
A sparse model predictive control formulation

for walking motion generation

Dimitar Dimitrov, Alexander Sherikov, Pierre-Brice Wieber

Abstract— This article presents a comparison between dense
and sparse model predictive control (MPC) formulations, in the
context of walking motion generation for humanoid robots. The
former formulation leads to smaller, the latter one to larger but
more structured optimization problem. We put an accent on the
sparse formulation and point out a number of advantages that it
presents. In particular, motion generation with variable center
of mass (CoM) height, as well as variable discretization of the
preview window, come at a negligible additional computational
cost. We present a sparse formulation that comprises a diagonal
Hessian matrix and has only simple bounds (while still retaining
the possibility to generate motions for an omnidirectional walk).
Finally, we present the results from a customized code used to
solve the underlying quadratic program (QP).

I. INTRODUCTION

The importance of generating online “safe” walk-

ing/running motions for a humanoid robot has been rec-

ognized by researchers, judging by the large number of

papers dedicated to this problem. There is a variety of

control/planning schemes proposed. A promising approach is

based on the use of an approximate dynamical model, where

the approximation error is compensated for by the application

of a preview type of controller with (possibly) fast control

sampling rates. Such control schemes usually involve the

minimization of an objective function over a given finite

prediction horizon subject to input and state constraints (i.e.,
a classical MPC scheme). This is the type of schemes we

address here.

A variety of MPC formulations for walking motion gener-

ation have been presented [2]-[8] (some of them have been

successfully tested on the HRP-2 and NAO platforms [1]).

They address important problems related to humanoid walk-

ing, like stabilization of the system along a given reference

trajectory, optimal foot repositioning (accounting for safety

zones for foot placement), tracking a given reference speed

(for both rotation and translation), analysis related to the

efficient solution of the underlying QP, etc. Even though

when addressing particular problems, the above mentioned

references use different objective functions (e.g., including

alternative formulations with ℓ2-, ℓ1-, ℓ∞-penalties), and

account for different constraints, they have one thing in com-

mon. Namely, the MPC formulation is always developed by

choosing the minimum number of decision variables. In the

context of MPC, this is labeled as the “standard approach”

[9], where (usually) only the control inputs are considered

as variables, while the equality constraints due to the system

dynamics are eliminated. Even though this reduces the size of

the problem to be solved, the constraints and Hessian matrix

are (in general) dense, i.e., the structure of the problem is

lost. When solving such a dense QP, the computational cost

per iteration is O(N3) (if using an interior-point method)

[9] and O(N2) (if using an active-set method), with N
being the number of sampling times in the preview window.

This approach performs well, provided that N is “relatively

small”. When using a dense formulation, apart from the

problem of solving the QP, in many cases forming the

Hessian matrix and the vector of the objective function is

computationally expensive and is usually performed off-line.

Depending on the particular setting, this might be entirely

reasonable (e.g., when the Hessian is constant). However, in

general (and in the context of the formulation that we will

discuss) this poses unnecessary limitations. For example, if

the scheme in [4] is used, each distinct value for the desired

altitude cz of the CoM (above the flat floor) results in a

distinct Hessian matrix. It can be precomputed offline only

when the desired values of cz are known in advance. If

this is not the case, the Hessian has to be formed online,

which (for this particular example) could turn out to be more

expensive than solving the actual QP afterwards. In order to

emphasize the “two step” approach (forming, then solving)

associated with the dense formulation, in [10] it is a called

a “sequential” approach to MPC. The dense formulation is

usually appealing to practitioners, because in many cases

it is possible to directly use off-the-shelf dense solvers. In

contrast, exploiting the structure of the problem in the sparse

formulation usually requires writing customized code.

A well known strategy for overcoming the limitations of

the sequential approach, is to have the equality constraints

due to the dynamics of the system explicitly appear in the

formulation of the problem (see Section II). This results in

a larger but more structured QP. In [10] this formulation

is referred to as “simultaneous” approach to MPC, and its

solution can be obtained at a cost of O(N) per iteration

[9]. Note that efficient algorithms that (in practice) require

a number of iterations only weakly related to N are readily

available (see Section V).

In this paper we present a sparse MPC formulation for

walking motion generation, adopting the simultaneous ap-

proach, and analyze its advantages over the already proposed

dense formulations in the context of humanoid walking. We

derive an optimization problem that has a diagonal Hessian

matrix and only simple bounds, while still retaining the

possibility to generate motions for an omnidirectional walk.

We point out that concepts already introduced with the

dense formulation (like foot variation, and using alternative

penalties in the objective function) are straightforward to

adopt with the simultaneous approach.

The article is organized as follows: In Section II, we

motivate the simultaneous approach, by considering first as

an example a linear quadratic regulator (LQR) with discrete-

time finite-horizon. In Sections III and IV we introduce our

sparse formulation and analyze its advantages. Section V

discusses the online solution of the underlying QP. Finally,

Section VI compares the online computation time required

by the dense and sparse formulations. For conciseness of

notation, in some cases, we will use x = (x1, . . . , xN) to

denote the elements of a column vector x.

II. A MOTIVATING EXAMPLE

The main difference between the sequential and simulta-

neous approaches can be emphasized using a simple example

of a discrete-time finite-horizon LQR. Consider a discrete-

time system

xk+1 = Axk + Buk, k = 0, . . . , N − 1,

x0 is a known initial state.

Define a quadratic cost function

J(vx,vu) = vT
xHxvx + vT

uHuvu, (1)

:=

N−1∑

k=1

xT
kQxk + xT

NQfxN +

N−1∑

k=0

uT
kPuk,

where vu = (u0, . . . ,uN−1) is a column vector containing

the control inputs uk ∈ R
m, vx = (x1, . . . ,xN) is a

column vector containing the states xk ∈ R
n. Q and Qf are

symmetric and positive semidefinite matrices that represent

state cost, and final state cost, respectively, while P is a

symmetric positive definite matrix representing the input

cost. Q, Qf and P are assumed to be given. We want to

choose vx and vu (starting from x0), so that J(vx,vu) is

minimized. There are multiple ways to solve this problem.

One approach is to express vx as a function of vu and

eliminate it from (1) as follows.

vx =

A

A
2

...

A
N

︸ ︷︷ ︸

w

x0 +

B 0 . . . 0

AB B . . . 0

...
...

. . .
...

A
N−1

B A
N−2

B . . . B

︸ ︷︷ ︸

W

vu,

J̃(vu) = vT
uHvu + vT

u w̃, (2)

where H = W THxW +Hu, w̃ = 2W THxwx0. Some

drawbacks of this approach are: (i) forming the matrix

H requires two matrix-matrix multiplications, (ii) H is in

general dense, hence without any structure to exploit, the

cost of minimizing (2) grows like N3.

An alternative approach is to directly minimize (1), subject

to the system dynamics, i.e.,

minimize
vx,vu

[
vx

vu

]T [
Hx 0

0 Hu

] [
vx

vu

]

subject to xk+1 = Axk + Buk, k = 0, . . . , N − 1,

x0 is a known initial state.

This is a problem with (n +m)N variables subject to nN
equality constraints, however, as is well known [9], [11]

pp. 553, by exploiting the structure of the Hessian matrix

and constraints, the computational complexity grows linearly

with N . The same complexity can be demonstrated by using

the Riccati recursion or dynamic programming. We will

revisit this issue in Section V.

III. SPARSE MPC FORMULATION

In order to present the major ideas as clearly as pos-

sible, and for notation simplicity, we leave some special

cases aside. In particular, we assume that double support

constraints are modeled as rectangular polygons (for justifi-

cation, and more details see [2]).

A. The approximate model

We use the 3D linear inverted pendulum [12], constrained

to move on a horizontal plane with height cz , as an approx-

imate model of a humanoid robot. Consider the following

linear dynamical system [13] for k = 0, . . . , N − 1

ĉk+1 = Akĉk + Bk
...
ck, (3)

zk+1 = Ck+1ĉk+1,

ĉ0 is a known initial state,

where ck = (cxk, c
y
k) and zk = (zxk , z

y
k) are the coordinates

of the CoM and the zero moment point (ZMP) on the flat

floor, during the kth sampling time of the preview window,
ĉk = (cxk, ċ

x
k, c̈

x
k, c

y
k, ċ

y
k, c̈

y
k).

Ak =

1 Tk T 2
k/2 0 0 0

0 1 Tk 0 0 0

0 0 1 0 0 0

0 0 0 1 Tk T 2
k/2

0 0 0 0 1 Tk

0 0 0 0 0 1

, Bk =

T 3
k/6 0

T 2
k/2 0

Tk 0

0 T 3
k/6

0 T 2
k/2

0 Tk

,

Ck =

[

1 0 −hk 0 0 0

0 0 0 1 0 −hk

]

,

Cp =

[

1 0 0 0 0 0

0 0 0 1 0 0

]

, Cv =

[

0 1 0 0 0 0

0 0 0 0 1 0

]

,

hk = czk/g, with g being the norm of the acceleration due

to gravity (e.g., g ≈ 9.8 m/s2), and Tk is the length of the

kth sampling time in the preview window. We defined Cp

and Cv for future reference. For this system, the standard

(i.e., dense) MPC formulation can be found in [2] (where

the sampling time and czk are assumed to be constant).

B. Sparse formulation (objective function)

Consider the following objective function (which is the
same as the one in [2], equation (14))

f(v) =
γ

2

N−1
∑

k=0

‖
...
ck‖

2
+

α

2

N
∑

k=1

‖ċk‖
2
+

β

2

N
∑

k=1

‖zk − z
ref
k ‖

2
(4)

:=
γ

2

N−1
∑

k=0

(

...
c
T
k

...
ck

)

+
α

2

N
∑

k=1

(

ċ
T
k ċk

)

+
β

2

N
∑

k=1

(

z
T
k zk − 2z

T
k z

ref
k

)

,

where α, β, γ > 0 are gains, and the constant quadratic term

in zref
k (which is the reference ZMP) was dropped. The vari-

able v ∈ R
p is defined as v = (vc,vu), vc = (ĉ1, . . . , ĉN),

vu = (
...
c0, . . . ,

...
cN−1), where p = (n+m)N = (6 + 2)N .

Using

α

2
ċTk ċk = ĉ

T
k

α

2
C

T
v Cv

︸ ︷︷ ︸

Q
v

ĉk,

β

2
zT
k zk − βzT

k z
ref
k = ĉ

T
k

β

2
C

T
kCk

︸ ︷︷ ︸

Q
zk

ĉk − ĉ
T
k βCT

k z
ref
k

︸ ︷︷ ︸

q
k

,

P =
γ

2
I, Qk = Qv +Qzk

,

where I denotes the identity matrix, the objective function

in (4) can be expressed in the following compact way

f(v) =

[
vc

vu

]T [
Hc 0

0 Hu

] [
vc

vu

]

+

[
vc

vu

]T [
gc

0

]

,

Hc =

Q1 . . . 0

...
. . .

...

0 . . . QN

 , Hu =

P . . . 0

...
. . .

...

0 . . . P

 ,

where gc = (−q1, . . . ,−qN). Note that Hu is a diagonal

matrix, while Hc is a block diagonal (and variable) matrix.

C. Sparse formulation (constraints)

As pointed out in the example in Section II, instead of

eliminating the states (and leaving only the control inputs as

decision variables), one can minimize the objective function

over both vc and vu subject to the equality constraints due

to the system dynamics (3). The equality constraints can be

expressed in a matrix form as

Ecvc +Euvu = e,

Ec =

−I 0 0 . . . 0 0

A1 −I 0 . . . 0 0

0 A2 −I . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . AN−1 −I

,

Eu =

B0 0 0 . . . 0

0 B1 0 . . . 0

0 0 B2 . . . 0

...
...

...
. . .

...

0 0 0 . . . BN−1

, e =

−A0ĉ0
0

0

...

0

.

Apart from the equality constraints, we have to define

inequality constraints that limit the motion of the ZMP to

be within a given polygon on the flat floor. Let Rk ∈ R
2×2

and rk ∈ R
2 denote a rotation matrix and position vector

defining the orientation and position of a rectangular polygon

of support appearing in the kth sampling time of the preview

window. Define the constraint for zk as

DzR
T
k (zk − rk) ≤ dz,

where, Dz =
[
I −I

]T
∈ R

4×2 and dz is a constant

vector reflecting the size of the polygon of support (for

more details, and additional inequality constraints that can

be considered see [2]). By rearranging terms, and using

zk = Ckĉk we obtain

DzR
T
kCkĉk ≤ dz +DzR

T
k rk

︸ ︷︷ ︸

dk

. (5)

The following QP can be used to perform stabilization of a

humanoid robot along a given reference profile for the ZMP

minimize
v

f(v) (6)

subject to Ecvc +Euvu = e,

DzR
T
kCkĉk ≤ dk, k = 1, . . . , N.

D. Change of variable (diagonal Hessian)

In order to obtain a formulation with a diagonal Hessian

(which is computationally more attractive, see Section V), we

interchange ck with zk in the state vector of (3), to obtain

the following dynamical system for k = 0, . . . , N − 1

c̃k+1 = Ãkc̃k + B̃k
...
ck, (7)

zk+1 = Cpc̃k+1,

c̃0 is a known initial state.

Ãk =

1 Tk T 2
k /2−∆hk 0 0 0

0 1 Tk 0 0 0

0 0 1 0 0 0

0 0 0 1 Tk T 2
k /2−∆hk

0 0 0 0 1 Tk

0 0 0 0 0 1

,

B̃k =

T 3
k /6− hk+1Tk 0

T 2
k /2 0

Tk 0

0 T 3
k /6− hk+1Tk

0 T 2
k /2

0 Tk

, c̃k =

zxk
ċxk
c̈xk
zyk
ċyk
c̈yk

.

Where ∆hk = hk+1−hk. With the above change of variable,

the objective function is given by

f̃(ṽ) =

[
ṽc

vu

]T [

H̃c 0

0 Hu

]

︸ ︷︷ ︸

H

[
ṽc

vu

]

+

[
ṽc

vu

]T [
g̃c

0

]

,

where g̃c = (−q̃1, . . . ,−q̃N),

H̃c =

Q̃ . . . 0

...
. . .

...

0 . . . Q̃

, ṽc =

c̃1
...

c̃N

, ṽ =

[

ṽc

vu

]

,

Q̃z =
β

2
C

T
p Cp, q̃k = βCT

p z
ref
k , Q̃ = Qv + Q̃z. (8)

Note that the new Hessian matrix is constant and has nonzero

entries only on the main diagonal. The equality constraints

are given by

Ẽcṽc + Ẽuvu = ẽ,

where the structure of Ẽc, Ẽu and ẽ is identical to that of

Ec, Eu and e, however, Ak, Bk and ĉ0 are interchanged with

Ãk, B̃k and c̃0. The inequality constraints in (5) become

DzR
T
kCpc̃k ≤ dk. (9)

E. Change of variable (simple bounds)

By a second change of variable, we can express the general

inequality constraints in (9) as simple bounds. Define the

following rotation matrix (cθk = cos θk, sθk = sin θk, where

θk is the angle, with respect to the world frame, of the

support polygon appearing in the kth sampling time)

R̄k =

cθk 0 0 −sθk 0 0
0 1 0 0 0 0
0 0 1 0 0 0
sθk 0 0 cθk 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

Define c̄k = R̄
T
k c̃k, hence c̃k = R̄kc̄k. Performing a change

of variable in (7), leads to

c̄k+1 = R̄
T
k+1ÃkR̄kc̄k + R̄

T
k+1B̃k

...
ck. (10)

The objective function becomes f̄(v̄) = v̄THv̄+ v̄g, where

g = (ḡc,0), q̄k = βR̄
T
kC

T
p z

ref
k , and

v̄c =

c̄1
...

c̄N

 , ḡc =

−q̄1
...

−q̄N

 , v̄ =

[
v̄c

vu

]

.

The equality constraints are given by Ēcv̄c + Ẽuvu = ē,

where ē = (−Ã0R̄0c̄0,0, . . . ,0), with

Ēc =

−R̄1 0 0 . . . 0 0

Ã1R̄1 −R̄2 0 . . . 0 0

0 Ã2R̄2 −R̄3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . ÃN−1R̄N−1 −R̄N

.

The inequality constraints become

1 0 0 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0

c̄k ≤ dk,

which are simple bounds for z̄k, where z̄k ∈ R
2 contains

the first and fourth components of c̄k. To this end we obtain

the following formulation with diagonal Hessian matrix and

simple bounds ℓ,u ∈ R
p

minimize
v̄

f̄(v̄) (11)

subject to Ev̄ = Ēcv̄c + Ẽuvu = ē,

−ℓ ≤ v̄ ≤ u,

c̄0 is a given initial condition,

If v̄k is not subject to bounds, uk = −ℓk =∞ is assumed.

IV. SPARSE FORMULATION - IMPLICATIONS

After the change of variable in both Sections III-D, and III-

E, the parameters that influence the dynamical system (3),

Tk and hk, appear only in the equality constraints, while in

the dense formulations in [2]-[8] they appear either in the

objective function, in the constraints, or in both. Next, we

discuss some of the resulting implications.

A. Nonuniform time discretization

Being able to use a variable time discretization of the

preview window increases the flexibility of the MPC scheme,

as we argue next.

To be concrete, let us consider a humanoid robot that has

a control sampling rate of 2 ms. This implies that every 2 ms

a control input has to be provided to the system. If 1.5 sec

long preview window is considered, one option is to have a

constant discretization of Tk = 2 ms, which leads to N =
750. Such a QP can not be solved within 2 ms (at present). As

a workaround, it is common to consider Tk = 20 ms, which

leads to N = 75. This is a tractable problem, however, after

obtaining c̄0, interpolation has to be performed (in order to

generate the actual control input to be applied to the system).

Note that using a discretization of {2, 20, 20, . . . , 20} (all

in ms) for each preview window is not desirable, because

depending on the particular footsteps envisioned to be made

within the current preview window, it might turn out that

decision variables are not dedicated to the switching between

single and double support for example. Other options, based

on imposing additional equality constraints [7], or designing

a number of discretization sequences (to be applied in

turn), exist. When using a dense formulation, the latter

option would require the pre-computation (and storage) of

a number of Hessian (and other) matrices to be interchanged

online. In our opinion, this complicates the code and is not

flexible. On the other hand, when using formulation (11),

each computation can be performed with the most suitable

discretization at a negligible additional computational cost.

Nonuniform discretization is not only useful when dealing

with the interpolation problem mentioned above. In some

cases it could be desirable to dedicate more sampling times

(i.e., decision variables) in a particular time in the preview

window because, for example, we model a disturbance

expected in the future. On the other hand we could decrease

the overall number of decision variables by having fewer

variables dedicated to other, “less important”, parts of the

preview window. The discretization issues become even more

interesting when foot variation is allowed, see Section IV-C.

B. Variable CoM height

An interesting option when using the sparse formulation

is the potential ability to change the height of the CoM czk.

We are aware that variation of czk while the robot is walking

would violate the assumptions under which the model (3) is

derived. Nevertheless, in practice, if the vertical acceleration

of the CoM is relatively small, and due to the safety margin

usually used when specifying the polygons that model the

feet of the robot, it appears that small variations of czk
can be treated simply as disturbances to the system. This

has been recognized by other researchers as well [14]. In

[1], the height of the CoM is altered in order to perform

“knee singularity avoidance”. Such an option gives additional

flexibility to the scheme. Indeed, when using the sparse

formulation, if it is desirable to change the height of the

CoM, different czk can be defined for different sampling

times in one preview window (without having to pre-compute

anything offline).

C. Foot variation

Including the possibility for the QP to calculate a deviation

from the predefined footsteps (in the presence of strong

disturbances) is equally straightforward with the sparse for-

mulation. The notion of foot repositioning was first proposed

in [6]. The basic idea is to introduce new variables (apart

from vc and vu) that relax the ZMP inequality constraints.

This leads to

DzR
T
k (zk −∆ri) ≤ dk,

in which the ith additional variable ∆ri appears in the kth

sampling iteration. In order to follow as much as possible

the predefined footsteps, the ∆ri’s are penalized [2]. If a

quadratic penalty µ∆rTi ∆ri is considered (with µ > 0 being

a gain), the diagonal structure of the Hessian is preserved,

however, one has to consider more general constraints than

the simple bounds in (11). As an alternative, it is possible to

perform a change of variable wk = zk −∆ri, which would

bring back the simple bounds, however, would introduce cou-

pling between wk and ∆ri in the Hessian matrix. Therefore,

from a computational point of view, the price to pay when

considering variable feet is either loosing the simple bounds

or the diagonal structure of the Hessian matrix.

Note that it is possible to derive a dense formulation which

has simple bounds (even when foot variation is considered),

however, this would result in a completely dense Hessian

matrix, which is variable with the preview window (forming

it requires a matrix-matrix multiplication to be performed).

On the other hand, a dense formulation with a trivial Hessian

matrix can be derived by performing a change of variable as

described in [5], however, in this case the constraints would

become completely dense.

V. SOLVING THE UNDERLYING QP

A. Generation of a feasible point

Both methods discussed in this Section can benefit from a

feasible initial point. Here, we demonstrate how to generate

one at a negligible cost. A similar approach has already been

proposed in the context of the dense formulation [7].

First, we note that the problem we are solving is always

feasible, since the constraints for zk, to be within its cor-

responding rectangular polygon, are always consistent (by

construction). Hence, one can choose feasible profile for

the ZMP (with respect to the inequality constraints) and

then recursively identify the remaining entries of v̄ (so that

they satisfy the equality constraints). The following recursion

generates a feasible v̄.

...
ck = −

(

CpB̃k

)−1

CpÃkc̃k +
(

CpB̃k

)−1

zF
k+1

c̃k+1 = Ãkc̃k + B̃k
...
ck, k = 0, . . . , N − 1,

where c̃0 is given and zF
k+1 is a zk+1 that satisfies (9) (e.g., it

could be defined to be in the center of each support polygon).

In order to obtain c̄k, a change of variable c̄k = R̄
T
k c̃k is

performed for i = 1, . . . , N . Note that CpB̃k is a diagonal

matrix which is invertible if T 3
k /6 − hk+1Tk 6= 0 (which is

the case in almost all practical applications).

B. Solution strategies

The major difference between solving the LQR problem

in Section II and solving (11) is the presence of inequal-

ity constraints in the latter. Two approaches for handling

inequality constraints (popular in the context of MPC) are

outlined next. The first one, an interior-point method, is

particularly well suited to problems having relatively many

active constraints (constraints that hold as equalities) at

the solution. Furthermore, solvers based on interior-point

methods, tend to require a number of iterations only weakly

related to N [11]. This is relevant to the problem of motion

generation, as in the presence of strong disturbances many

constraints are usually activated. The second approach, an

active-set method, is particularly well suited to small and

medium sized problems with relatively few active constraints

(this is the method commonly used in practice in the context

of the current application [1]).

C. Interior-point method

One popular approach for accounting for the inequality

constraints is the modification of f̄(v̄), and in turn ∇f̄(v̄).
Consider the following problem

minimize
v̄, ℓ<v̄<u

f̄φ(v̄) = f̄(v̄) + κφ(v̄) (12)

subject to Ev̄ = ē,

where φ(v̄) = −
∑p

i=1 log(ui − v̄i) −
∑p

i=1 log(v̄i − ℓi),
κ > 0 is a penalty factor (commonly referred to as barrier

parameter), and log(a) is the natural logarithm of a scalar

a (a > 0 is implicitly assumed). Note that ℓ < v̄ < u

is an implicit constraint (v̄ that satisfies it is referred to as

strictly feasible). Since log(0) = −∞, if any of the inequality

constraints holds as an equality, φ(v̄) takes on the value

∞. Hence, moving away from a strictly feasible v̄ would

be subject to “repelling forces” from the boundary of ℓ ≤
v̄ ≤ u. For more interpretations of/implications from the

log-barrier method see [11], Chapter 11.

Note that (12) is a convex problem and φ(v̄) is a contin-

uously differentiable function. The dual residual of its (first-

order) optimality conditions is given by

rd = ∇f̄φ(v̄, κ) +ETν = 0.

This is a nonlinear function of v̄ and one possible way to

find a solution is by using Newton’s method. Performing

linearization around a point v̄ (for a fixed value of κ), using

∇f̄φ(v̄ +∆v̄, κ) = ∇f̄φ(v̄, κ) +∇
2f̄φ(v̄, κ)∆v̄ leads to

[

G(v̄, κ) ET

E 0

] [
∆v̄

ν

]

=

[
−∇f̄φ(v̄, κ)

0

]

, (13)

where G(v̄, κ) is the Hessian of f̄φ(v̄, κ), defined as

G(v̄, κ) =

[
M 0

0 2Hu,

]

,

M(v̄) = 2H̃c+κ diag

(
1

u1 − v̄1
, . . . ,

1

up − v̄p

)

+

κ diag

(
1

v̄1 − ℓ1
, . . . ,

1

v̄p − ℓp

)

.

Minimizing (12) for a given value of κ, amounts to solving a

number of linear systems of the form (13). Loosely speaking,

for a very small κ, the solution v̄⋆(κ) of (12) approximates

very well the solution of the original problem (11). This is

due to the fact that the “repelling forces” are scaled down by

κ, and v⋆(κ) can approach more and more the boundary of

the feasible set. If v̄ satisfies at least one of the inequalities

as an equality, φ(v̄) =∞, and scaling with κ has no effect,

hence, solutions of (12) belong to the interior of the feasible

set. After ∆v̄ is obtained, a step v̄+ = v̄+τ∆v̄ is performed,

where τ is chosen so that ℓ < v̄+ < u, and the function

value f̄φ(v̄
+) is sufficiently decreased (by using one of the

many line search heuristics).

When κ is chosen very small, the Hessian G(v̄, κ) varies

rapidly near the boundary of the feasible domain and, unless

a good starting point is available, a large number of (con-

strained) Newton steps (13) is required until convergence. In

practice, this is addressed by solving a sequence of problems

(12) with a decreasing value of the parameter κ, where each

problem is initialized with the solution of the previous one.

The first problem is initialized with a point that satisfies the

equality and strictly satisfies the inequality constraints (see

Section V-A). Solution methods that do not require a feasible

initial point are popular as well in the context of MPC [15]

(usually they require more iterations until convergence).

The solution of (13) can be obtained as follows:

1) form S = EG−1ET and s = −EG−1∇f̄φ,

2) solve Sν = s,

3) solve G∆v = −∇f̄φ −ETν.

It is straightforward to demonstrate that the KKT matrix (in

the context of our application) in (13) is invertible, however,

this does not mean that G is. In the above three steps

we slightly abused our notation, since G is only positive

semidefinite. Even though it is possible (but computationally

more expensive) to perturb G so that it becomes invertible

and the solution of (13) is unchanged (see [11], pp. 547),

we perform a simple regularization by adding a “small”

positive number ǫ to the zero entries on the main diagonal

of Q̃ in (8), which renders G invertible. Applying such

regularization actually means adding the term ǫ
∑N

k=1(c̈
T
k c̈k)

to the objective function. In our tests this has an insignificant

effect on the computed control policy.

Considering the structure of E and G−1, it follows that

S has the following block triangular form (Mk,k ∈ R
6×6

denotes the kth diagonal block of M)

S =

S11 S12 0 . . . 0 0

S21 S22 S23 . . . 0 0

0 S32 S33 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . SN−1,N−1 SN−1,N

0 0 0 . . . SN,N−1 SNN

,

S11 = R̄1M
−1
1,1R̄

T
1 +

1

2
B̃0P

−1
B̃
T
0 ,

Skk = R̄kM
−1
k,kR̄

T
k +

1

2
B̃k−1P

−1
B̃
T
k−1+

Ãk−1R̄k−1M
−1
k−1,k−1R̄

T
k−1Ã

T
k−1,

Sk,k+1 = ST
k+1,k = −R̄kM

−1
k,kR̄

T
kA

T
k ,

The second step is carried out by forming the Cholesky

factors S = LLT , with L being lower triangular

L =

L11 0 0 . . . 0 0

L21 L22 0 . . . 0 0

0 L32 L33 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . LN−1,N−1 0

0 0 0 . . . LN,N−1 LNN

.

Directly from observation we have

S11 = L11L
T
11,

S12 = ST
21 = L11L

T
21, hence LT

21 = L−1
11 S12,

S22 = L21L
T
21 +L22L

T
22, and so on.

In the second step LT
21 is computed by forward substitution,

and in the third step, forming L22 requires the computation

of the Cholesky factors of S22 − L21L
T
21. Note that even

though n = 6, because in our particular application the

forward and lateral motions are decoupled (and have identical

dynamics), in order to form Lkk, one has to form the

Cholesky factors of only one 3 × 3 matrix. The above fac-

torization scheme is closely related to the Riccati recursion.

After L is formed, a backward and forward substitution with

s should be performed (accounting for the block structure).

The third step is not computationally demanding, since G

is a diagonal matrix. Essentially, computing one constrained

Newton step (i.e., solving (13)) amounts to forming L

which in this particular case can be done very efficiently

due to the diagonal form of the Hessian matrix, the simple

bounds and the inherently decoupled dynamics. Note that the

complexity of each step is proportional to N . If foot variation

is considered, due to the fact that the Hessian ceases to be

diagonal, some modifications should be made (which would

make the computation slightly more demanding [15]).

D. Active-set method

Let us consider again problem (11). What we did in

Section V-C was to make a nonlinear approximation of

the feasible set. This basically led to the need to solve a

number of systems of linear equations of the form (13) from

scratch, i.e., the factorization of the KKT matrix is carried

out separately for the solution of each system. This is due

to the fact that the matrix G varies with v̄ (and κ).

Instead of a nonlinear approximation of the feasible set,

another option is to perform a “combinatorial approxima-

tion”. Or in other words, to repeatedly make a guess about

the active constraints at the solution of problem (11), and

then verify it by solving an equality constrained problem

that resembles (13).

Algorithm 1: A modified primal active-set method

Input : Definition of problem (11), set i← 0, initial

guess G(i) ← ∅ and corresponding feasible v̄(i)

Output: v̄⋆, an approximate solution of problem (11)

Compute ∆v̄(i) by solving(1)

minimize
v̄(i)

∆v̄(i)TH∆v̄(i) +∆v̄(i)T∇f̄(v̄(i)) (14)

subject to E∆v̄(i) = 0,

aT
j ∆v̄(i) = 0, j ∈ G(i)

if ‖∆v̄(i)‖ = 0 then return v̄⋆ = v̄(i)

Compute the largest step τ (i) that satisfies(2)

ℓ ≤ v̄(i) + τ (i)∆v̄(i) ≤ u, and the index j of a

corresponding blocking constraint using

τ (i) = min
j 6∈G(i)

uj − v̄
(i)
j

v̄
(i)
j

when ∆v̄
(i)
j > 0

ℓj − v̄
(i)
j

v̄
(i)
j

when ∆v̄
(i)
j < 0

if τ (i) = 1 then return v̄⋆ = v̄(i) +∆v̄(i)

Update our guess G(i+1) ← {G(i), j}, perform a step(3)

v̄(i+1) = v̄(i) + τ (i)∆v̄(i), and update i← i+ 1.

Algorithm 1 is a modification of a classical primal active-

set scheme. I denotes the set of indexes of the inequality

constraints. Only one index in I is associated with the

bounds for the jth variable ℓj ≤ v̄j ≤ uj (since both bounds

for v̄j can not be active at the same time), i.e., |I| = p. The

gradient of both v̄j ≥ ℓj and v̄j ≤ uj is denoted by aT which

is a (row) vector of zeros, whose jth element is equal to 1.

G(i) ⊂ I denotes the set of indexes of inequality constraints

guessed to be active at the ith iteration of the algorithm. The

difference from the classical algorithm in [16] pp. 472 is that

if ‖∆v̄(i)‖ = 0, we do not check the sign of the Lagrange

multipliers associated with the inequality constraints in G(i)

(and do not remove constraints from our guess). We have

already observed in [5] that in the context of the current

application this does not affect the results in a noticeable way.

Note that this approximation is not required by the sparse

formulation. The algorithm is presented in this way, so that

it reflects our numerical implementation (see Section VI).

The most time consuming procedure in Algorithm 1 is the

solution of the linear system of equations associated with the

minimization in step (1). When i = 0 (hence, G(0) = ∅), we

have to solve a system that resembles (13), the difference

being that here κ = 0 is assumed (since, the term φ(v̄) does

not appear in the objective). As a result S(0) simplifies to

2S
(0)
11 = Q̃

−1
+ B̃0P

−1
B̃
T
0 ,

2S
(0)
kk = Q̃

−1
+ B̃k−1P

−1
B̃
T
k−1 + Ãk−1Q̃

−1
Ã

T
k−1,

2S
(0)
k,k+1 = ST

k+1,k = −Q̃
−1

A
T
k .

Algorithm 2: Update of Cholesky factorization in O(N)

Input : me = 6N , ma = |G(now)|, L(ma), aT
n to add.

Output: lT is the last row of L(ma+1)

Initialize lT = 1
2

[

aT
nH

−1ET
0
T
me

aT
nH

−1an

]

(1)

The index of the last element in lT is q = me+ma+1.(2)

for i = index of the first nonzero element of l to me do

li = li/L
(ma)
ii , lq = lq − l2i(3)

Since L(0) is sparse, no more than three subsequent(4)

elements with (known) indexes k ≤ me in lT must

be updated: lk = lk − liL
(ma)
ki

for j = me + 1 to q − 1 do

lj = lj − liL
(ma)
ji(5)

end

end

for i = me + 1 to q − 1 do

li = li/L
(ma)
ii , lq = lq − l2i(6)

for j = i+ 1 to q − 1 do

lj = lj − liL
(ma)
ji(7)

end

end

lq =
√

lq(8)

As in Section V-C, Q̃ is regularized. If constant sampling

time and CoM height are assumed, S(0) is constant.

Once ∆v̄(0) is computed, Algorithm 1 proceeds by adding

inequality constraints (one at a time) to G and resolving

(14). The difference with the method in Section V-C is that

instead of solving the KKT system from scratch every time,

since H is constant, and only one constraint is added (at a

given i), there exist efficient ways for updating the previously

computed factorizations. The updating scheme used in our

implementation is summarized in Algorithm 2. Note that the

complexity of the update is proportional to N .

The size of the system S(i)ν(i) = s(i) increases by one at

each iteration. The right-hand-size vector is given by, s(0) =
− 1

2EH−1∇f̄(v̄(0)), s(1) = (s(0),−aT
n v̄

(1) − 1
2a

T
nH

−1g),
etc., where aT

n is the newly added inequality constraint at i =
0. This trivializes the forward substitution to a dot product.

VI. NUMERICAL RESULTS

In this section we present numerical results from a C++

implementation of the active-set method presented in Sec-

tion V-D. We perform a comparison between the use of the

dense formulation as presented in [1] and the sparse formu-

lation presented here, when the positions of the footsteps

are predefined. We use N = 75, a constant CoM height and

sampling time T = 20 ms (i.e., a preview horizon of 1.5
sec). The initial and final double support phases are excluded

from the results. The code is compiled using gcc 4.4 with

optimization flag -O3, and executed on a 2 GHz processor.

In order to perform a fair comparison, we formulate the

dense QP by using the change of variable presented in

[2] Section IV (that leads to a simply-bounded dense for-

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 1. Red diamonds and blue circles stand for the computation time in ms
for our customized solver and the off-the-shelf solver [17], respectively. The
black circles represent the number of active constraints (scaled down by 10)
at the solution of each QP, while the green “plus” marks give the number
of constraints (scaled down by 10) activated by our solver. The increase
of activated constraints towards the end does not affect significantly the
computation time because the activated constraints appear to be towards the
end of the preview horizon (see the first for loop in Algorithm 2).

mulation). The computation time for performing this change

of variable is not considered in the results. The time to solve

(using [17]) the resulting dense QP with 150 variables and

simple bounds is depicted in Fig. 1 with blue circles. The

black circles depict the number of active constraints (scaled

down by 10) at the solution of each QP.

The sparse formulation (11) is solved using a customized

code. The QP has 600 variables, 450 equality constraints and

bounds for 150 of the variables. The fact that the sampling

time and CoM height are constant is not considered and the

matrix S(0) is formed and factored for each QP even though

it is constant in this particular case (this has a negligible

effect on the computation time). The computation time is

depicted with red diamonds. The number of constraints

(scaled down by 10) activated at the (approximate) solution

are depicted using green “plus” marks. We did not use “hot-

start” (i.e., G(0) = ∅), hence even faster computation time

could be achieved.

The fast performance of our algorithm is not due to the

approximate solution it generates. Currently we are imple-

menting Cholesky downdate, which even though is slightly

more expensive than the Cholesky update in Algorithm 2

is not expected to decrease the performance in a “dramatic”

way (as usually constraints are dropped from G much less

often than added). The error in the evolution of the CoM

(due to the difference in the number of active constraints) is

typically of the order of 1e−3 m. We have observed that most

of the time the next state c̄1 generated by our algorithm is

identical to (or only slightly different from) the next state that

a QP solver produces (which explains the small difference).

From the fact that the complexity of each iteration of our

algorithm is O(N), we gain much more for larger problems.

At around N = 10, the computation times for the dense and

sparse formulations become identical (in average 0.03 ms).

VII. CONCLUSIONS

We presented a sparse model predictive control scheme

for walking motion generation for humanoid robots. We dis-

cussed a number of advantages it presents over the “standard”

dense formulation, among which: (i) an arbitrary preview

window discretization can be used at each iteration; (ii)

variation of the height of the center of mass during walking.

Both are achieved at a negligible additional computational

cost. Even though the underlying quadratic program has a

larger dimension (compared to the dense formulation), due

to its structure, it can be solved very efficiently. In particular,

we derived an optimization problem with a diagonal Hessian

matrix subject to only simple bounds.

REFERENCES

[1] D. Gouaillier, C. Collette, and C. Kilner, “Omni-directional Closed-
loop Walk for NAO,” IEEE-RAS International Conference on Hu-

manoid Robots, pp. 448-454, 2010.
[2] D. Dimitrov, A. Paolillo, and P.-B. Wieber, “Walking motion gen-

eration with online foot position adaptation based on ℓ1- and ℓ∞-
norm penalty formulations,” Proc. of the IEEE Int. Conf. on Robot. &

Automat. (ICRA), pp. 3523-3529, 2011.
[3] A. Herdt, N. Perrin, and P.-B. Wieber, “Walking without thinking about

it,” Proc. of the IEEE/RSJ (IROS), pp. 190-195, 2010.
[4] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and

M. Diehl, “Online Walking Motion Generation with Automatic Foot
Step Placement,” in Advanced Robotics Vol. 24 No. 5-6, April, 2010.

[5] D. Dimitrov, P.-B. Wieber, O. Stasse, H. J. Ferreau, and H. Diedam,
“An Optimized Linear Model Predictive Control Solver for Online
Walking Motion Generation,” in Proc. of the IEEE Int. Conf. on Robot.

& Automat. (ICRA), pp. 1171-1176, 2009.
[6] H. Diedam, D. Dimitrov, P.-B. Wieber, M. Katja, and M. Diehl,

“Online walking gait generation with adaptive foot positioning through
linear model predictive control,” in Proc. of the IEEE/RSJ (IROS),

pp. 1121-1126, 2008.
[7] D. Dimitrov, J. Ferreau, P.-B. Wieber, and M. Diehl, “On the im-

plementation of model predictive control for on-line walking pattern
generation,” in Proc. of the IEEE Int. Conf. on Robot. & Automat.

(ICRA), pp. 2685-2690, 2008.
[8] P.-B. Wieber, “Trajectory free linear model predictive control for stable

walking in the presence of strong perturbations,” in Proc. of IEEE-RAS

Int. Conf. on Humanoid Robots, pp. 137-142, 2006.
[9] C. Rao, S. Wright, and J. B. Rawlings, “Application of interior point

methods to model predictive control,” J. Opt. Theo. Applics., pp. 723-
757, 1998.

[10] M. Diehl, H. J. Ferreau, N. Haverbeke, “Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation,” in Nonlinear

Model Predictive Control, L. Magni, M.D. Raimondo, F. Allgöwer

(eds.), pp. 391-417, 2009.
[11] S. Boyd, L. Vandenberghe, “Convex Optimization,” Cambridge, 2004.
[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and

H. Hirukawa, “A realtime pattern generator for biped walking,” in
Proc. of the IEEE Int. Conf. on Robot. & Automat., pp.31-37, 2002.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proc. of the IEEE Int. Conf. on

Robot. & Automat., pp. 1620-1626, 2003.
[14] K. Nishiwaki, and S. Kagami, “Online Design of Torso Height

Trajectories for Walking Patterns that takes Future Kinematic Limits
into Consideration,” in Proc. of the IEEE Int. Conf. on Robot. &

Automat., pp. 2029-2034, 2011.
[15] Y. Wang, and S. Boyd, “Fast model predictive control using online

optimization,” in IEEE Transactions on Control Systems Technology,

18(2) pp. 267-278, March 2010.
[16] J. Nocedal, and S. J. Wright, “Numerical optimization,” Springer

Series in Operations Research, 2nd edition, 2000.
[17] K. Schittkowski, “QL: A Fortran code for convex quadratic pro-

gramming - User’s guide,” Department of Mathematics, University

of Bayreuth, Report, Version 2.11, 2005.

