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Abstract—In service-based systems, service evolution might
raise critical communication issues since the client cannot be
aware of the changes that have occurred on the black-box services
side. In this paper, we propose an automated process to adapt
the client to the changes that have occurred. Our approach relies
on a compatibility measuring method, and changes the client
interface to ensure the system compatibility. This solution is fully
automated inside a prototype tool we have implemented.

Index Terms—Web Services; Services Composition

I. I NTRODUCTION

Since the venue of Service-Oriented-Computing (SOC),
companies tend to build their software systems using heteroge-
neous and loosely-coupled (Web) services. These services are
black-box applications meaning that they can only be accessed
— i.e., discovered and composed — through their public
interfaces, and their implementation details are hidden from
an external point of view. Here, service interfaces describe
the exchanged messages and their application order referred
to as interaction protocol.

In a challenging business environment, companies’ growth
is driven by innovations and competitions which cause changes
across companies’ requirements. Thus, service providers need
to constantly change their services to fulfill these new re-
quirements. In particular, there might be a need to add or
remove some functionalities. In the context of our work, we
assume service-based systems which consist of two parties
involved in the interaction —i.e., the service and its client
(user). In this setting, service changes are usually performed
in a transparent manner such that the client is not aware aware
of those changes. This can lead to system disruptions and in
particular raise incompatibility issues between the upgraded
service and its client. For instance, let us assume a system
composed of a clientC and a serviceS, in such a way, that
both C andS are initially compatible. The clientC can first
log on to the service and wait for an acknowledgment. The
serviceS is able to acknowledge a client every time the latter
makes a logging request. We now assume that serviceS is
changed, in such a way, that it requires the client to enter a
secure code after a successful login request. This change has
been made to stop malicious hackers accessing the serviceS.
As a consequence, the future interaction between clientC and
serviceS deadlocks because the new request required byS

cannot be satisfied byC.
In order to cope with the above interaction issues occurring

in the context of service evolution, we should provide an
answer to the following challenging question: how to solve

system incompatibility? An obvious answer requires the de-
tection and resolution of interface mismatches to guarantee
the correct communication. Existing approaches in the field
are split into two classes. The first class is devoted to service
adaptation [3], [14], [5] which aims at implementing an
intermediate service (called adaptor) to work out existing
service/client mismatches. However, adaptor generation is an
intricate process, and in some cases it is impossible to resolve
interface incompatibility using such techniques,e.g., parameter
type conversion is not supported. The second class of existing
approaches [18], [2], [17], [1] allows the designer to change
service interfaces in order to ensure the system compatibility.
These works do not consider service as black-boxes, and
their techniques used to modify service interfaces consistof
two steps: (i) They first detect changes by calculating all
differences between the upgraded and old service version;
(ii) Then, they propagate all these changes into the upgraded
version — i.e., adding and deleting some parts of the service
interface. These works describe services using models which
do not take internal behaviors and message parameters into
account. They also use a compatibility check which does not
allow one to detect the changes to be handled. Therefore,
they cannot avoid the computation of differences between the
updated and new service version.

This paper proposes a new approach for automatic res-
olution of interface mismatches in the context of service
evolution. We consider black-box services that can be discov-
ered and composed through their public interfaces. Internal
behaviors and message parameters are considered in service
interfaces. We only enable the designer to change the clientin
order to match the upgraded service interface. In our approach,
the changes are detected using a compatibility measure which
compares the service with its clientwrt. a compatibility notion,
and returns the mismatches presented between both interfaces.
In order to update the client interface, we use this measure
to compute an interface mapping tree which relates parts of
both interfaces that better match with each other. Using the
mapping tree and the mismatch list, we first resolve protocol-
related interaction issues called behavioral mismatches.Then,
we resolve the static interface mismatches which consider
exchanged messages and their parameters. Our process com-
pletes when both the service and the client interfaces become
compatible. Note that this evolution management process can
be also parameterized with some user requirements in order
to prevent undesirable behaviors (functionalities) that one does
not want to appear in the new client interface.



The rest of this paper is organized as follows. Section II is
an overview of related work. Section III presents the service
description model. We give in Section IV our method for
compatibility measuring and the interface mismatches consid-
ered. Our client update techniques are detailed in Section V.
Section VI illustrates the use of our approach through a case
study. Finally, Section VII concludes the paper and presents
some perspectives.

II. RELATED WORK

The resolution of interaction issues is a major concern of
SOC to ensure the correct reuse and composition of services
which change constantly. To the best of our knowledge, the
evolution problem is related to fields such as database schema
evolution, software component evolution, software refactoring,
workflow evolution, and protocol evolution. Here, we focus
on the service evolution area, but more details on evolution
problems in the context of the above fields are presented
in [18].

Existing work on service evolution, see for instance [18],
[2], [17], [1], does not consider Web services as black-boxes,
yet they allow access and changes their implementation details.
In [17], [1], the authors differentiate between two kinds of
changes: shallow changes where the effect of the changes is
localized to a service or is strictly restricted to the clients
of that service; and deep changes which extend beyond the
clients of a service possibly to the clients of these service
clients such as outsourcers or suppliers. The goal of [17], [1]
is to guarantee the independent evolution of loosely-coupled
services. However, this violates the black-box service assump-
tion. Our solution also applies shallow changes, nevertheless
we aim at updating the client (user) rather than the service.
The work presented in [18] focuses on the management of
dynamic evolution —i.e., it deals with the effect of the service
changes which occur when a system is running an old service
version. More recently, [2] studied static evolution. Thiswork
proposes changing the client which can be a service. In our
approach, services are considered as black-boxes which cannot
be changed.

Techniques used in previous work first detect changes by
computing the differences between the upgraded and the old
service, and then propagate these changes into either the client
or service depending on their context —i.e., client-based or
service-based changes. Our approach is different since we
detect changes using our compatibility measure which givesa
detailed comparison of an upgraded service with its client.
This measure enables us to map the interface constituents
in spite of existing mismatches, but it also allows us to
resolve these mismatches. Lastly, the consideration of user
requirements guarantees that the updated client interfacedoes
not describe any undesirable behavior.

III. I NTERFACE MODEL

This section presents the model of the service interfaces we
use to check their compatibility. We assume that the service
interfaceInt is described by means of a signature (Σ) and

an interaction protocol represented by aSymbolic Transition
System(STS). Formally, an interfaceInt is defined using the
couple (Σ, STS). The interface signature represents the set
of operation profiles which may be required and provided,
including their argument types.

Definition 1 (Signature):A signatureΣ is a set of provided
and required operation profiles. An operation profile is defined
as an operation name together with its input and output sorts,
i.e., type names, (possibly empty):

op : ti1 ∗ . . . ∗ tin → to1 ∗ . . . ∗ tom

Our STS model is a variant of the STG (Symbolic Transition
Graph) model presented in [12], where guards in branch-
ing transitions are abstracted into transitions labelled with
τ actions. In an STS, communication between services is
represented usingeventsrelative to the emission and reception
of messages corresponding to operation calls. An event comes
with a list of parameters (possibly empty) whose types respect
the operation signature. Alabel describes either the (internal)
τ action or an event using the tuple(m, d, pl) where m is
the message name,d stands for the communication direction
(either an emission! or a reception?), andpl is either a list
of data terms if the label corresponds to an emission, or a list
of variables if the label is a reception.

Definition 2 (STS):A Symbolic Transition System, orSTS,
is a tuple (A, S, I, F, T ) where: A is an alphabet which
corresponds to the set of labels associated to transitions,S is
a set of states,I ∈ S is the initial state,F ⊆ S is a nonempty
set of final states, andT ⊆ S\F × A × S is the transition
relation.

It is worth noting that communication between services
described with STSs relies on a synchronous and binary
communication model1. The operational semantics of this
model is given in [9]. STSs can also be easily derived from
higher-level description languages such as Abstract BPEL,see
for instance [10], [19], [6] where such abstractions were used
for verification, composition or adaptation of Web services.

In the context of our work, as we have mentioned in
the Introduction Section, we consider systems composed of
two parties, namely, a service and a client (user). In the
remainder of this paper, both parties are described using the
same interface model.

IV. SERVICE COMPATIBILITY

This section first defines the notion considered to measure
interface compatibility. Then, we present the interface mis-
matches which can be detected using our measure.

A. Unidirectional Complementarity (UC)

Compatibility checking verifies the successful interaction
between serviceswrt. a criterion set on their observable ac-
tions. This criterion is referred to as a compatibility no-
tion. We distinguish two classes of notions depending on

1Although checking protocol compatibility is undecidable with asyn-
chronous communication [4], Fuet al. proved in [11] that a large class of
interfaces can be analyzed under an asynchronous communication model using
techniques and tools existing for the synchronous communication model.



the direction of the compatibility checking, that are, bidi-
rectional and unidirectional analysis. Here we consider an
unidirectional compatibility notion for illustration purposes,
namely unidirectional complementarity (UC for short). Two
services are compatiblewrt. the UC notion if there is one
service (complementer) which must eventually receive (send,
respectively) all messages that its partner (complemented)
expects to send (receive, respectively) at all global reachable
states. In addition, both services must be deadlock-free in
all reachable global states. Hence, thecomplementerservice
may send and receive more messages than thecomplemented
service.2 This asymmetric notion is useful for checking the
successful communication in the client/server model where
a server can interact with clients having different behaviors.
In this setting, each client behavior must be satisfied by the
server.

B. Measuring Interface Compatibility

In order to resolve the interface mismatches, we reuse
our measure presented in [15] which computes the interface
compatibility and detects the mismatches. In what follows,
we present the intuition behind our measure, yet more details
can be found in [15]. The computation process accepts as
input two service protocolsSTS1 = (A1, S1, I1, F1, T1) and
STS2 = (A2, S2, I2, F2, T2) and computes a compatibility
degree for each global state,i.e., each couple of states(si, sj)
with si ∈ S1 and sj ∈ S2. All compatibility scores range
between 0 and 1, where 1 means a perfect compatibility. Our
approach is parameterized by a compatibility notion, that is,
we measure to what degree the two interfaces are far from
being compatiblewrt. this compatibility notion,e.g., the UC
compatibility considered in this paper.

To measure the compatibility of two service protocols, we
compute the protocol compatibility degrees for all possible
global states using a set of static compatibility measures.In our
work, we use three static compatibility measures, namely state
natures, labels, and exchanged parameters. These measuresare
used next to analyze the behavioral part (ordering of labels)
of both protocols. Intuitively, two states are compatible if
their backward and forward neighboring states are compatible,
where the backward and forward neighbors of states′ in
transitions(s, l, s′) and(s′, l′, s′′) are respectively the statess
and s′′. Hence, in order to measure the compatibility degree
of two service protocols, we consider an iterative approach
which propagates the compatibility degree from one state to
all its neighbors. This process is called compatibility flooding.

Ck
P stands for the resulting matrix where each entry

Ck
P [si, sj ] represents the compatibility measure of a global

state(si, sj) ∈ S1×S2 at thekth iteration, andP corresponds
to the compatibility notion used.C0

P represents the initial
compatibility matrix where all states are supposed to be
perfectly compatible,i.e. ∀(si, sj) ∈ S1 ×S2, C0

P [si, sj ] = 1.
The compatibility degree of(si, sj) at thekth iteration is com-
puted as the sum of its previous compatibility degree (at the

2Our definition is different from simulation or preorder relations [7] since
we compare protocols with opposite directions.

k−1th iteration) together with the current compatibility degree
propagated from its neighbors. The propagated compatibility
is computed using functionstate-compk

CN,D((s1, s2)) defined
as the weighted average of three measures: the forward and
backward propagated compatibilities, and the value returned
by the functionnat(s1, s2) which compares state natures. The
forward and backward propagated compatibilities are com-
puted depending on the parametersCN andD. For instance,
in the case ofUC compatibility which is an unidirectional
notion, the interfaces are analyzed from the client point of
view since the correct interaction is governed by this client
requirements.

Finally, the compatibility degree is normalized,i.e., divided
by the maximal value that can be achieved.Ck

P [s1, s2] is
formally defined as follows:

C
k
P [s1, s2] =

C
k−1

P
[si, sj ] + state-compk

CN,D((s1, s2))

2

Our iterative process terminates when the Euclidean dif-
ference|Ck − Ck−1| of matricesCk and Ck−1 converges,
i.e., reaches an epsilonε such that ε > 0. Lastly, the
compatibility matrix comes with a mismatch list which enables
understanding of the incompatibility issues.

C. Interface Mismatches

There has been a lot of effort devoted to studying the
different classes of interface mismatches, see for instance [8],
[13]. In our work, we focus on the most common mismatches
in the literature, and organize them into two classes, namely,
behavioral and static mismatches.

Behavioral Mismatches.Behavioral mismatches can be de-
tected at the protocol level where the execution order of
exchanged messages is taken into account. The first kind of
mismatch is that a message can be expected to be received
in an order which is different to that which is being sent by
the partner. Another kind of behavioral mismatch is known
as a n-to-m (n 6= m) matching issue where (i) a transition, a
state, or a message, on one interface corresponds ton (> 1)
matches on the other interface, this is called a split/merge
matching issue; (ii) some of these interface constituents do
not have any match in the partner’s interface, this is calleda
missing/extra matching issue. The resolution of this mismatch
ensures 1-to-1 matching. In the remainder of this paper, as far
as theUC compatibility notion is considered, 1-to-1 matching
must be guaranteed from the client point of view meaning that
each client state or transition must exactly match one service
state or transition, respectively.

Static Mismatches. There are two subtypes of static mis-
matches: (i) signature, in which sent and received messages
have different names and/or incompatible sort lists (parameter
types) — i.e., both lists do not share all types in the same
order; and (ii) state nature, in which two compared states do
not have the same nature meaning that both states are initial,
final or neither.



V. CLIENT INTERFACEUPDATE

In this section, we apply our compatibility measure to
resolve the interface mismatches and make both the client
(complemented) and the service (complementer)UC compati-
ble. To achieve this objective, we propose a process to change
the client interface (Figure 1).

In step 1, we compute the compatibility measure which
compares both interfaces. Then, step 2 relies on the resulting
compatibility matrix to generate an interface mapping tree
which describes the best state matching on both interfaces.
Based on the analysis of the mapping tree, we change the
client interface as follows. In step 3, behavioral mismatches
are resolved first because protocol level is the crucial issue
in service-based communication. Protocols guide designers
to write clients that correctly interact with a given service.
Steps 4 and 5 again compute the interface compatibility
and the mapping tree in order to take the changes made in
the previous step into account. The analysis of the updated
mapping tree enables us to resolve the static mismatches in
step 6. Lastly, after partial resolution of interface mismatches,
step 7 computes the compatibility measure to check if the
updated client is compatible with its service interface.3 The
update process terminates if these interfaces are compatible
and the user requirements are satisfied. Otherwise, a new
iteration should be started from step 2. Note that this process
can be parameterized by a set of user requirements to prevent
undesirable behaviors that the designer does not want to appear
in the new client interface.

Fig. 1. Overview of our Client Update Process

A. User Requirements

Our update process enables the designer to set some re-
quirements which must be satisfied all along this process.
These requirements consist of the set of messages which must
not appear in the updated interface. This prevents undesirable
behaviors that the designer does not want to appear in the

3Our results presented in [15] prove that two interfaces are considered
compatiblewrt. a compatibility notionCN if and only if they are compatible
at their initial global state —i.e., the compatibility measure is equal to 1.

new client interface. The update process may fail and an error
message is returned if no compatible client can be generated
due to the specified requirements.

B. Interface Mapping Tree

The interface mapping tree describes a set of linked nodes
where each node represents the best matching of a client
state with one state among those on the service interface.
Furthermore, each node is linked to its parent and children
nodes.

Definition 3 (Node):Let us consider two STSs,
STSi∈{clt,sce} = {(Ai ,Si , Ii ,Fi ,Ti)}, which describe a
client and a service protocol, respectively. A noden is a
triple (pr , gs , ch) where:pr is the link to the parent node,gs
is the global state(sclt, ssce) ∈ Sclt × Ssce meaning thatssce

is the best match forsclt, and ch stands for the set of links
to this node’s children.

We assume the following functions necessary for analyzing
the mapping tree. Given a noden = (pr , gs , ch), state(n) =
gs, parent(n) = pr, andchildren(n) = ch.

Definition 4 (Deadlock Node):Let us consider two STSs,
STSi∈{clt,sce} = {(Ai ,Si , Ii ,Fi ,Ti)}, which describe a
client and a service protocol, respectively. A deadlock node
is a leaf noden wherechildren(n) = ∅, andstate(n) is not
a deadlock state.4

Definition 5 (Interface Mapping Tree):Let us consider two
STSs,STSi∈{clt,sce} = {(Ai ,Si , Ii ,Fi ,Ti)}, which describe
a client and a service protocol, respectively. An interface
mapping treeΥ is defined using its root node(ǫ, I, ch) where
I is the initial global state(Iclt, Isce), andchildren(n) = ch.

The mapping tree is computed as follows. First, the root
noden has no parent —i.e., parent(n) = ǫ — and stands for
the matching of the initial states onIntclt andIntsce. Then, the
children nodes are incrementally added using the measures in
the compatibility matrix. The evaluation of the compatibility
measure returns candidate global states where every global
state matches a client state and a service state with which the
client has the highest compatibility score. These global states
are referred to as best state matchings. A node corresponding
to a best state matching can be added if both interfaces are able
to evolve into a target global state using messages different
than those belonging to user requirements.

This reasoning for generating the mapping tree allows one
to add some incorrect nodes into the tree. A noden is
considered correct if every child node’s state can be reached
from state(n) using a correct transition. Thus, in order to
avoid incorrect nodes, we rely on the protocol information
to check correct transitions relating every node’s state with
their children nodes’ states. In the following, we give the four
transition levels we consider to check the nodes’ correctness:
Sequential Transition. This analysis ensures that for every
noden all the states of its children nodes must be reached
following correct sequential transitions, that is, ifstate(n) =

4A global state(sclt, ssce) is considered a deadlock state if(sclt, ssce) 6∈
Fclt × Fsce and no transition goes out fromsclt andssce.



(sclt, ssce) and it exists(s′clt, s
′
sce) in children(n), then s′clt

ands′sce must be successors ofsclt andssce, respectively. For-
mally, we consider the sequential transition betweenstate(n)
and its children nodes correct if the following condition holds:
∀(pr , gs , ch), ch ⊆ succ(gs), where fori = clt andj = sce,
gs = (si, sj):
succ(si, sj) =































{(s′i, s
′
j)} ∪ succ(s′i, s

′
j) if ∃(si, li, s

′
i) ∈ Ti,

∃(sj , lj, s
′
j) ∈ Tj

{(s′i, sj)} ∪ succ(s′i, sj) else if∃ (si, τ, s
′
i) ∈ Ti

{(si, s
′
j)} ∪ succ(si, s

′
j) else if∃ (sj , τ, s

′
j) ∈ Tj

∅ otherwise
Branching Transition. States holding outgoing choices might
lead to mismatched target states but which appear in the
mapping tree as best state matching. For instance, one state
sclt from the client interface can be matched with two different
statesssce and s′sce reached using a choice in the service
interface ifsclt has the same highest compatibility value with
ssce and s′sce. In this case, we keep only one matching from
these two solutions in order to ensure 1-to-1 state matching
(see Section IV-C). Note that this choice can be enforced by
making it explicit in user requirements.

Looping Transition. This analysis compares looping behav-
iors in the client and the service interfaces, and detects whether
there are loops to be added or removed in the client protocol.
At the level of mapping tree computation, this consists in
adding or removing some nodes. It can also require an update
of parent and children links of other existing nodes.

Deadlock-Freedom.A mapping tree can be used to update a
client interface if and only if it does not include any deadlock
node. If there is a deadlock node, an error message is returned
indicating that no compatible client can be generated.

Example:Let us illustrate the computation of an interface
mapping tree from a compatibility matrix and some user
requirements. We give in Figure 2 a simplified example of
a database management system where a user can access an
online database to search data or make an update, and waits
for its acknowledgement. The database service can first receive
a request for an update or a registration to be acknowledged.

First scenario with empty set of user requirements.The
resulting mapping tree is obtained using the compatibility
matrix computedwrt. UC notion.User andDatabase are the
complemented (client) and complementer (service) protocols,
respectively. Each node represents aUser state with its best
state match among those inDatabase. Our update techniques
presented in Section V-D rely on this mapping tree to change
the User’s interface so that its protocol becomes asUser’.

Second scenario with non-empty set of user requirements.
Given the requirement set which is equal to{ackR}, this
means that the user does not want to receive the registration
acknowledgement. The computation of the mapping tree re-
turns a deadlock node (represented by the dashed rectangle
in Figure 2). This node does not have any child node because
the messageackR! going out from states3 cannot be matched

with any message at statec2 due to the restriction made by
the user requirements. Thus, no compatible user interface can
be generated using this interface mapping tree.

Fig. 2. Database Management System.

C. Resolution of Behavioral Mismatches

In this section, we present our techniques to resolve
the behavioral mismatches. These techniques rely on the
interface mapping tree, and aim at ensuring the client-
based 1-to-1 matching. Thus, the first change pattern to be
considered isadd/remove statesdefined as follows. Given
an interface mapping treeΥ computed for two STSs,
STSi∈{clt,sce} = {(Ai ,Si , Ii ,Fi ,Ti)}:

• Each client’s state which does not appear in anyΥ node
must be removed if this state can be reachable and lead
to other states through observable labels (different thanτ

actions) — i.e., ∀sclt ∈ Sclt, if ∀ n, sclt 6∈ state(n),
Sclt = Sclt \ {sclt}. An example of this change is
illustrated in Figure 3, where the client’s statec2 needs
to be removed.

Fig. 3. Remove State and Merge Transitions Patterns.

• A new client’s state must be added every time there
is a statessce ∈ Ssce reachable and leading, through
observable labels, to states having corresponding matches
in Υ, but ssce does not appear in any node. Figure 4
illustrates an example where the service’s states2 does
not have any match inIntclt. Since this state forwards
state s1 and precedes states3 which match statesc1
andc2, respectively, the client change consists in adding
a new state to be matched withs2.



Fig. 4. Add State and Split Transitions Patterns.

The previous pattern may imply another change, namely,
merge/split transitionswhere transitions can be removed or
added. This change considers the location of handled tran-
sitions, but also the links to their predecessor and successor
transitions in the interaction protocol. Below, we give thesteps
to be followed for adding or removing a transition(s, l, s′):

• We compute all predecessors and successors transitions of
(s, l, s′). Then, for each of those transitions, we update
either its target (for a predecessor transition) or source
state (for a successor transition)wrt. to s ands′.

• With regards to adding a transition, if there is no oper-
ation profileop(ti1 , . . . , tin , to1 , . . . , tom) ∈ Σclt which
corresponds to the profile of the action represented with
l, this label and its missing profile should be included
insideAclt andΣclt, respectively. However, ifl’s profile
exists inΣclt, two alternatives are possible: (i) reusel if
l ∈ Aclt; (ii) otherwise,Aclt = Aclt ∪ {l}.

• Transition deletion requires the remove ofl and its
operation profile —i.e., Aclt = Aclt\{l} and Σclt =
Σ\{m(ti1, . . . , tin, to1, . . . , tom)} where l = (m, d, pl)
andti1, . . . , tin, to1, . . . , tom stand for types of parame-
ters inpl .

Checking Internal behaviors. We now focus on the appli-
cation of both previous patterns when considering internal
behaviors. Checking the correct match of states reachable or
leading to other states using only internal behaviors can be
handled differently as follows:

• τ transitions can be minimized moduloτ -confluence
reduction [16] if they appear in sequence. Here, this
internal behavior does not have any effect on the external
interaction between the client and the service.

• States holding internal choices described with branches of
τ transitions are more complicated to handle. Considering
theUC compatibility notion, two cases must be checked:
(i) The existence of such states inIntclt may result in
additional transitions with unmatched stateswrt. Υ. As
a consequence, these transitions must be removed from
Intclt. An example is illustrated at the bottom of Figure 5.
(ii) If the internal choice is detected inIntsce, this could
lead to a deadlock due to the consideration of theUC
notion. An illustration of this issue is given in the example
at the top of Figure 5. The states5 and its successors do
not have any match inIntclt although the service can
internally reachs5. In this case, adding a transition at
statec2 to matchcancel! message ats5 will never make

both interfacesUC compatible at the global states(c2, s5)
and (c2, s3) since there will be an unmatched transition
in the complemented side, and this does not respect
the UC requirements. Here, no compatible client can be
computed and our approach returns an error message for
that issue.

Fig. 5. Branching Internal Behaviors in Service (top) and Client Protocols
(bottom).

D. Resolution of Static Mismatches

We have shown in the previous section our method to
resolve behavioral mismatches. Before starting the resolu-
tion of the static behaviors, we need to compute again the
mapping tree and the compatibility measure in order to take
the previous updates into account. Then, the resolution of
static mismatches can be accomplished considering the ex-
ploration ofΥ and checking the mismatches detected by our
compatibility measure at every node state. Here, there are
also different static patterns which can be applied toIntclt.
Given an interface mapping treeΥ computed for two STSs,
STSi∈{clt,sce} = {(Ai ,Si , Ii ,Fi ,Ti)}:

Checking State Nature.This step aims at unifying the state
nature every time there exists a noden such thatstate(n)
presents a nature mismatch. In this case, the client’s state
nature must be set similarly to the one of the service’s state.

Checking Transition Labels.Here, different alternatives must
be studied. First of all, starting from the initial node, we incre-
mentally explore every noden, and systematically apply the
following checks. For eachn’s child noden′, if both interfaces
can transit fromstate(n) to state(n′) using labelslclt and
lsce which present a message name mismatch computed with
the compatibility measure, then: (i) If there exists a client’s
label l′clt which perfectly matches the service’s transition label
lsce, the update here consists in replacing the client’s transition
labellclt with l′clt; (ii) Otherwise, a new label and its operation



profile must be added toAclt andΣclt, respectively, and also
the client’s transition must be labelled with this new label.

Checking Signatures and Labels.This change consists in
adding or removing labels and operation profiles to or from
Aclt and Σclt. Another possible change here corresponds to
an update of sent and received lists of parameters and their
types in the operation profiles.

VI. CASE STUDY: MEDICAL MANAGEMENT SYSTEM

In this section we illustrate the application of our techniques
to resolve the service evolution issues on a case study. We
will use an online medical management system which handles
patient appointments. This system is inspired from an example
originally presented in [6]. As can be seen in Figure 6, we
reuse a medical serverMedServer and an example of a
client interfaceUser. The User can first log on to a server
by sending his/her user name and password, and receive an
acknowledgement. Then, he/she asks for an appointment with
a specialist doctor, and then receives the appointment-related
information. ServiceMedServer first receives a user name
followed by its password, and acknowledges the connection
request. Then, this service can receive and reply to a request
for either an appointment with a general practitioner or a
specialist doctor. In the latter case, the service can reply
differently depending on the availability of the specialist. In
this example, we assume that both interfaces were initially
UC compatible, but the service interface has been changed
to become as shown in Figure 6. As a consequence, the
direct reuse of the service interface is not possible due to
several mismatches presented between both interfaces —e.g.,
messagesuser? andpwd? in theMedServer interface do not
match the messagelogin! in the User interface.

Fig. 6. The STSs of theMedServer Service (top) and itsUser (bottom)

Let us show how the client update process can be applied
in order to resolve these mismatches. We initially assume an
empty set of user requirements.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
c1 0.74 0.11 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01
c2 0.01 0.45 0.6 0.34 0.36 0.01 0.22 0.27 0.26 0.01 0.01
c3 0.04 0.38 0.34 0.63 0.34 0.06 0.21 0.26 0.26 0.05 0.01
c4 0.01 0.35 0.39 0.34 0.48 0.01 0.4 0.5 0.43 0.01 0.01
c5 0.01 0.01 0.01 0.06 0.01 0.73 0.01 0.01 0.01 0.73 0.67

TABLE I
THE FIRST COMPATIBILITY MATRIX USED TO COMPUTEUser’.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
c1 0.75 0.06 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
c2 0.15 0.56 0.35 0.37 0.34 0.01 0.21 0.26 0.26 0.01 0.01

nc0 0.01 0.4 0.65 0.34 0.41 0.01 0.23 0.28 0.28 0.01 0.01
c3 0.04 0.37 0.34 0.63 0.34 0.05 0.21 0.26 0.26 0.04 0.01
c4 0.01 0.34 0.38 0.34 0.48 0.01 0.38 0.48 0.42 0.01 0.01
c5 0.01 0.01 0.01 0.05 0.01 0.73 0.01 0.01 0.01 0.73 0.67

TABLE II
THE SECOND COMPATIBILITY MATRIX USED TOCOMPUTEUser’.

Compatibility Measuring. The very first step as highlighted
in Section V is measuring the interface compatibility. We show
in Table I the resulting matrix which will be used as input to
the client update process (step 1 in Figure 1). Each line in the
matrix represents the compatibility measure of a client state
with all those on the service interface.
Interface Mapping Tree. The first mapping tree (Mapping
Tree1) given in Figure 7 (step 2 in Figure 1) is computed
using the matrix in Table I. Every node in this tree describes
the best matching of a client state with one state among all
those on the service interface, and is computed following the
techniques sketched in Section V-B.

Resolution of Behavioral Mismatches. Behavioral mis-
matches (step 3 in Figure 1) in our example are resolved as
follows. The check of the initial noden wherepr(n) = ǫ,
state(n) = (c1, s1), andch(n) = {(c2, s3)}, requires adding
a new state to be matched withs2, and also splitting the first
transition into two transitions in order to resolve the mismatch
existing between messagesuser? and pwd? on MedServer
interface and messagelogin! on User interface.

Iterative Process. Once the behavioral mismatches are re-
solved, we need to again compute the compatibility matrix
as well as the mapping tree (steps 4 and 5 in Figure 1) in
order to consider the new changes. Regarding our example,
the compatibility matrix is given in Table II and the interface
mapping tree computed using this matrix is represented with
Mapping Tree2 in Figure 7. As we can see, this tree includes
new nodes where their states are represented with the dashed
rectangles, and which consider the matching of the added state
nc0.
Resolution of Static Behaviors.The previous step ensures
1-to-1 state and transition matching, but we still need to apply
the static check (step 6 in Figure 1). In our example, checking
the nodes inMapping Tree2 implies the following changes.
First, transitions going out from statesc4 and c5 must be
labelled with messages compatible with the ones going out
from statess5 ands6. This change is followed with an update
of both AUser andΣUser in order to add the labels standing
for both messages and their profiles. Lastly, the old labels and
profiles which are not used are removed.



s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
c1 1.0 0.06 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
c2 0.06 1.0 0.35 0.37 0.35 0.01 0.21 0.26 0.26 0.01 0.01
nc0 0.01 0.35 1.0 0.34 0.41 0.01 0.23 0.28 0.28 0.01 0.01
c3 0.06 0.41 0.34 1.0 0.34 0.05 0.21 0.26 0.26 0.04 0.01
c4 0.01 0.35 0.41 0.34 1.0 0.01 0.33 0.42 0.32 0.01 0.01
c5 0.01 0.01 0.01 0.05 0.01 1.0 0.01 0.01 0.01 0.74 0.67

TABLE III
THE MATRIX OF COMPATIBLE User’ AND MedServer.

Updated User Interface.The User update process results in
its new interfaceUser’ presented in Figure 7. The compati-
bility matrix computed forUser’ andMedServer is given in
Table III (step 7 in Figure 1), and shows that those interfaces
are UC compatible — i.e., both interfaces can correctly
communicate. This is detected because these interfaces are
compatible, that is, the compatibility measure for their initial
states(c1, s1) is equal to 1.

As a very last step of the update process, the end-user can
validate the behavior described by the new client interface.
For instance, in our example, we assume that the end-user
would not accept a consultation with a general practitioner
— i.e., the user requirement set is now updated with the
message namereqDoc. In this case, our approach will reset
the user interface to its initial version and restart the update
process taking the requirement set into account. Unfortunately,
the process cannot return a compatible user interface because
the satisfaction of his/her requirements leads to a state with
internal choices which may cause system deadlock (as shown
in Section V-C), and an error message is returned to inform
the end-user of this issue.

Fig. 7. Mapping Trees and UpdatedUser.

VII. C ONCLUSION AND PERSPECTIVES

In this paper, we have introduced a framework to resolve
the compatibility issues related to the evolution of black-box
services. We proposed a systematic method to update the client
and ensure system compatibility. The use of our compatibility
measure has enabled us to compare the interfaces and also
detect the mismatches to be worked out. The update process
can be parameterized with some user requirements to prevent
the behavior that a designer does not want to appear in the
client interface. Our solution is automated by a prototype tool,
calledUpdator, we have implemented and experimented with
many examples.

In the future, we first plan to generate the client imple-
mentation corresponding to the updated interface. We will
also extend our work in order to consider other compatibility
notions existing in the literature. So far, user requirements are
described using messages that must not appear in the updated
client interface. We would like to consider temporal logic
properties to enforce an order in which some messages must
appear. Finally, we will study service evolution in dynamic
systems.
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