e., by alternating the processes (or components) that are chosen as the
target of monitoring, in such a way that, locally to the target, the observation
is complete and no event is discarded.

3 Dependability Assessment Approach in CONNECT

Assessment techniques are sought in Connect to ensure that Networked Sys-
tems as well as the generated bridging Connectors satisfy specified levels of
accomplishment for dependability and performance requirements, according to
pertinent metrics. In the following, we present two approaches under develop-
ment in Connect for this purpose: the Dependability&Performance Enabler
(DePer) and the Monitoring Enabler (Glimpse). The two approaches are first
described individually and then their combined use to enhance dependability
and performance assessment of the system under analysis is discussed.

3.1 DePer

DePer provides support to the definition of a Connector that allows NSs to
interact with a desired level of dependability and performance properties.

Before presenting the architecture of this Enabler, we briefly discuss its rela-
tions with other Enablers of the Connect architecture. In [GG11], a complete
overview of Connect Enablers and their role is provided. Adopting a De-

Per-centric view, here we restrict to those having input-output relations with
DePer, as shown in Figure 5 (to make the chapter self-complete, the role of
relevant Enablers has also been synthetically recalled in Section 1).

14 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

According to the Connect vision, a Networked System broadcasts a connect
request whenever a new connection to a service is needed. The connect request
contains a description of the requested service together with a specification of
the required dependability and performance level for the service. When Discov-
ery detects a connect request, it looks for available Networked Systems that can
provide the requested service. If such systems are found and operate a com-
munication protocol different from that of the Networked System that made the
connect request, Discovery triggers the process of creating a suitable Connector
that enables interoperation. The Synthesis Enabler, on the basis of the specifica-
tion of the communication protocols, produces a mediating Connector. Before
Connector deployment, Synthesis activates DePer to evaluate if the Con-

nected system that will be obtained satisfies the non-functional requirements
expressed by the Networked Systems. If the non-functional requirements are sat-
isfied, the Connector is deployed; otherwise, Synthesis is supported by DePer

in the definition of possible enhancements that can be applied. To take into ac-
count dynamic system changes once the Connector is deployed, the Monitoring
Enabler, if requested by other Enablers, continuously observes the run-time be-
haviour of the Connected system and provides them related information, in
accordance with received requests.

Therefore, as shown in Figure 5, the joint activity of Discovery and Learning
provides the dependability requirements; Synthesis provides the specification
of the Connected system, and possibly requests a dependability enhancement;
Monitoring provides run-time data on the execution of the deployed Connector.
The dependability and performance assessment and the enhancements produced
by DePer are used by Synthesis.

The architecture of the DePer Enabler is shown in Figure 6 and also prelim-
inarily described in [MMDGar]. Currently, this Enabler accommodates depend-
ability and performance analysis performed through both the stochastic state-
based and the stochastic model-checking approaches. Actually, the architecture
is general and other analysis methods could be easily included by specifying and
implementing an appropriate Analysis Engine module. The Selector and Aggre-
gator modules, at the entrance and exit of the architecture, allow the selection
of the analysis method and the aggregation of the analyses results (in case more
than one method is applied), respectively. More details on each module are pro-
vided in the following.

At the time of writing, a prototype which partially implements the DePer

architecture is under development (http://dcl.isti.cnr.it/DEA/). It is based on
the SAN formalism and the Möbius tool, already introduced in Section 2. For
those modules already considered in the implementation, some details are also
provided in the following description.

3.2 Selector

The Selector module activates, depending on the characteristics of the specifi-
cation of the Connected system and of the requirements, the most suitable

Dependability and Performance Assessment 15

analysis engine among those available to the Enabler. In fact, the employed en-
gines implement different approaches to analyse dependability and performance
properties of a Connected system. Each approach has its own advantages re-
garding modelling capability, specification of properties, and scalability; hence,
besides using the different engines to cross validate the results and to improve
the confidence in the correctness of the models, they actually complement each
other. In the study conducted during the first year [CON10], the characteristics
of the stochastic model checking and state-based stochastic methods evaluation
approaches have been already pointed out.

Fig. 6. Architecture of the Dependability&Performance Analysis Enabler

3.3 Aggregator

The Aggregator module is in charge of selecting the analysis results to be pro-
vided in output to the Synthesis Enabler, in case more than one Analysis Engines
have been activated for a Connected system specification. Therefore, when
only one kind of analysis is performed, based on the choice made by the Selector
module, Aggregator just conveys the analysis results to the output interface of
DePer. Instead, when more analysis methods are activated, their results are
collected by Aggregator and elaborated according to some criteria to derive the
output results.
The first step to be performed is a comparison among the values provided by the
different methods to check whether they are in agreement (within a certain tol-
erance degree, to cope with natural dissimilarities inherent to the use of different
methods). In the case of a matching comparison, the reliance in each of the em-
ployed approaches is increased (cross-validation) and all the analysis results can
be equally considered valid, so anyone of them can be output as final analysis
values. Alternatively, some form of mediation could be made on the obtained
multiple results (e.g., the average), to balance the effects of single method’s

16 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Fig. 7. Architecture of the Dependability&Performance Analysis Engine

approximations. A mismatch, instead, would be the symptom of erroneous/-
too inaccurate analysis by at least one of the applied methods. Let us recall
that DePer in Connect is based on an automated procedure, starting from
given specifications of the Connected system and of the dependability and per-
formance requirements, partially implemented at the current stage. Therefore,
once fully automated, we expect that the case of mismatch would be removed
by construction; however more investigations are necessary on this issue. The
implementation of this module has been deferred, at the moment.

3.4 Dependability&Performance Analysis Engine

The Dependability&Performance Analysis Engine is logically split into five main
functional modules (see Figure 7): Builder, Analyser, Evaluator, Enhancer and
Updater.

Builder The Builder module takes in input the specification of the Connected
system from Synthesis, and the dependability and performance requirements
from Discovery/Learning. The module produces in output a dependability and
performance model of the Connected system suitable to assess the given de-
pendability and performance requirements.

Specification of the Connected system. With reference to recent works on syn-
thesis of mediating Connectors [SI10] and automata discovery/learning [RSB05],
the specification of the Connected system is given with Labelled Transition
Systems (LTSs) annotated with non-functional information necessary to build
the dependability and performance model of the Connected system. An LTS
is an abstract machine that represents the sequence of actions performed by the
system. Formally, an LTS is a tuple (S,S0,L, T), where S is a set of states,

Dependability and Performance Assessment 17

S0 ⊆ S is a set of initial states, L is a set of labels, and T ⊆ S ×L×S is a tran-
sition relation. Annotations include, for each labelled transition, the following
fields: time to complete, firing probability, and failure probability. The values for
these parameters could be exact values or ranges of values (ranges are especially
appropriate when the exact estimate is not possible, given uncertainties of the
environment).

Dependability and performance requirements. In our architecture, the depend-
ability and performance properties required by the Networked Systems are trans-
lated by Discovery/Learning into metrics and guarantees. Metrics are arithmetic
expressions that describe how to obtain a quantitative assessment of the prop-
erties of interest of the Connected system. They are expressed in terms of
transitions and states of the LTS specification of the Networked Systems. Guar-
antees are boolean expressions that are required to be satisfied on the metrics.

Dependability and performance model. The dependability and performance model
of the Connected system is specified with a formalism that allows to describe
complex systems that have probabilistic behaviour, e.g., stochastic processes.

Implementation. The prototype implementation of the Builder module takes in
input the LTS of the connected system described with Finite State Processes
(FSP) [MK06]. The dependability model of the system is specified with Stochas-
tic Activity Networks (SANs), already introduced in section 2. The SAN model
is obtained from the LTS model by using the theory of regions [ER90]. A region
identifies a set of states in the LTS such that all transitions with the same label
either enter, exit, or never cross the boundary of the region. Each region in the
LTS corresponds to a place in the derived SAN model, and each labelled transi-
tion in the LTS corresponds to an activity in the SAN model. A similar approach
has already been used in other works to translate LTSs into Petri Nets (see, for
instance, [CKLY98], [BS02] and [CCK09]). In order to have a well-defined prob-
abilistic model, non-deterministic choices among k transitions outgoing from an
LTS state are mapped in the SAN model into instantaneous activities with k
case probabilities. The metric is an arithmetic expression that may contain a
predefined set of functions (see Table 1 for some examples). The guarantee is
given by a boolean expression on the metric and a set of constraints on the
connected system model (e.g., constraints on the time frame of evaluation of the
metric). Statistical operators (e.g., mean and variance), comparison and logical
operators can be used in the expression.

Analyser The Analyser module takes in input the dependability and perfor-
mance model from the Builder module and the dependability and performance
requirements from Discovery/Learning. The module builds a reward model, i.e.,
a model that enables a quantitative assessment of the metrics of interest, and
makes use of a solver engine to obtain a quantitative assessment of the depend-
ability and performance metrics.

18 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Function Description

timeFrame(s) : S → R
+ returns the interval of time when the system is in

state s

minT imeStamp(tr) : T → R
+ returns the first instant of time when transition tr

fires
avgT imeStamp(tr) : T → R

+ returns the average instant of time when transition tr

fires
maxTimeStamp(tr) : T → R

+ returns the last instant of time when transition tr

fires
#(tr, t1, t2) : T × R

+ × R
+ → N returns the number of times transition tr fires during

the time frame [t1, t2]
#(l, t1, t2) : L × R

+ × R
+ → N returns the number of times transitions with label l

fire during the time frame [t1, t2]

Table 1. Examples of predefined functions that can be used in the metric expression

Reward model. The reward model is the dependability and performance model
extended with reward functions. Reward functions allow to specify properties of
interest: they return a value depending on the system state, and can be evaluated
either at an instant of time or accumulated over a time frame.

Solver. The solver engine evaluates the reward functions defined in the reward
model. The evaluation can be performed either through analytical approaches
or through simulation, depending on the metrics under evaluation and on the
mathematical representation of the involved phenomena.

Implementation. The prototype implementation of the Analyser is based on
Möbius, already introduced in section 2. In Möbius, each reward function is
a C++ function that returns a value depending on the marking of the SAN.
There are two kinds of reward functions: rate rewards and impulse rewards. Rate
rewards are used to implement time-based reward functions. Impulse rewards
are used to implement action-based reward functions, i.e., they are associated
with specific activities and can be evaluated only when the associated activity
completes. The reward functions are automatically derived from the metrics ex-
pression as follows: the metric is mapped into its syntax tree to decompose the
metric into a combination of basic functions; the basic functions are translated
into C++ functions by using a predefined repository of function templates (cur-
rently under construction). For instance, with reference to the functions shown
in Table 1, a rate reward template is used to translate timeFrame(s), while an
impulse reward template is used to translate #(tr, t1, t2). Then, the quantitative
assessment of the metric is obtained from the assessment of the reward functions
by merging the results according to the arithmetic operations specified in the
syntax tree of the metric expression.

Evaluator The Evaluator module reports to Synthesis if the Connected sys-
tem satisfies the dependability and performance requirements provided by Dis-

Dependability and Performance Assessment 19

covery/Learning. In the case of requirements mismatch, Evaluator sends a warn-
ing message to Synthesis, and may receive back a request to evaluate if en-
hancements can be applied to improve the dependability (and/or performance,
depending on the received request) level of the Connected system.

In view of the synergic cooperation with the monitoring infrastructure, this
module also informs the Updater module, which is in relationship with the Mon-
itor Enabler, about the model parameters for on-line observation.

Requirements mismatch. If the requirements are not satisfied, Evaluator may
receive a request to explore one of the following three directions for improve-
ments:

1. Update the specification of the Connector to take into account an alterna-
tive Connector deployment (e.g., a deployment that uses a communication
channel with lower failure rate). Upon receiving this request, the Evalua-
tor triggers a new analysis that considers the updated specification of the
Connector.

2. Enhance the specification of the Connector by including dependability
mechanisms, which are counter-measures to contrast failure modes affecting
performance and/or dependability metrics (e.g., a message retransmission
technique). Upon receiving this request, it is first necessary to understand
which are the failure probabilities mostly impacting on the metrics evalua-
tion, so as to include primarily dependability mechanisms capable of limiting
the effects of such highly impacting failures. To this end, Evaluator builds a
sensitivity analysis campaign to instruct the Builder module on the creation
of dependability and performance model variants, each of which considers
a specific subset of failure probabilities, among those foreseen. Whenever a
variant is generated, the Analyser module performs the assessment of the
metrics on the generated model. Evaluator collects the analysis results and,
after all variants have been analysed, produces a ranking of the failure prob-
abilities. This ranking is used by Evaluator to iteratively activate the En-
hancer module until one of the following conditions is met: the guarantees
are satisfied, or Enhancer signals that all possible dependability mechanisms
have been explored.

3. Apply a combination of the previously mentioned enhancements.

Enhancer The Enhancer module is activated by Evaluator when the guarantees
are not satisfied and Synthesis makes a request to enhance the Connector with
dependability mechanisms. Enhancer is instructed by the Evaluator module on
the requirements mismatch and the failure probability that needs to be improved.
Then, it performs the following actions: (i) selects the dependability mechanisms
that can be employed, among those available, to improve the failure probability
indicated by the Evaluator module; (ii) instructs the Builder module on the
application of the selected dependability mechanisms in the Connected system
model (one model variant will be generated for each dependability mechanism

20 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

selected, generally only one) and triggers a new analysis for each of the generated
models.

Dependability mechanisms. Typically, dependability mechanisms are based on
the application of redundancy, e.g., duplication of system channels, or retry of
message transmissions over system channels. The dependability mechanism, in
this context, will be embedded in the synthesised Connector, because Net-
worked Systems are not under the control of the framework. Nevertheless, the
dependability mechanisms embedded in the Connector can be employed to im-
prove, to some extent, the dependability and performance level of the Networked
Systems. For example, the reliability level of a transmission performed by a Net-
worked System can be improved through timeouts or message retransmissions
applied at the Connector level.

Implementation. We developed ad hoc dependability models for a set of rele-
vant dependability mechanisms, and a set of rules to automate the application
of the mechanisms in the SAN model of the connected system. The ad hoc
models can be parametric; for instance, a retransmission mechanism is para-
metric with respect to the maximum number of allowed retransmissions. As an
example of mechanism and application rule, in Figure 8 we graphically show a
retransmission mechanism and how to modify the original model in order to ap-
ply message retransmissions to a send operation. Specifically, the original model
contains a timed activity send that models the send operation, an input gate
send cond that specifies the enabling condition of the activity, and two output
gates, send success and send fail, that specify the output functions in the
case of correct and faulty behaviour. The enhanced model is obtained from the
original model by adding the following elements: a place send count, with ini-
tial marking the maximum allowed number of retransmissions; an output gate
send count reset, which resets the marking of send count to its initial value
when the send succeeds; an output gate send retry, which reactivates send as
long as send count contains tokens, and resets the marking of send count after
performing all retransmission attempts.

In a more structured vision, the dependability mechanism(s) suitable to im-
prove on a given failure probability are determined through an ontology of de-
pendability mechanisms, such as that reported in [ReS08]. The definition of such
an ontology is planned as future work.

(a) Basic model (b) Enhanced model

Fig. 8. Example of dependability mechanism and application rule

Dependability and Performance Assessment 21

Updater The Updater module interacts with the Monitoring Enabler to refine
the accuracy of model parameters through on-line observations. Inaccuracy of the
non-functional values used in the off-line analysis at Connector design time is
mainly due to two possible causes: i) limited knowledge of the NSs characteristics
acquired by Learning/Discovery Enablers; ii) evolution along time of the NSs,
as naturally accounted for in the Connect context.

Updater receives inputs from both internally to DePer (from the Evalu-
ator) and externally (from the Monitor Enabler). From the former, for each
Connector ready to be deployed it receives the model parameters to convey to
the Monitor for run-time observations. From the latter, it receives a continuous
flow of data for the parameters under monitoring relative to the different exe-
cutions of the Connector. Accumulated data are processed through statistical
inference techniques. If, for a given parameter, the statistical inference indicates
a discrepancy between the on-line observed behaviour and the off-line estimated
value used in the model resulting into a significant deviation of the performed
analysis, a new analysis is triggered by instructing the Builder module to update
the Connected system model.

Details on the implementation between Updater and Monitoring are illus-
trated in Subsection 3.6.

Statistical Inference Techniques. As reported in [Tri02], methods of statistical
inference applied to a collection of elements under investigation (called popula-
tion), allow to estimate the characteristics of the entire population. In our case,
the collection of values relative to each parameter under monitoring constitute
a population to which such techniques are applied.

3.5 GLIMPSE

In Connect we developed a monitoring infrastructure, called Glimpse, aimed
at covering the main function[MSS94] for the monitoring discussed in section 2.3.
We tried to implement these five core function in a modular and flexible way,
aiming to support behavioural learning, performance, reliability assessment, se-
curity and trust also in non-Connect context.
Glimpse is an acronym for “Generic fLexIble Monitoring based on a Publish-
Subscribe infrastructurE”. The architecture of Glimpse is shown in Figure 10;
details of each component are in the following.
Probes. There are entrusted to Collection and Local interpretation functions.
Probes are usually realized by injecting code into the existing software or by
using a proxy. The probes that we used in Glimpse are already injected into
the Connector during its synthesis phase. When primitive events occur into
the software, probes send them to the Monitoring Bus component (described
below).
An event, in the current context, represent a transition between two states
of an LTS. In our implementation we collect all the information that may be
useful at Glimpse to infer complex event occurrences for the analysis in the
ConnectBaseEvent interface.

22 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Fig. 9. ConnectBaseEvent Interface

The event description is shown in figure 9.

Examinating more in details some of the parameters composing the ConnectBaseEvent
interface we can find:

– connectorID : defines the identity of the Connector

– connectorInstanceID : used to define the execution of the Connector

Monitoring bus. The monitoring bus is the communication backbone where
all information (events, requests, responses) is sent on by: Probes, Enablers,
Complex Event Processor and by all the services using Glimpse. To obtain a
better decoupling and to keep asynchronous communication, in our implemen-
tation we decided to adopt public-subscribe paradigm, which is implemented
with messages queue through ServiceMix4 and Java Message Service. There are
many commercial products that implement Enterprise Service Bus, we prefer
ServiceMix for its strong compatibility and simplicity interacting with the rule
engine used for this prototype.

However, in designing the Glimpse architecture, we adopted a model-driven
which allow Glimpse to use different rule languages. The handling of the Mon-
itoring Bus is devoted to the Manager component, analysed below.

The usage of a messaging system in Enterprise Service Bus (ESB) allowsGlimpse

to use a variety of protocols such as HTTP/SOAP and REST. Moreover, with the

Dependability and Performance Assessment 23

usage of JBI [jbi] components, Glimpse interact even with legacy systems, bi-
nary transports, document-oriented transports, and Remote Procedure Call [rpc]
systems. Adopting a messaging system reduces execution bottlenecks that might
occur using Remote Procedure Call or Database-centric architecture.
Complex Event Processor. The Complex Event Processor (CEP) is the rule
engine that allows to infer complex events from primitive sent on the Monitoring
Bus by Probes.
The CEP is instructed at runtime by the Manager component that, after analysing
the consumer (Enabler) request expressed sending a JMS message on wich pay-
load is written in XML using the ComplexEventRuleActionList schema (see
Listing 1.1), load the new inference rules on the engine. There are several rule
engines that can be used for this task (like Drools Fusion [dro], RuleML [rul]),
in the existing prototype wu used Drools Fusion.
The schema of complexEventActionList is shown in Listing 1.1.
The complexEventActionList specification supports the use of heterogeneous
rule languages, as it is natively unbound to any. Examinating the Listing 1.1,
at line 30, we found the RuleBody field that is used by the Enabler to set the
Drools rule for the requested evaluation. Into the field RuleType (line 32), the
Enabler will set the type of rule language requested for the evaluation, this will
allow to use more rule languages even at run-time.
Consumer. In Glimpse, a Consumer may be a learning engine, a dependability
analyser or a simple customer that requests some information to be monitored.
The basic requirement to interact with Glimpse is to be able to send/receive
JMS messages and to raise correct query to the inference engine (CEP). The
Consumer sends a request to the Manager using the Monitoring Bus and waits
for the evaluation results on a dedicated response channel provided and notified
by the Manager.
Manager. It manages all the communications among its components. The Man-
ager component is the orchestrator of all the Glimpse architecture. Specifically,
the Manager fetches requests coming from Consumers (Enablers), analyses them
and instructs the Probes. Then, it instructs the CEP Evaluator, creates and no-
tifies to the Consumer a dedicated channel on which it will provide results pro-
duced by the CEP Evaluator. (For more information about interaction, sec:3.6).
The most valuable support provided by the Manager is the handling of all the
knowledge base loaded into the CEP.
Glimpse Implementation. A prototype of Glimpse is available for public down-
load at http://labse.isti.cnr.it/tools/glimpse.

3.6 Integrated run-time analysis

Synergic use of DePer and Glimpse is pursued to allow automated refine-
ment of dependability and performance analysis through inspection of run-time
data, as preliminarly described in [BCDG+ar]. Precisely, feedbacks from run-
time executions of the Connected system as collected from Glimpse are used
by DePer to enhance the accuracy of model parameters adopted in the analysis
performed at design time.

24 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <schema xmlns=”http ://www.w3 . org /2001/XMLSchema”

targetNamespace=”http :// l ab s e . i s t i . cnr . i t / g l impse /xml/
ComplexEventRule” xmlns : tns=”http :// l ab s e . i s t i . cnr . i t /
g l impse /xml/ComplexEventRule” elementFormDefault=”
q u a l i f i e d ”>

3

4

5 <element name=”ComplexEventRuleActionList ” type=” tns :
ComplexEventRuleActionType”></element>

6

7 <complexType name=”ComplexEventRuleActionType”>
8 <sequence>
9 <element name=” In s e r t ” type=” tns :

ComplexEventRuleType”
10 maxOccurs=”unbounded” minOccurs=”0”>
11 </element>
12 <element name=”Delete ” type=” tns :

ComplexEventRuleType”
13 maxOccurs=”unbounded” minOccurs=”0”>
14 </element>
15 <element name=” Star t ” type=” tns :

ComplexEventRuleType”
16 maxOccurs=”unbounded” minOccurs=”0”>
17 </element>
18 <element name=”Stop” type=” tns : ComplexEventRuleType

”
19 maxOccurs=”unbounded” minOccurs=”0”>
20 </element>
21 <element name=”Restart ” type=” tns :

ComplexEventRuleType”
22 maxOccurs=”unbounded” minOccurs=”0”>
23 </element>
24 </sequence>
25 </complexType>
26

27 <complexType name=”ComplexEventRuleType”>
28 <sequence>
29 <element name=”RuleName” type=” s t r i n g ” maxOccurs=”1

” minOccurs=”1”></element>
30 <element name=”RuleBody” type=” s t r i n g ” maxOccurs=”1

” minOccurs=”0”></element>
31 </sequence>
32 <a t t r i b u t e name=”RuleType” type=” s t r i n g ”></a t t r i bu t e>
33 </complexType>
34 </schema>

Listing 1.1. ComplexEventRuleActionList Schema

Dependability and Performance Assessment 25

Fig. 10. The architecture of Glimpse

The interactions between DePer and Glimpse Enablers start after the De-

Per Enabler determines that the synthesised Connector satisfies the required
dependability and performance level. Specifically, after the analysis phase, if
compliance with requirements is verified with the consequent deployment of the
Connector, DePer informs the Glimpse on which are the parameters (among
those used in the dependability analysis) relative to Connector and NSs, that
must be kept under observation at run-time. Glimpse, upon receiving the re-
quest, properly instructs the probes embedded in the Connector.

Run-time data relative to parameters under observation are sent by the
Glimpse to DePer. DePer, through its Updater module, continuously per-
forms statistical analyses on the collection of data received to verify whether
the accuracy of the model parameters used in the analysis is good enough for
the analysis results to be still valid, or the Connector no longer satisfies the
requirements and needs adjustments. In this latter case, a new analysis adopting
the updates parameters values is triggered.

Figure 11 shows the interaction between DePer and Glimpse. DePer is
shown inside the dotted box at the top of the Figure, while Glimpse is shown
again in a dotted box at the bottom left side of the Figure. For clarity, only rel-
evant modules involved in the cycle with Monitoring, are shown. Inside DePer,
the activities from receiving theConnected System specifications till conclusion
of the evaluation phase are represented. Since we want to show the interaction
between DePer and Glimpse, we depicted the case where the dependability
and performance requirements are met, so the Evaluator module reports to Syn-
thesis that the Connector can be deployed and triggers Updater on sending

26 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

Fig. 11. Interactions between DePer and Glimpse

monitoring requests to Glimpse. Such requests are received by the Manager
component of Glimpse through a service channel on the Monitoring Bus, which
instructs the Probes and the Complex Event Processor and creates a dedicated
communication channel on the Monitoring Bus, used to provide results to De-

Per.
Then, Probes start intercepting events of interest, when they occur. If DePer

requests consist of complex events, their composing primitive events are elab-
orated by the rule engine Complex Event Processor, and resulting values are
computed.
Responses to monitoring requests so determined are sent to DePer through a
dedicated channel on the Monitoring Bus.
Once the Updater module of DePer receives the run-time data from Glimpse,
it applies to them statistical inference techniques to determine the actual values
of the corresponding model parameters. In case the newly determined values are

Dependability and Performance Assessment 27

outside the range assumed in the analysis at design time, the analysis model is
updated with the new values and solved again. If the new analysis evidences that
the deployed Connector needs adjustments, a new synthesis-analysis cycle is
started in cooperation with the Synthesis Enabler and a notification is sent to
Glimpse about stopping monitoring the no more satisfactory Connector.

Implementation. In the implementation performed so far, DePer and Glimpse

interact by using a Publish/Subscribe protocol. The interaction pattern is shown
as a sequence diagram in Figure 12 where we intentionally left out system start-
up operations (for a more detailed sequence diagram, see [CON11a]). Whenever
Monitoring Enabler receives a request message on the service channel (see mes-
sage 2 on Figure 12), a new channel dedicated to the requesting Enabler is set
up to communicate the monitored values.

Glimpse sends response messages to DePer Enabler as soon as the aspect
of interest is available (see message 8 on Figure 12).

Fig. 12. Sequence Diagram of the Basic Interaction Pattern between DePer and
Glimpse

The two Enablers exchange JMS messages whose payload is expressed in
XML language. The payload of the XML, contains a ComplexEventRuleActionList
xml object, which determines a lists of possible actions to execute on the Moni-
toring Enabler knowledge base. The schema of ComplexEventRuleActionList is
shown in Listing 1.1.

4 Example

In this section we first introduce an example scenario and then we show how we
apply the presented approaches to it.

28 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

4.1 The Terrorist Alert Scenario

We consider the Connect Terrorist Alert scenario [CON11c], depicting the
critical situation that during a show in the stadium, the control center spots one
suspect terrorist moving around. The alarm is immediately sent to the Police.

Policemen are equipped with ad hoc handheld devices which are connected
to the Police control center to receive command and documents. Precisely, the
policemen can share documents with the Police control center and with other
policemen through a SecuredFileSharing application, for example a picture of a
suspect terrorist.

Unfortunately, the suspect is put on alert from the police movements and
tries to escape, evading the Stadium.

In such an emergency situation, there may be various cases in which Con-

nect can be of help. As described in [CON11c], the police could for example
be directly put in connection with various surveillance systems in the zone to
receive videos or pictures in their devices. We focus on the case that a policeman
that sees the suspect running away can dynamically seek assistance to capture
him from civilians serving as private security guards in the zone of interest. To
get help in following the moves of the escaping terrorist and capturing him, the
policeman sends to the civilian guards an alert message in which one picture of
the suspect is distributed.

On their side, to perform their service, the guards are equipped with smart
radio transmitters which run an EmergencyCall application. This transmission
follows a two steps protocol. We assume in fact that the guards that control a
zone are Connected in groups, and that for each group there is a Commander
on duty. The protocol followed in the EmergencyCall application is that a request
message is first sent from the guards control center to the Commander. As soon
as the Commander replies with an acknowledgement of receipt, a message with
details of the emergency is forwarded to all security guards. On correct receipt of
the alert, each guard’s device automatically sends an ack to the control center.

The two applications, SecuredFileSharing and EmergencyCall, in this sce-
nario represent the two Networked Systems, which are not a priori compatible;
hence a Connector bridging between the policeman device and the guard device
must be deployed.

In the following we show the LTSs modelling the two applications above men-
tioned.

SecuredFileSharing

– The peer that initiates the communication (hereafter denominated the co-
ordinator) sends a broadcast message (selectArea) to selected peers (the
Police control center or policemen) operating in a specified area of inter-
est. In the SecuredFileSharing application, the coordinator can be either the
Police control center or a policeman.

– The selected peers reply with an areaSelected message.
– The coordinator sends an uploadData message to transmit confidential data

to the selected peers.

Dependability and Performance Assessment 29

– Each selected peer automatically notifies the coordinator with an uploadSuccess
message when the data have been successfully received.

Fig. 13. LTS of the SecuredFileSharing Application

EmergencyCall

– The guards control center sends an eReq message to the commanders of the
patrolling groups operating in a given area of interest.

– The commanders reply with an eResp message.
– The guards control center sends an emergencyAlert message to all guards

of the patrolling groups; the message reports the alert details.
– Each guard’s device automatically notifies the guards control center with an

eACK message when the data has been successfully received and a timeout is
triggered after a time interval if not all guards sends back the eAck message.
The timeout represents the maximum time that the Connector can wait
for the eAck message from the guards.

To allow a Policeman and the guards in the zone where the suspect has es-
caped to communicate we need to synthesize on-the-fly a Connector. Precisely,
we need to mediate between the LTSs shown in Figures 13 and 14, respectively.
We briefly summarise the needed mappings below.

CONNECTor

– The selectAreamessage of the policeman is translated into an eReqmessage
directed to the commander of the patrolling group operating in the area of
interest.

– The eResp message of the commander is translated into an areaSelected

message for the policeman.
– The uploadData message of the policeman is translated into a multicast

emergencyAlert message.
– The eACK messages automatically sent by the guards’ devices that correctly

receive the emergencyAlert message are collected and then translated into
a single uploadSuccess message for the policeman.

The LTS of the Connector in the case of a patrolling group consisting of
one commander and two other guards is shown in Figure 15.

30 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

(a) Commander

(b) Other guards

Fig. 14. LTSs of the EmergencyCall Application

Fig. 15. LTS of the Connector

4.2 Off-line analysis

In this section, first we show the SAN models of the case study under analysis,
then the results of the analysis obtained through Möbius.

SAN Models The SAN models of guard, commander, Connector, and Se-
curedFileSharing are shown in Figure 16. The model of the Connected system
is obtained by composing, via place sharing, the SAN models of SecuredFile-
Sharing, commander, Connector and guards (the SAN model of the guards is
obtained by replicating a guard with the Rep operator). There is a shared place
for each pair of activities that represent send/receive actions: send activities add
tokens in the shared place, while receive activities remove tokens from the shared
place and use the marking of the shared place as enabling condition. Note that,

Dependability and Performance Assessment 31

in general, a send activity may control n > 1 receive activities (e.g., in the case
of a message with multicast/broadcast addresses); in this case, the send activity
will add n tokens to the shared place to allow the simultaneous enabling of the
receive activity of n receivers.

Timing aspects for send/receive actions are taken into account in the SAN
models as follows: when n receive activities complete simultaneously after a send
action completes, the receive activities are instantaneous and the send activity
is timed; when n receive activities complete independently after a send action
completes, the receive activities are timed and the send activity is instantaneous.
Timeouts are modelled with timed activities that force the enabling of other
activities.

In the following we describe in detail the behaviour of the model of Con-

nected system. In the description, we will use the prefixes C, G, CON, and S

to disambiguate the names of local places, activities and gates of commander,
guards, Connector, and SecuredFileSharing.

Initially, all places in the models have zero tokens, except p0, which con-
tains one token in all models. The SecuredFileSharing starts the communica-
tion, because S.selectArea is the only enabled activity. When S.selectArea

completes, one token is placed in S.p1 and one token in SharedCT0. At this
point, S.selectArea is enabled. When S.selectArea completes, one token is
placed in S.p1 and the number of tokens in SharedCT0 is increased. The ac-
tivity CON.selectArea is now enabled, when it completes one token is moved
from SharedCT0 to CON.p1, and CON.eReq becomes enabled. When CON.eReq

completes, the marking changes as follows: commNum tokens are placed in
SharedCM0, because commNum commanders must be involved in the communi-
cation; commNum tokens are placed in CON.p2, because the Connector must
wait for one eResp from each commander. When the Connector receives a re-
sponse from each commanders, (i) for each response received one token is placed
in CON.p3; (ii) when each commanders has sent a response CON.areaSelected is
enabled, one token is placed in CON.p4 and the number of tokens in SharedCT1

is increased. At this point S.areaSelected is enabled, when it completes one
token is moved from SharedCT1 to S.p2, and S.uploadData becomes enabled.
A token is placed in S.p3 and the number of token in SharedCT2 is increased.
Activity CON.uploadData is now enabled, when it completes one token is moved
from SharedCT2 to CON.p5, which enables the activity emergencyAlert. When
emergencyAlert completes commNum+ guardNum tokens are placed both in
SharedGD0 and CON.p6, and the number of tokens in CON.start1 is increased.
At this point activities CON.timeOut1 and G.emergencyAlert are both enabled.
The first one represents the Connector’s timeout on the maximum waiting
time; while the second one enables the activity G.eACK which increases the num-
ber of tokens in SharedGD1. At this point activity CON.eACK is enabled and the
number of tokens in CON.p7 and CON.Nresps is increased, until the timed activity
CON.timeOut1 completes. The activity uploadSuccess becomes enabled when
commNum+guardNum tokens are placed in CON.p7, this means that the Con-

nector has received all responses, or when the number of tokens in CON.stop1 is

32 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

(a) SecuredFileSharing

(b) Connector

(c) EmergencyCall, commander (d) EmergencyCall, guard

Fig. 16. SAN Models

greater than zero, this means that the time associated to the activity timeOut1

has elapsed, CON.timeOut1 completes. The number of tokens in CON.Nresps rep-
resents the number of guards that have recived the emergencyAlert and have
sent back the eACK before the timeout.

State-based Stochastic Analysis The analysis performed through Möbius
consists in: i) two measures of latency, at varying the number of guards and for
different traffic patterns; ii) a measure of coverage in case of failure.

Dependability and Performance Assessment 33

Latency. This property is measured from the moment when the control center
starts to send the initial request selectArea to the time it receives uploadSuccess.
The latency is specified by accumulating over time the following rate reward
function:

double latency() {

if (SecuredFileSharing->p1->Mark() > 0

|| SecuredFileSharing->p2->Mark() > 0

|| SecuredFileSharing->p3->Mark() > 0)

{ return 1; }

}

Latency2. It is also useful to know the trend of the amount of time spent on
waiting for eAck, given different values of T, the duration of the timeout shown
in the model of the Connector,.
This property is specified by accumulating over time the following rate reward
function:

double latency2() {

if (connector->start1->Mark() > 0 && connector->p6->Mark() > 0)

{ return 1; }

}

Coverage. This property is associated to the real value m/n, where n represents
the total number of guards and commanders, and m represents how many of
them send back their respons to the connector within T time units, after they
receive the request emergencyAlert.
Coverage is specified by accumulating over time the following impulse reward
on CON.uploadSuccess (guardNum and commNum are two parameters of the com-
posed model, and hold the number of guards and commanders respectively):

double coverage() {

return ((double) connector->Nresps->Mark()) / (guardNum + commNum);

}

Connected systems may include an arbitrary large number of Networked
Systems. Therefore, we investigated the scalability of the SAN model of the
Connected system by analysing large networks. The developed SAN model of
the Connected system is parametric with respect to the number of guards and
commanders.

We successfully assessed coverage and latency for scenarios with hundreds of
guards and two commanders. Figure 17(a) shows the analysis results for latency
in scenarios with at most 100 guards. We can notice that, for low values of the
timeout T, it is not possibile to appreciate differences in latency at increasing
the number of guards. In fact, due to the short duration of T the guards do
not have enough time to send a response. When T becomes greater than 8 time
units, it is possible to observe how the number of guards affects the value of
latency: as expected, increasing the number of guards leads to an increase of

34 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

latency.
The number of batches needed to reach a confidence level of 95% and a confi-
dence interval of 10% for the considered models was always below 10K, because
the models are relatively simple.

Latency for different traffic patterns Connected systems are expected
to be a mix of heterogeneous user applications, each of which may have different
characteristics and requirements. Currently, there is no single traffic distribution
that can efficiently capture the traffic characteristics of all types of networks un-
der every possible situation. A large number of empirical studies have shown
that network traffic is self-similar and that it generally exhibits multiple time-
scale behaviour [LTWW94]. These aspects can be modelled with subexponential
distributions, such as Weibull and Lognormal.

We investigated the effect of different subexponential distributions on latency
by changing the probability distribution function of the timed activities. For a
fair comparison, we have chosen distribution parameters that allow the same
mean value in all cases. The analysis results are shown in Figure 17(b). We can
notice that different traffic patterns lead to different latency profiles. Similarly
to the previous analysis, the latency assumes a constant value when the timeout
T reaches a certain value (5 time units in this case), after which it is possible to
appreciate how different traffic patterns affect the latency.

(a) Latency for different number of
guards

(b) Latency for different traffic patterns

Fig. 17. Latency for Different System Size and Different Traffic Patterns

Coverage in the case of failures Communication in the real-world can be
subject to failures. Therefore, failure modes need to be accounted for when set-
ting up the system model. Failure modes can pertain the value domain (e.g.,
wrong output), and/or the time domain (e.g., omission). In this section, we as-
sess coverage in the case of omission failure of the messages sent and received in

Dependability and Performance Assessment 35

the EmergencyCall application. Figure 18 shows the coverage profiles for differ-
ent probability P(ECallFailure) of failures of EmergencyCall communications.
The analysis is performed with two commanders and two guards. The figure
shows that variations in the failure probability significantly affect the coverage
metric. The lower values shown by all the curves on the left side of the figure
(that is, at initial values of T) are due to the fact that, given the short duration
of T, the guards do not have enough time to send a response.

Fig. 18. Coverage for Different P(ECallFailure) of Failures of EmergencyCall Com-
munications

4.3 On-line analysis

In the following, we focus on the Enablers interactions only, leaving out of scope
the actions taken by DePer Enabler once it obtains the values observed at run-
time from the Glimpse Enabler. We show a basic interaction between DePer

and Glimpse Enablers, with reference to the Terrorist Alert Scenario [CON11c].
As summarised in Section 4.1, the scenario considers the interactions between
police and patrolling civil guards. It is assumed that policemen and guards are
both equipped with mobile devices, but they use different communication pro-
tocols. Hence, we intend to use the Connect infrastructure to enable the direct
interoperation between a policeman and guards in the zone.

What we want to monitor at run-time is the latency between two states of
the LTS. Specifically, we want to monitor latency of two transitions from the
LTS shown in Figure 13.

The parameters under monitoring are the duration of the transitions executed
by the NS requesting the communication, on which timeouts have been setup
in the Connector specification to limit the waiting periods. Therefore, having
feedbacks on real executions is useful to improve the timeout calibration.

36 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

From Figure 13, the events to be monitored are the consumer transitions
selectArea and areaSelected. The request messages sent by DePer Enabler
to Glimpse are shown in Listing 1.2.

The Glimpse infrastructure, more specifically, the Manager component, re-
ceives the DePer requests and sets up the ComplexEventProcessor with the
provided rule.

The events flowing in from Probes are structured on a ConnectBaseEvent

object (see Figure 9), that provides all the necessary informations for an accurate
pattern recognition.

According to the scenario, the peer that initiates the communication sends
a broadcast message selectArea to selected peers (the Police control center or
policemen) operating in a specified area of interest.

The event generated from the Probe instrumented into the peer software
component is shown in Figure 19 and flows in into the Glimpse infrastructure
stream of events.

When the selected peer replies (Police control center or policemen), another
event is fired and sent on the Monitoring Bus, the areaSelected event.

The rule computation time, (lines 15-20) in Listing:1.2, used the times-
tamp contained into the two different events, matching: connectorID, sequen-
ceID, ConnectorInstanceID, ConnectorInstanceExecutionID of each event. This
rule, is able to calculate the latency (line 27) and provide it to the DePer.

Indeed, the rule pending request in the Listing1.2, (lines 40-42), computes
the number of incoming requests into the Connector and provide it to DePer

in order to evaluate coverage metric.

With those results, DePer is able now to evaluate the behaviour of the
Connector and if this is not compliant to the expected values, it may contact
the Syntesis Enabler requiring a new synthesis process.

Using a CEP able to infer more complex rules and patterns along with an
event-driven architecture approach for dependability and performance analysis,
may be beneficial in order to provide a cross-checking validation between run-
time value and analysis expected value.

Fig. 19. The selectArea Event Sent from Peer Probe

Dependability and Performance Assessment 37

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <ComplexEventRuleActionList xmlns=”http :// l ab s e . i s t i . cnr . i t

/ g l impse /xml/ComplexEventRule”
3 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t anc e ”
4 x s i : schemaLocation=”http :// l ab s e . i s t i . cnr . i t / g l impse /xml/

ComplexEventRule . / ComplexEventRule . xsd”>
5 <I n s e r t RuleType=” droo l s ”>
6 <RuleName>t rans i t i onDurat ionRule</RuleName>
7 <RuleBody>
8 [. . .]
9 rule ” computation time”

10 no−loop

11 salience 999
12 dialect ” java ”
13 when

14 $aEvent : SimpleEvent (this . data == ” se l e c tArea ” , this

. getConsumed == f a l s e) ;
15 $bEvent : SimpleEvent (this . data == ” ar eaSe l e c t ed ” ,
16 this . getConsumed == f a l s e ,
17 this . getConnectorID == $aEvent .

getConnectorID ,
18 this . getConnectorInstanceID == $aEvent .

getConnectorInstanceID ,
19 this . getConnectorInstanceExecut ionID ==

$aEvent .
getConnectorInstanceExecut ionID ,

20 this after $aEvent) ;
21 then

22 $aEvent . setConsumed (t rue) ;
23 $bEvent . setConsumed (t rue) ;
24 Sa t i s f i e dReque s t s r = new Sa t i s f i e dReque s t () ;
25 s r . setIncoming ($aEvent) ;
26 s r . setOutcoming ($bEvent) ;
27 s r . se tDurat ion (Droo l sUt i l s . l a t ency ($aEvent .

getTimestamp () , $bEvent . getTimestamp ())) ;
28 i n s e r t (s r) ;
29 r e t r a c t ($aEvent) ;
30 r e t r a c t ($bEvent) ;
31 ResponseDispatcher . NotifyMe (d roo l s . getRule () . getName

() , ”DePer Module” , s r . getDurat ion ()) ;
32 end

33

34 rule ”pending reque s t ”
35 no−loop

36 salience 999
37 dialect ” java ”
38 when

39 $ t o t a l : Number ()
40 from accumulate ($nEvent : SimpleEvent (data == ”

se l e c tArea ”)
41 from entry−point ”DEFAULT” ,
42 count ($nEvent))
43 then

44 ResponseDispatcher . NotifyMe (d roo l s . getRule () . getName
() , ”DePer Module” , ”PENDING: ” + $ t o t a l) ;

45 end

46 </RuleBody>
47 </In s e r t>
48 </ComplexEventRuleActionList>

Listing 1.2. Sample Request from Dependability&Performance Enabler

38 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

5 Related work

This work spans over automated model-based dependability analysis and event-
based monitoring.

Research on definition and development of transformation-based verification
and validation environments are being pursued since several years. Providing
automatic/automated transformations methods from system specification lan-
guages to modelling languages amenable to perform dependability analysis has
been recognized as an important support for improving the quality of systems.
In addition, it favours the application of verification and validation techniques at
industry level, where these methods are not widely used primarily due to the high
level of abstractness of the mathematical modelling and analysis techniques. To
provide some examples, the Viatra tool [CHM+02] automatically checks consis-
tency, completeness, and dependability requirements of systems designed using
the Unified Modeling Language. The Genet tool [CCK09], based on the theory
of regions [ER90], allows the derivation of a general Petri net from a state-based
representation of a system. Our work addresses the transformation from the LTS
formalism, as system specification language, to SAN, as dependability modelling
language. Since there are some steps in common with the Genet tool and related
theory, we partially reused available results from this previous study.

Similarly toGlimpse, also [PSB04] presents an extended event-based middle-
ware with complex event processing capabilities on distributed systems. Similar
to Glimpse this work adopts a publish/subscribe infrastructure but it is mainly
focused on the definition of a complex-event specification language. The aim of
Glimpse is to give a more general and flexible monitoring infrastructure for
achieving a better interpretability with many possible heterogeneous systems.

Another monitoring architecture for distributed systems management is pre-
sented in [HAwM99]. Differently from Glimpse, this architecture employs a
hierarchical and layered event filtering approach. The goal of the authors is to
improve monitoring scalability and performance for large-scale distributed sys-
tems, minimizing the monitoring intrusiveness.

Many works focus on the definition of expressive complex event specifica-
tion languages [MSS97,CM94,CM10]. Among these languages, GEM [MSS97]
is a generalized and interpreted event monitoring language. It is rule-based
(similar to other event-condition-action approaches) and also provides a tree-
bases detection algorithm taking into account communication delay. Also the
Snoop language [CM94] follows an event-condition-action approach support-
ing temporal and composite events specification but it is especially developed
for active databases. A more recent formally defined specification language is
TESLA [CM10]. It has a simple syntax and a semantics based on a first order
temporal logic. The authors of [CM10] also provide an efficient event detection
algorithm by translating TESLA rules into automata. Some existing open-source
event processing engines are Drools Fusion [dro] and Esper [esp]. They can fully
be embedded in existing Java architectures and provide efficient rule processing
mechanisms. In our prototype we used Drools because ServiceMix offers it as
business rule engine.

Dependability and Performance Assessment 39

Preliminary studies that attempt combining off-line with on-line analysis
have already appeared in the literature. A major area on which such approaches
have been based is that of autonomic computing. Among such studies, in [MT06],
an approach is proposed for autonomic systems, which combines analytic avail-
ability models and monitoring. The analytic model provides the behavioural
abstraction of components/subsystems and of their interconnections and depen-
dencies, while statistical inference is applied on the data from real time moni-
toring of those components and subsystems, to assess parameter values of the
system availability model. Through on-line monitoring and estimation of system
availability, adaptive on-line control of system availability can then be obtained.
In [RP10], an approach is proposed to carry out run-time reliability estimation,
based on a preliminary modelling phase followed by a refinement phase, where
real operational data are used to overcome potential errors due to model simpli-
fications. The model is based on Discrete Time Markov Chain, and a prototype
version of the monitoring system has been implemented, that is initially trained
with the reference model and the preliminary reliability estimation, and then
uses operational data to compute the on-line reliability level.

Our approach aims at proposing powerful evaluation and monitoring sup-
ports able to cover, individually, a wide spectrum of needs inside the Connect

framework (quantitative assessment of a variety of dependability and perfor-
mance metrics on one side and generic monitoring infrastructure useful to a
variety of Connect Enablers on the other side), and at exploiting their syner-
gic usage to lead to higher accuracy of dependability and performance analysis
results.

6 Conclusions and outlook

We have presented the directions currently pursued in the Connect project for
the assessment of dependability and performance related properties of dynamic
evolving systems. In particular, we focused on usage of stochastic model-based
approaches, both at design time, for the early evaluation of the relevant non-
functional requirements, and at run-time, for the continuous checking of system
behaviour based on the actual data collected by the publish-subscribe monitoring
infrastructure.

In line with the tutorial flavour of the chapter, we first provided basic intro-
ductory concepts and bibliography to model-based analysis of dependability at-
tributes, relying on the SAN formalism and the Möbius tool. We also overviewed
event-based monitoring and current research directions. We then described the
solutions developed in the Connect project, which include the DePer modular
infrastructure and the flexible Glimpse monitor, and discussed their intercon-
nection to bring dependability and performance analysis to on-line stage.

The presented solutions mostly exploit advanced state-of-art results. The
value brought forward by the Connect project stays mainly in their combined
engineering and in the integration with the other Connect Enablers. The in-
frastructure resulting from the interfacing of DePer and Glimpse has been

40 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

conceived with the highest flexibility and modularity in mind, so to allow for
future further expansions, for example by including differing analysis engines, as
we already show in [DGKM+10] for stochastic model checking.

At the time of writing, the implementation of the presented framework is still
on-going and therefore our future work in the short term will of course involve
the experimentation and refinement of the proposed approaches. More impor-
tantly, we intend to make the frameworkmodel-driven, so to make it more general
and reusable. We are defining a property meta-model, a first release of which
is available at http://labsewiki.isti.cnr.it/labse/tools/cpmm/public/main. The
meta-model specifies non-functional properties, both qualitative and quantita-
tive, to be evaluated. The idea then is that specific property models conforming
to such meta-model can be used to automatically drive both DePer analysis,
by providing in input the requested dependability and performance metrics, and
probe instrumentation of the Connect monitoring Enabler.

Acknowledgements

The work reported in this chapter has been partially supported by the EU-
funded Connect project (FP7231167) and stems from the collaborative effort
of many colleagues from the Connect project, whom we would like to thank col-
lectively, in the difficulty to list each single contribution. Among them, however,
a special acknowledgement goes to the contributions from Marco Martinucci,
Paolo Masci and Antonino Sabetta, formerly part of the CNR-ISTI Connect

team, who have conceived with us the architectures of the presented DePer and
Glimpse infrastructures, contributed to their development, and shared with us
lot of discussions, insights, writing, and perspectives. We and the project owe
much to them for the presented achievements.

References

[ABC84] M. Ajmone Marsan, G. Balbo, and G. Conte. A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor sys-
tems. ACM Transactions on Computer Systems, 2(2):93–122, 1984.

[AC87] M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and
exponentially distributed firing times. In G. Rozenberg, editor, Advances
in Petri Nets 1987, volume 266 of LNCS, pages 132–145. Springer-Verlag,
1987.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004.

[Bal01] G. Balbo. Introduction to stochastic petri nets. In J.-P. Katoen,
H. Brinksma, and H. Hermanns, editors, Lectures on Formal Methods
and Performance Analysis : First EEF/Euro Summer School on Trends
in Computer Science Berg en Dal, The Netherlands, July 3-7, 2000, Re-
vised Lectures, volume 2090 of Lecture Notes in Computer Science, pages
84–155. Springer-Verlag, 2001.

Dependability and Performance Assessment 41

[BCDG+ar] A. Bertolino, A. Calabrò, F. Di Giandomenico, M. Martinucci, and
P. Masci. Automated refinement of dependability analysis through mon-
itoring in dynamically connected systems. In Proc. IEEE International
Symposium on Autonomous Decentralized Systems, Tokyo, Japan, March
2011, to appear.

[BCG05] A. Bondavalli, S. Chiaradonna, and F. Di Giandomenico. Model-based
evaluation as a support to the design of dependable systems. In Hassan B.
Diab and Albert Y. Zomaya, editors, Dependable Computing Systems:
Paradigms, Performance Issues, and Applications, pages 57–86. Wiley,
2005.

[BGD06] L. Baresi, C. Ghezzi, and E. Di Nitto. Toward open-world software: issues
and challenges. Computer, 39(10), 2006.

[BGG04] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for com-
posed services. In ICSOC ’04: Proceedings of the 2nd international con-
ference on Service oriented computing, pages 193–202, New York, NY,
USA, 2004. ACM.

[BPTT98] A. Bobbio, A. Puliafito, M. Telek, and K. S. Trivedi. Recent developments
in non-Markovian stochastic Petri nets. Journal of Circuits, Systems and
Computers, 8(1):119–158, 1998.

[BS02] U.A. Buy and G. Singal. Toward efficient algorithms for generating com-
pact petri nets from labeled transition systems. In COMPSAC ’02, pages
717–722, Washington, DC, USA, 2002. IEEE Computer Society.

[BT98] A. Bobbio and M. Telek. Non-exponential stochastic Petri nets: an
overview of methods and techniques. Computer Systems Science and En-
gineering, 13(6):339–351, 1998.

[CBC+93] G. Ciardo, A. Blakemore, P.F. Chimento, J.K. Muppala, and K.S. Trivedi.
Automated generation and analysis of markov reward models using
stochastic reward nets. In C. Meyer and R.J. Plemmons, editors, Linear
Algebra, Markov Chains, and Queueing Models, IMA Volumes in Mathe-
matics and its Applications, volume 48, pages 145–191. Springer-Verlag,
1993.

[CCD+01] G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi, J. M. Doyle,
W. H. Sanders, and P. G. Webster. The Mobius modeling tool. In 9th
Int. Workshop on Petri Nets and Performance Models, pages 241–250,
Aachen, Germany, September 2001. IEEE Computer Society Press.

[CCK09] J. Carmona, J. Cortadella, and M. Kishinevsky. Genet: A tool for the syn-
thesis and mining of petri nets. In ACSD ’09, pages 181–185, Washington,
DC, USA, 2009. IEEE Computer Society.

[CGL94] G. Ciardo, R. German, and C. Lindemann. A characterization of the
stochastic process underlying a stochastic petri net. IEEE Transactions
on Software Engineering, 20(7):506–515, 1994.

[CHM+02] Gyorgy Csertan, Gabor Huszerl, Istvan Majzik, Zsigmond Pap, Andras
Pataricza, Daniel Varro, and Dniel Varr. Viatra - visual automated
transformations for formal verification and validation of uml models. In
17th IEEE International Conference on Automated Software Engineering
(ASE’02), pages 267–270, 2002.

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
petri nets from finite transition systems. IEEE Transactions on Comput-
ers, 47(8):859–882, 1998.

42 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

[CKT94] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Performance modeling using
Markov regenerative stochastic Petri nets. Performance Evaluation, 20(1–
3):339–356, 1994.

[CM94] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering, 14(1):1–
26, 1994.

[CM10] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined
event specification language. In Proceedings of DEBS, pages 50–61, 2010.

[CON10] CONNECT Consortium. Deliverable 5.1 – Conceptual Models for Assess-
ment & Assurance of Dependability, Security and Privacy in the Eternal
Connected World, 2010.

[CON11a] CONNECT Consortium. Deliverable 4.2 – Further development of learn-
ing techniques, 2011.

[CON11b] CONNECT Consortium. Deliverable 5.2 – Design of Approaches for De-
pendability and Initial Prototypes, 2011.

[CON11c] CONNECT Consortium. Deliverable 6.1 – Experiment scenarios, proto-
types and report Iteration 1, 2011.

[CON13] EU FP7 Project Connect (FP7–231167), 2009–2013.
[DGKM+10] F. Di Giandomenico, M. Kwiatkowska, M. Martinucci, P. Masci, and

H Qu. Dependability analysis and verification for connected systems.
In Tiziana Margaria and Bernhard Steffen, editors, Proc. ISOLA 2010 -
Leveraging Applications of Formal Methods, Verification, and Validation,
volume 6416 of LNCS, pages 263 – 277. Springer, 2010.

[dro] Drools fusion: Complex event processor.
http://www.jboss.org/drools/drools-fusion.html.

[ER90] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. Part I: basic
notions and the representation problem. Acta Inf., 27(4):315–342, 1990.

[esp] Esper: Event stream and complex event processing for java.
http://www.espertech.com/products/esper.php.

[Fid96] Colin Fidge. Fundamentals of Distributed System Observation. IEEE
Softw., 13(6):77–83, 1996.

[Gai86] Jason Gait. A Probe Effect in Concurrent Programs. Softw., Pract.
Exper., 16(3):225–233, 1986.

[Ger01] R. German. Non-Markovian analysis. In E. Brinksma, H. Hermanns,
and J. P. Katoen, editors, Lectures on Formal Methods and Performance
Analysis, volume 2090 of LNCS, pages 156–182. Springer-Verlag, 2001.

[GG11] Nikolaos Georgantas and Paul Grace. The Connect architecture. In 11th
Int. School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Connectors for Eternal Networked Software
Systems (SFM-11:CONNECT). LNCS series, 2011.

[Hav01] B. R. Haverkort. Markovian models for performance and dependability
evaluation. In J.-P. Katoen, H. Brinksma, and H. Hermanns, editors,
Lectures on Formal Methods and Performance Analysis, volume 2090 of
LNCS, pages 38–83. Springer-Verlag, 2001.

[HAwM99] Ehab Al-Shaer Hussein, Hussein Abdel-wahab, and Kurt Maly. HiFi: A
New Monitoring Architecture for Distributed Systems Management. In
Proceedings of ICDCS, pages 171–178, 1999.

[HBPU06] Hesham Hallal, Sergiy Boroday, Alexandre Petrenko, and Andreas Ulrich.
A formal approach to property testing in causally consistent distributed
traces. Formal Asp. Comput., 18(1):63–83, 2006.

Dependability and Performance Assessment 43

[How71] R. A. Howard. Dynamic Probabilistic Systems: Markov Models, volume 1
of Decision and Control. John Wiley and Sons, New York, 1971.

[iee90] IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[jbi] Jbi: Java business integration. http://jcp.org/aboutJava/communityprocess/final/jsr208.
[JLSU87] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger. Monitoring

distributed systems. ACM Trans. Comput. Syst., 5(2):121–150, 1987.
[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.
[Lap95] J.C. Laprie. Dependable computing and fault tolerance: concepts and ter-

minology. In Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-
Five Years’., Twenty-Fifth International Symposium on, pages 2+, 1995.

[Lap08] J.C. Laprie. From dependability to resilience. In 38th IEEE/IFIP Int.
Conf. On Dependable Systems and Networks, 2008.

[LTWW94] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wil-
son. On the self-similar nature of ethernet traffic (extended version).
IEEE/ACM Transactions on Networking, 2(1):1–15, 1994.

[MCC04] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia
distributed monitoring system: design, implementation, and experience.
Parallel Computing, 30(7):817 – 840, 2004.

[Mey92] John F. Meyer. Performability: A retrospective and some pointers to the
future. Perform. Eval., 14(3-4):139–156, 1992.

[MFT00] J. K. Muppala, R. M. Fricks, and K. S. Trivedi. Techniques for system de-
pendability evaluation. In W. K. Grassmann, editor, Computational Prob-
ability, Vol. 24 of Operations Research and Management Science, pages
445–480. Kluwer Academic Publishers, The Netherlands, 2000.

[MK06] J. Magee and J. Kramer. Concurrency: state models & Java programs.
John Wiley & Sons, New York, NY, USA, 2006.

[MM84] A. Movaghar and J. F. Meyer. Performability modelling with stochastic
activity networks. In 1984 Real-Time Systems Symposium, pages 215–224,
Austin, TX, December 1984. IEEE Computer Society Press.

[MMDGar] P. Masci, M. Martinucci, and F. Di Giandomenico. Towards automated
dependability analysis of dynamically connected systems. In Proc. IEEE
International Symposium on Autonomous Decentralized Systems. IEEE,
Tokyo, Japan, March 2011, to appear.

[Mol82] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEE
Transactions on Computers, 31(9):913–917, 1982.

[MSS94] Masoud Mansouri-Samani and Morris Sloman. Monitoring distributed
systems. pages 303–347, 1994.

[MSS97] Masoud Mansouri-Samani and Morris Sloman. GEM: a generalized event
monitoring language for distributed systems. Distributed Systems Engi-
neering, 4(2):96–108, 1997.

[MT06] Kesari Mishra and Kishor S. Trivedi. Model based approach for autonomic
availability management. In ISAS 2006, volume 4328 of LNCS, pages 1–
16. Lecture Notes in Computer Science, 2006.

[NST04] David M. Nicol, William H. Sanders, and Kishor S. Trivedi. Model-based
evaluation: from dependability to security. IEEE Transactions on De-
pendable and Secure Computing, 1:48–65, January-March 2004.

[PSB04] P.R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a
generic middleware extension. Network, IEEE, 18(1):44 – 55, jan. 2004.

44 A. Bertolino, A. Calabró, F. Di Giandomenico, N. Nostro

[ReS08] ReSIST Consortium. EU project ReSIST: Resilience for Survivability in
IST. Deliverable D33: Resilience-explicit computing. Technical report,
2008. http://www.resist-noe.org/.

[RP10] K. S. Trivedi R. Pietrantuono, S. Russo. Online monitoring of software
system reliability. In Proc. EDCC ’10 - 2010 European Dependable Com-
puting Conference, pages 209–218. IEEE Computer Society, 2010.

[rpc] RPC: Model for programming in a distributed computing environment.
http://msdn.microsoft.com/en-us/library/ms691207(VS.85).aspx.

[RSB05] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: a library
for automata learning and experimentation. In FMICS ’05, pages 62–71,
New York, NY, USA, 2005. ACM.

[rul] Ruleml: The rule markup initiative. http://ruleml.org.
[Sch95] Beth A. Schroeder. On-Line Monitoring: A Tutorial. Computer, 28(6):72–

78, 1995.
[Sha93] B. P. Shah. Analytic solution of stochastic activity networks with expo-

nential and deterministic activities. Master’s thesis, University of Arizona,
USA, 1993.

[SI10] Romina Spalazzese and Paola Inverardi. Mediating connector patterns for
components interoperability. In Proceedings of ECSA2010, LNCS 6285,
pages 335–343, 2010.

[SK88] Madalene Spezialetti and John P. Kearns. A General Approach to Recog-
nizing Event Occurences in Distributed Computations. In ICDCS, pages
300–307, 1988.

[SM02] William H. Sanders and John F. Meyer. Stochastic Activity Networks:
formal definitions and concepts. pages 315–343, 2002.

[Tri02] K. S. Trivedi. Probability and Statistics with Reliability, Queueing and
Computer Science Applications. John Wiley & Sons, New York, second
edition, 2002.

[Zim99] D. Zimmer. On the semantics of complex events in active database man-
agement systems. In Proceedings of the 15th International Conference
on Data Engineering, pages 392–, Washington, DC, USA, 1999. IEEE
Computer Society.

