N

N
N

HAL

open science

Client Update: A Solution for Service Evolution

Meriem Ouederni, Gwen Salaiin, Ernesto Pimentel

» To cite this version:

Meriem Ouederni, Gwen Salatin, Ernesto Pimentel. Client Update: A Solution for Service Evolution.
8th International Conference on Services Computing (SCC’11), Jul 2011, Washington DC, United

States. hal-00649933

HAL Id: hal-00649933
https://inria.hal.science/hal-00649933
Submitted on 9 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00649933
https://hal.archives-ouvertes.fr

Client Update: A Solution for Service Evolution

Meriem Ouederni Gwen Salaiin Ernesto Pimentel
University of Malaga, Spain Grenoble INP, INRIA, France University of Malaga, Spain
Email: meriem@lcc.uma.es Email: gwen.salaun@inria.fr Email: ernesto@Icc.uma.es

Abstract—In service-based systems, service evolution might system incompatibility? An obvious answer requires the de-
raise critical communication issues since the client canobe tection and resolution of interface mismatches to guaeante
aware of the changes that have occurred on the black-box sebes 1o ¢orrect communication. Existing approaches in the field

side. In this paper, we propose an automated process to adapt o . . .
the client to the changes that have occurred. Our approach fes '€ split into two classes. The first class is devoted to servi

on a compatibility measuring method, and changes the client @daptation [3], [14], [5] which aims at implementing an
interface to ensure the system compatibility. This solutia is fully intermediate service (called adaptor) to work out existing

automated inside a prototype tool we have implemented. service/client mismatches. However, adaptor generaticani
Index Terms—Web Services; Services Composition intricate process, and in some cases it is impossible tdveso
interface incompatibility using such techniquesy, parameter
type conversion is not supported. The second class of egisti
Since the venue of Service-Oriented-Computing (SOGpproaches [18], [2], [17], [1] allows the designer to chang
companies tend to build their software systems using hg¢eroservice interfaces in order to ensure the system compgsgtibil
neous and loosely-coupled (Web) services. These servieesBhese works do not consider service as black-boxes, and
black-box applications meaning that they can only be aecessheir techniques used to modify service interfaces comsist
— i.e, discovered and composed — through their publiwvo steps: (i) They first detect changes by calculating all
interfaces, and their implementation details are hiddemfr differences between the upgraded and old service version;
an external point of view. Here, service interfaces descrilfii) Then, they propagate all these changes into the upgdrade
the exchanged messages and their application order réfewersion —i.e., adding and deleting some parts of the service
to as interaction protocol. interface. These works describe services using modelshwhic
In a challenging business environment, companies’ gromtfo not take internal behaviors and message parameters into
is driven by innovations and competitions which cause changaccount. They also use a compatibility check which does not
across companies’ requirements. Thus, service providerd nallow one to detect the changes to be handled. Therefore,
to constantly change their services to fulfill these new réhey cannot avoid the computation of differences between th
quirements. In particular, there might be a need to add ovpdated and new service version.
remove some functionalities. In the context of our work, we This paper proposes a new approach for automatic res-
assume service-based systems which consist of two partstion of interface mismatches in the context of service
involved in the interaction —.e., the service and its client evolution. We consider black-box services that can be #isco
(user). In this setting, service changes are usually paddr ered and composed through their public interfaces. Interna
in a transparent manner such that the client is not awareeawbehaviors and message parameters are considered in service
of those changes. This can lead to system disruptions andriterfaces. We only enable the designer to change the dlient
particular raise incompatibility issues between the uggda order to match the upgraded service interface. In our agproa
service and its client. For instance, let us assume a systdra changes are detected using a compatibility measurénwhic
composed of a clien€ and a services, in such a way, that compares the service with its clientt. a compatibility notion,
both C' and S are initially compatible. The client’ can first and returns the mismatches presented between both irgerfac
log on to the service and wait for an acknowledgment. THa order to update the client interface, we use this measure
service$S is able to acknowledge a client every time the lattéo compute an interface mapping tree which relates parts of
makes a logging request. We now assume that seié® both interfaces that better match with each other. Using the
changed, in such a way, that it requires the client to entem@apping tree and the mismatch list, we first resolve protocol
secure code after a successful login request. This charge tedated interaction issues called behavioral mismatchesn,
been made to stop malicious hackers accessing the sefvicave resolve the static interface mismatches which consider
As a consequence, the future interaction between dfieahd exchanged messages and their parameters. Our process com-
service S deadlocks because the new request required bypletes when both the service and the client interfaces becom
cannot be satisfied bg'. compatible. Note that this evolution management process ca
In order to cope with the above interaction issues occurrifig@ also parameterized with some user requirements in order
in the context of service evolution, we should provide ato prevent undesirable behaviors (functionalities) theg does
answer to the following challenging question: how to solveot want to appear in the new client interface.

I. INTRODUCTION

The rest of this paper is organized as follows. Section Il &n interaction protocol represented bySgmbolic Transition
an overview of related work. Section Il presents the seviSystem(STS). Formally, an interfacént is defined using the
description model. We give in Section IV our method focouple (X, STS. The interface signature represents the set
compatibility measuring and the interface mismatchesidensof operation profiles which may be required and provided,
ered. Our client update techniques are detailed in Section ikcluding their argument types.
Section VI illustrates the use of our approach through a caseDefinition 1 (Signature):A signatureX is a set of provided
study. Finally, Section VIl concludes the paper and preserand required operation profiles. An operation profile is dfin
some perspectives. as an operation name together with its input and output,sorts
i.e, type names, (possibly empty):

op :tiy *x...x1l, — tog *...%x1t0om

The resolution of interaction issues is a major concern of Our STS model is a variant of the STG (Symbolic Transition
SOC to ensure the correct reuse and composition of servicaph) model presented in [12], where guards in branch-
which change constantly. To the best of our knowledge, tivey transitions are abstracted into transitions labelldth w
evolution problem is related to fields such as database sthemactions. In an STS, communication between services is
evolution, software component evolution, software refeiny, represented usingventselative to the emission and reception
workflow evolution, and protocol evolution. Here, we focusf messages corresponding to operation calls. An eventgome
on the service evolution area, but more details on evolutiovith a list of parameters (possibly empty) whose types retspe
problems in the context of the above fields are presentgm operation signature. Fabel describes either the (internal)
in [18]. T action or an event using the tuplen,d,pl) wherem is

Existing work on service evolution, see for instance [18the message namé,stands for the communication direction
[2], [17], [1], does not consider Web services as black-Bpxgeither an emissioth or a receptiori?), andpl is either a list
yet they allow access and changes their implementatioiisleteof data terms if the label corresponds to an emission, orta lis
In [17], [1], the authors differentiate between two kinds obf variables if the label is a reception.
changes: shallow changes where the effect of the changes iBefinition 2 (STS):A Symbolic Transition System, TS
localized to a service or is strictly restricted to the dgnis a tuple (A, S,I,F,T) where: A is an alphabet which
of that service; and deep changes which extend beyond #wresponds to the set of labels associated to transitids,
clients of a service possibly to the clients of these servieeset of states] € S is the initial state ' C S is a nonempty
clients such as outsourcers or suppliers. The goal of [17], [set of final states, an@ C S\F x A x S is the transition
is to guarantee the independent evolution of loosely-aliplrelation.
services. However, this violates the black-box servicermags It is worth noting that communication between services
tion. Our solution also applies shallow changes, nevestisel described with STSs relies on a synchronous and binary
we aim at updating the client (user) rather than the serviammmunication modél The operational semantics of this
The work presented in [18] focuses on the managementrabdel is given in [9]. STSs can also be easily derived from
dynamic evolution —.e., it deals with the effect of the servicehigher-level description languages such as Abstract BBEE,
changes which occur when a system is running an old serviee instance [10], [19], [6] where such abstractions weredus
version. More recently, [2] studied static evolution. Thisrk for verification, composition or adaptation of Web services
proposes changing the client which can be a service. In ounn the context of our work, as we have mentioned in
approach, services are considered as black-boxes whiclotarnhe Introduction Section, we consider systems composed of
be changed. two parties, namely, a service and a client (user). In the

Techniques used in previous work first detect changes tymainder of this paper, both parties are described usiag th
computing the differences between the upgraded and the slime interface model.
service, and then propagate these changes into eitheri¢né cl
or service depending on their context ie., client-based or IV. SERVICE COMPATIBILITY
service-based changes. Our approach is different since wé&his section first defines the notion considered to measure
detect changes using our compatibility measure which giveénterface compatibility. Then, we present the interfaces-mi
detailed comparison of an upgraded service with its clienhatches which can be detected using our measure.
This measure enables us to map the interface constituents =)
in spite of existing mismatches, but it also allows us t6- Unidirectional Complementarity (UC)
resolve these mismatches. Lastly, the consideration of useCompatibility checking verifies the successful interattio
requirements guarantees that the updated client intedaes between servicewrt. a criterion set on their observable ac-
not describe any undesirable behavior. tions. This criterion is referred to as a compatibility no-

tion. We distinguish two classes of notions depending on

II. RELATED WORK

IIl. I NTERFACEMODEL

This section presents the model of the service interfaces weAlthough checking protocol compatibility is undecidableittw asyn-
hronous communication [4], Fet al. proved in [11] that a large class of

. e .Cl
use to check their Compat'b'“ty' We assume that the SeIVifyferfaces can be analyzed under an asynchronous comrtianiozodel using

interface Int is described by means of a signatude) @nd techniques and tools existing for the synchronous comnatioit model.

the direction of the compatibility checking, that are, bidik—1'" iteration) together with the current compatibility degree
rectional and unidirectional analysis. Here we consider g@mopagated from its neighbors. The propagated compayibili
unidirectional compatibility notion for illustration pposes, is computed using functiostate-compt.; ,((s1, s2)) defined
namely unidirectional complementarityJC for short). Two as the weighted average of three measures: the forward and
services are compatiblert. the UC notion if there is one backward propagated compatibilities, and the value retlirn
service complementgrwhich must eventually receive (sendby the functionnat(sy, s2) which compares state natures. The
respectively) all messages that its partneoniplemented forward and backward propagated compatibilities are com-
expects to send (receive, respectively) at all global rebleh puted depending on the parametéfd’ and D. For instance,
states. In addition, both services must be deadlock-freeiimthe case ofUC compatibility which is an unidirectional
all reachable global states. Hence, templementeservice notion, the interfaces are analyzed from the client point of
may send and receive more messages thamdhgplemented view since the correct interaction is governed by this ¢lien
service? This asymmetric notion is useful for checking theequirements.

successful communication in the client/server model whereFinally, the compatibility degree is normalized., divided

a server can interact with clients having different beheszio by the maximal value that can be achieveds|s, s2] is

In this setting, each client behavior must be satisfied by tfiermally defined as follows:

server.

C}lif1 [si,s5] + state-comp"c'N,D((sl, s2))
2

Chls1, s2] =

B. Measuring Interface Compatibility

In order to resolve the interface mismatches, we reuse
our measure presented in [15] which computes the interfacepur iterative process terminates when the Euclidean dif-
Compatlblllty and detects the mismatches. In what fO”OW%rence|C’k _ Ck—1| of matricesck and Ck—l converges,
we present the intuition behind our measure, yet more detgik., reaches an epsilom such thate > 0. Lastly, the
can be found in [15]. The computation process accepts @mpatibility matrix comes with a mismatch list which eresl
input two service protocolST'Sy = (A, S, 11, F1,T1) and understanding of the incompatibility issues.
STSy = (Ag,Sa, I, F5,T5) and computes a compatibility
degree for each global staies., each couple of stat€s;,s;) C. Interface Mismatches

with s; € S; ands; € S,. All compatibility scores range .
between 0 and 1, where 1 means a perfect compatibility. O {;'fl'here has been_a lot of e_ffort devoted to st_udylng the
erent classes of interface mismatches, see for inst§8ic

approach is parameterized by a compatibility notion, tsat i :
PP P y P y s &Lr?] In our work, we focus on the most common mismatches
in the literature, and organize them into two classes, ngmel

we measure to what degree the two interfaces are far fr
being compatiblaevrt. this compatibility notion,e.g, the UC) S
compatibility considered in this paper. behavioral and static mismatches.
To measure the compatibility of two service protocols, wBehavioral Mismatches. Behavioral mismatches can be de-
compute the protocol compatibility degrees for all possibtected at the protocol level where the execution order of
global states using a set of static compatibility measunesur exchanged messages is taken into account. The first kind of
work, we use three static compatibility measures, namelkgstmismatch is that a message can be expected to be received
natures, labels, and exchanged parameters. These meaiirés an order which is different to that which is being sent by
used next to analyze the behavioral part (ordering of labetbe partner. Another kind of behavioral mismatch is known
of both protocols. Intuitively, two states are compatible ias a n-to-m#§ # m) matching issue where (i) a transition, a
their backward and forward neighboring states are comlgatibstate, or a message, on one interface corresponds(to 1)
where the backward and forward neighbors of statein matches on the other interface, this is called a split/merge
transitions(s, [, s’) and(s’,1’, s”) are respectively the states matching issue; (ii) some of these interface constituents d
and s”. Hence, in order to measure the compatibility degre®t have any match in the partner’s interface, this is cadled
of two service protocols, we consider an iterative approachissing/extra matching issue. The resolution of this misima
which propagates the compatibility degree from one state @asures 1-to-1 matching. In the remainder of this paperaas f
all its neighbors. This process is called compatibility low. as theUC compatibility notion is considered, 1-to-1 matching
Ck stands for the resulting matrix where each entmust be guaranteed from the client point of view meaning that
Ck[sq, s;] represents the compatibility measure of a globalach client state or transition must exactly match one servi
state(s;, s;) € St x S, at thek!” iteration, andP corresponds state or transition, respectively.

to the compatibility notion usedC} represents the initial gyaic Mismatches. There are two subtypes of static mis-
compatibility matrix where all states are iupposed 10 hRatches: (i) signature, in which sent and received messages
perfectly compatiblei.e. V(si, s;) € S1 x %v Cplsi;sil = 1. have different names and/or incompatible sort lists (patam
The compatibility degree dfs;, s;) at thek™ iteration is cOm- nes)y __j e hoth lists do not share all types in the same
puted as the sum of its previous compatibility degree (at th¢qer: and (i) state nature, in which two compared states do

20ur definition is different from simulation or preorder ridas [7] since r?Ot have t_he same nature meaning that both states are, initial
we compare protocols with opposite directions. final or neither.

V. CLIENT INTERFACEUPDATE new client interface. The update process may fail and am erro
In this section, we apply our compatibility measure tfnessage is returned if no compatible client can be generated

resolve the interface mismatches and make both the cligjﬁe to the specified requirements.
(complemented) and the service (complemeritie)compati- B. Interface Mapping Tree
ble. To achieve this objective, we propose a process to éang

the client interface (Figure 1). here each node represents the best matching of a client

In step kl) ‘;]V? co:cnpute ;f;}e compat2|b|lltly measare Wh'lcgate with one state among those on the service interface.
compares ot |nt_er aces. then, step_ relies on t € negu ti:urthermore, each node is linked to its parent and children
compatibility matrix to generate an interface mapping tree des

which describes the best state matching on both interfaces. = . ,

Based on the analysis of the mapping tree, we change theefinition 3 (Node):Let —us consider two STSs,
client interface as follows. In step 3, behavioral mismagch © L Sie{cit,sce} = {(4s, 5, I, Fi, Ti)}, which -~ describe a
are resolved first because protocol level is the crucialeissfli€nt and a service protocol, respectively. A nodeis a
in service-based communication. Protocols guide designdiPI€ (¢7gs, ch) where:pr is the link to the parent nodes
to write clients that correctly interact with a given seriic 'S the global stat&s.i;, ssce) € Seir X Ssce MeANING thaksce

Steps 4 and 5 again compute the interface compatibility the best match fos.;;, andch stands for the set of links
tqnthls node’s children.

and the mapping tree in order to take the changes made)))
the previous step into account. The analysis of the updated€ @ssume the following functions necessary for analyzing

mapping tree enables us to resolve the static mismatched!|i Mapping tree. Given a node= (pr, gs, ch), state(n) =
step 6. Lastly, after partial resolution of interface mischas, 9% parent(n) = pr, and children(n) = ch.

step 7 computes the compatibility measure to check if theDefinition 4 (Deadlock Node)Let us consider two STSs,
updated client is compatible with its service interfdcehe STSicicit,scey = {(Ai, i, Ii, Fi, T;)}, which describe a
update process terminates if these interfaces are cortgpatiflient and a service protocol, respectively. A deadlockenod
and the user requirements are satisfied. Otherwise, a riéva leaf noden where children(n) =), and state(n) is not
iteration should be started from step 2. Note that this peced deadlock staté.

can be parameterized by a set of user requirements to prevemefinition 5 (Interface Mapping Tree)Let us consider two
undesirable behaviors that the designer does not want ®eaPIBTSs, ST, (cir,sce} = {(As, S, Li, Fi, T;)}, which describe

in the new client interface. a client and a service protocol, respectively. An interface

mapping treeY is defined using its root node, I, ch) where
”:“/C{W I is the initial global staté I, I...), and children(n) = ch.
The mapping tree is computed as follows. First, the root
noden has no parent —+e., parent(n) = ¢ — and stands for
- 1 (o) the matching of the initial states dn¢.;; andnt,... Then, the
! L . yinterface Mapping Tree children nodes are incrementally added using the measures i
Y ©€) the compatibility matrix. The evaluation of the compaitil
p— (i., %_’ measure returns candidate global states where every global
Comatibility Matrix : state matches a client state and a service state with whéch th
.)Q l ® : client has the highest compatibility score. These glokatest
A o : are referred to as be.st state matchlng_s. A nqde corresgpndin
Compatibility eting Lo Matching to a best state matching can be added if both interfaces ke ab
Cm to evolve into a target global state using messages differen
than those belonging to user requirements.
This reasoning for generating the mapping tree allows one
Fig. 1. Overview of our Client Update Process to add some incorrect nodes into the tree. A nodds
considered correct if every child node’s state can be rahche
. from state(n) using a correct transition. Thus, in order to
A. User Requirements avoid incorrect nodes, we rely on the protocol information
Our update process enables the designer to set somet@echeck correct transitions relating every node’s statth wi
quirements which must be satisfied all along this procedbeir children nodes’ states. In the following, we give toerf
These requirements consist of the set of messages which nil@fsition levels we consider to check the nodes’ corressine
not appear in the updated interface. This prevents undisiraSequential Transition. This analysis ensures that for every

behaviors that the designer does not want to appear in feden all the states of its children nodes must be reached
following correct sequential transitions, that is,sitate(n) =

The interface mapping tree describes a set of linked nodes

@ ~-"
I | Client |

requirements
o —_—

Client

Sequential Consistency
Branching Consistency

Looping Consistency

30ur results presented in [15] prove that two interfaces amesidered
compatiblewrt. a compatibility notionCN if and only if they are compatible A global state(s.s, ssce) is considered a deadlock state(#.;;, ssce) &
at their initial global state —.e., the compatibility measure is equal to 1. F,.;; X Fsce and no transition goes out fromy;; and ssce.

(Scit, Ssce) and it exists(s’,;,, i) in children(n), thens’,,

sce

with any message at stat®? due to the restriction made by

ands’,., must be successors 8f;; ands,.., respectively. For- the user requirements. Thus, no compatible user interface c

mally, we consider the sequential transition betwegiie(n)
and its children nodes correct if the following conditiond®

be generated using this interface mapping tree.

Y(pr, gs, ch), ch C suce(gs), where fori = clt andj = sce, g2 atabase egistent 5%
gs = (i, 85): - =)
suce(si, 85) = I a o «
{(si,sg)} U succ(s,’t-,s'j) if 3(s4,0,5;) € Ty, _ update?) updater o &)
3(8j,lj,89-) ETj s1|s2]s3]s4
{(s},8;)} Usuce(s],s;) elseifd (s;,7,s;) € T; o Fotbolrslon] e — i“g o
{(si,8)} Usucc(si, s) else if3 (s, 7,57) € T} cafososlontin]
0 otherwise [Eo 1
Branching Transition. States holding outgoing choices might e user)
lead to mismatched target states but which appear in the Ul @)
mapping tree as best state matching. For instance, one state [t s ‘cl N ca
s+ from the client interface can pe matcheq Wi_th two differgnt Errors Wo compatible reaner” @20 ®)
statess,.. and s’,.. reached using a choice in the service —
interface ifs.;; has the same highest compatibility value with Fig. 2. Database Management System.

ssce @nds’.. In this case, we keep only one matching from

these two solutions in order to ensure 1-to-1 state matching

(see Section IV-C). Note that this choice can be enforced by Resolution of Behavioral Mismatches

making it explicit in user requirements. In this section, we present our techniques to resolve
Looping Transition. This analysis compares looping behavthe behavioral mismatches. These techniques rely on the
iors in the client and the service interfaces, and deteceiven interface mapping tree, and aim at ensuring the client-
there are loops to be added or removed in the client protoce@sed 1-to-1 matching. Thus, the first change pattern to be

At the level of mapping tree computation, this consists iﬁons_idered isadd/remove stateslefined as follows. Given
adding or removing some nodes. It can also require an updafe interface mapping tre€f computed for two STSs,

of parent and children links of other existing nodes.

Deadlock-Freedom.A mapping tree can be used to update a °
client interface if and only if it does not include any deailo
node. If there is a deadlock node, an error message is returne
indicating that no compatible client can be generated.
Example:Let us illustrate the computation of an interface
mapping tree from a compatibility matrix and some user
requirements. We give in Figure 2 a simplified example of

a database management system where a user can access @Qice
online database to search data or make an update, and waits

for its acknowledgement. The database service can firsiveece

a request for an update or a registration to be acknowledged.” | search?

First scenario with empty set of user requirements.The

resulting mapping tree is obtained using the compatibility

matrix computedvrt. UC notion.User andDatabase are the
complemented (client) and complementer (service) prdspco
respectively. Each node representblser state with its best
state match among those Database. Our update techniques
presented in Section V-D rely on this mapping tree to change,
the User’s interface so that its protocol becomeslser’.

Second scenario with non-empty set of user requirements.
Given the requirement set which is equal fackR}, this
means that the user does not want to receive the registration
acknowledgement. The computation of the mapping tree re-
turns a deadlock node (represented by the dashed rectangle
in Figure 2). This node does not have any child node because
the messagackR! going out from stats3 cannot be matched

s2

STSiE{clt,sce} - {(Alv Siv Iiv Fi, TZ>}

Each client’s state which does not appear in @hypode
must be removed if this state can be reachable and lead
to other states through observable labels (different than
actions) —i.e, Vsq: € Se, if V n, s & state(n),

St it \ {sat}. An example of this change is
illustrated in Figure 3, where the client’s stat2 needs

to be removed.

Client Client'

cl

(it1:t1)

c2 must tée (1) Remove state c2

search!
(it1:t1,it2:t2) removed

(itl:t1)
searchlt2! (2) Merge transitions
- (it:t2)
v R

Fig. 3. Remove State and Merge Transitions Patterns.

A new client’s state must be added every time there
is a statess.. € Ssee reachable and leading, through
observable labels, to states having corresponding matches
in Y, but s,.. does not appear in any node. Figure 4
illustrates an example where the service's stedoes

not have any match idnt.;. Since this state forwards
statesl and precedes stat&3 which match stategl
andc2, respectively, the client change consists in adding
a new state to be matched wig2.

Service Client Client'

o,
o

searchltl? E __,_>-—»""'"““”““(1 searchltl! and (C2753) S|nce there

(it1:t1) (it1:t1)

jszis an intermediate T Cearcht (1) Add state ¢3 in the complemented

both interface®)C compatible at the global state=2, s5)

will be an unmatched transition
side, and this does not respect

T cearchizr (22) T raneon searci the UC requirements. Here, no compatible client can be
it:t2 QW T c fte:
P S v z' T8 computed and our approach returns an error message for
: M . that issue.
\4 \4

Service

Fig. 4. Add State and Split Transitions Patterns.

(it:t)

The previous pattern may imply another change, namely,
merge/split transitionsvhere transitions can be removed or ;
added. This change considers the location of handled tran- fcancer
sitions, but also the links to their predecessor and suocess C"t“htﬁbb

transitions in the interaction protocol. Below, we give gteps sddedatczwn Ve S
to be followed for adding or removing a transitids, [, s):

o We compute all predecessors and successors transitions of
(s,1,8"). Then, for each of those transitions, we update .,

ervice Client

either its target (for a predecessor transition) or source search! searct
state (for a successor transitionjt. to s ands’. o

« With regards to adding a transition, if there is no oper- A
ation profileop(tiy, . . ., tin, tog, ..., to,) € Xt Which ST reply!

To-o (r:stn),

corresponds to the profile of the action represented with v
[, this label and its missing profile should be included
inside A.;; andX;, respectively. However, if's profile
exists inE__Clt, two a_lternatives are possible: (i) reus# Fig. 5. Branching Intemal Behavi
l € Ay, (i) otherwise, Aqy = A U {1}. (bottom).

o Transition deletion requires the remove bfand its
operation profile —i.e, A = Aa\{I{} and X.p =

(r:str) <

search?

Client

search!
(it:t)

reply?
(r:str)

Tc2does not need
to be removed

cancell

Unmatched behaviour,
and j must be removed

ors in Service (top) ang@l Protocols

S\{m(ti1, ..., tin,to1,... ,to,)} wherel = (m,d,pl) D. Resolution of Static Mismatches

andtiy, ..., tin, toy, ..., to, stand for types of parame- \we have shown in the previous section our method to
ters inpl. resolve behavioral mismatches. Before starting the resolu

Checking Internal behaviors. We now focus on the appli- tion of the static behaviors

, we need to compute again the

cation of both previous patterns when considering internalapping tree and the compatibility measure in order to take
behaviors. Checking the correct match of states reachabletfte previous updates into account. Then, the resolution of
leading to other states using only internal behaviors can sttic mismatches can be accomplished considering the ex-

handled differently as follows: ploration of Y and checking

the mismatches detected by our

. ~ transitions can be minimized module-confluence Compatibility measure at every node state. Here, there are
reduction [16] if they appear in sequence. Here, th@_so diﬁergnt static patte_rns which can be applied/to.;.
internal behavior does not have any effect on the exterrifalvén an interface mapping tréé computed for two STSs,
interaction between the client and the service. STSiceit,scey = {(Ai, Si, iy Fi, Ti)}:

. States holding internal choices described with branches@fiecking State Nature.This step aims at unifying the state
7 transitions are more complicated to handle. Considerifgture every time there exists a nodesuch thatstate(n)
the UC compatibility notion, two cases must be checkedresents a nature mismatch. In this case, the client’s state
(i) The existence of such states int.; may result in nature must be set similarly to the one of the service’s state
additional transitions with unmatched statsg. Y. As Checking Transition Labels. Here, different alternatives must
a consequence, these transitions must be removed frbmstudied. First of all, starting from the initial node, werie-
Int.¢. An example is illustrated at the bottom of Figure Smentally explore every node, and systematically apply the

(i) If the internal choice is detected ifnt,.., this could following checks. For each’s

child noder/, if both interfaces

lead to a deadlock due to the consideration of theé can transit fromstate(n) to state(n’) using labelsl.;; and
notion. An illustration of this issue is given in the examplé;.. which present a message name mismatch computed with
at the top of Figure 5. The stag® and its successors dothe compatibility measure, then: (i) If there exists a dien
not have any match idnt.;, although the service canlabell/,, which perfectly matches the service’s transition label
internally reachs5. In this case, adding a transition at .., the update here consists in replacing the client’s trenmsit

statec2 to matchcancel! message a5 will never make labell.;; with I’

C

. (i) Otherwise, a new label and its operation

. . | s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 sil |
profile must be added td.;; andX.;;, respectively, and also oI [074 011 001 004 00l 00 00l 00I 00I 00l 0l

o L) . 2001 045 06 034 036 001 022 027 026 001 001
the client’s transition must be labelled with this new label §3 0.04 038 034 063 034 006 021 026 026 005 0.01

. . .) . c4 001 035 039 034048 001 04 05 043 001 001
Checking Signatures and Labels.This change consists in ¢5 001 001 001 006 001073 001 001 001 073 067

adding or removing labels and operation profiles to or from TABLE |

A and Y. Another possible change here corresponds to THEFIRST COMPATIBILITY MATRIX USED TO COMPUTEUser".
an update of sent and received lists of parameters and their
types in the operation profiles.

| s1 s2 s3 s4 5 s6 s7 s8 9 sl0 sl |
cl | 075 006 001 003 001 001 001 001 001 001 001

V1. CASE STUDY: MEDICAL MANAGEMENT SYSTEM n0 | 001 04 068 03 041 001 023 028 028 001 001
. . . o . c3 | 004 037 034 063 034 005 021 026 026 004 001

In this section we illustrate the application of our techugg c4 | 001 034 038 034048 001 038 048 042 001 001
c 001 001 001 005 001073 001 001 0.01 073 0.67

to resolve the service evolution issues on a case study. We TABLE Il

will use an online medical management system which handles te seconp CompariBiLITY MATRIX USED ToComPUTEUSET'.

patient appointments. This system is inspired from an examp

originally presented in [6]. As can be seen in Figure 6, we

reuse a medical servevledServer and an example of a

client interfaceUser. The User can first log on to a server Compatibility Measuring. The very first step as highlighted
by sending his/her user name and password, and receiveira§ection V is measuring the interface compatibility. Wewh
acknowledgement. Then, he/she asks for an appointment withTable | the resulting matrix which will be used as input to
a specialist doctor, and then receives the appointmeatect! the client update process (step 1 in Figure 1). Each lineén th
information. ServiceMedServer first receives a user namematrix represents the compatibility measure of a clientesta
followed by its password, and acknowledges the connectiwsith all those on the service interface.

request. Then, this service can receive and reply to a requegerface Mapping Tree. The first mapping treeMapping

for either an appointment with a general practitioner or &eel) given in Figure 7 (step 2 in Figure 1) is computed
specialist doctor. In the latter case, the service can replging the matrix in Table I. Every node in this tree describes
differently depending on the availability of the specialim the best matching of a client state with one state among all
this example, we assume that both interfaces were initiallyose on the service interface, and is computed followirg th
UC compatible, but the service interface has been changedhniques sketched in Section V-B.

to become as shown in Figure 6. As a consequence, Wgsolution of Behavioral Mismatches. Behavioral mis-

direct reuse of the service interface is not possible due gsiches (step 3 in Figure 1) in our example are resolved as
several mismatches presented between both interfaces— fgjlows. The check of the initial node where pr(n) = e,

messagesser? andpwd? in the MedServer interface do not state(n) = (c1,s1), and ch(n) = {(c2,s3)}, requires adding

match the messadegin! in the User interface. a new state to be matched wis, and also splitting the first
transition into two transitions in order to resolve the magom
é MedServer) existing between messagaser? and pwd? on MedServer

user? g‘_’lgr?ing o interface and messagdegin! on User interface.

Iterative Process.Once the behavioral mismatches are re-
reqDoc? solved, we need to again compute the compatibility matrix
d:date
as well as the mapping tree (steps 4 and 5 in Figure 1) in
order to consider the new changes. Regarding our example,

s2 reqSpec?

d:date
s:string

repAvailable!
id:string

T s8 tau the compatibility matrix is given in Table Il and the intecéa
repNonAvailable! irs_cl?r?s! mapping tree computed using this matrix is represented with
Siing Mapping Tree2 in Figure 7. As we can see, this tree includes
N s J new nodes where their states are represented with the dashed
Ve ~N rectangles, and which consider the matching of the addésl sta
User nco
a 2 a3 c4 s Resolution of Static Behaviors.The previous step ensures
logint 2ck? reqspect T reply? 1-to-1 state and transitio_n m_atching, but we still need tolyap
ustring abool d:date ritr the static check (step 6 in Figure 1). In our example, cherkin

\ p:string s:string

the nodes inVlapping Tree2 implies the following changes.
First, transitions going out from stategl and c5 must be
Fig. 6. The STSs of th¢ledServer Service (top) and it&Jser (bottom) labelled with messages compatible with the ones going out
from statess5 ands6. This change is followed with an update
Let us show how the client update process can be appliedboth Ay ., and Xy, in order to add the labels standing
in order to resolve these mismatches. We initially assume fom both messages and their profiles. Lastly, the old labeds a
empty set of user requirements. profiles which are not used are removed.

| s1 s2 s3 s4 5 s6 s7 s8 9 s10 sl |

¢T [10 006 001 003 00 00l 00l 001 001 00 00l In the future, we first plan to generate the client imple-

c2 0.06 1.0 035 037 035 001 021 026 026 0.01 o0.p1

nco | 001 035 10 034 041 001 023 028 028 00l 001 mentation corresponding to the updated interface. We will

Pl I A U A A o also extend our work in order to consider other compatibilit

¢s | 001 00l 0O0L 005 00110 001 001 001 074 06 notions existing in the literature. So far, user requireta@ne
TABLE Il described using messages that must not appear in the updated

THE MATRIX OF COMPATIBLE User’ AND MedServer. L
client interface. We would like to consider temporal logic

properties to enforce an order in which some messages must
appear. Finally, we will study service evolution in dynamic

Updated User Interface.The User update process results inSystems. . .
its new interfaceUser’ presented in Figure 7. The compatiAcknowledgements.This work has been partially supported
bility matrix computed forUser’ and MedServer is given in by the project TIN2008-05932 funded by the Spanish Ministry

Table 11l (step 7 in Figure 1), and shows that those intefac€f Innovation and Science and FEDER, and by the project
are UC compatible —i.e,, both interfaces can correctlyPO7-TIC03131, funded by the Andalusian government.

communicate. This is detected because these interfaces are
compatible, that is, the compatibility measure for theitiah
[1] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. ol¥dug

states(cl, 51) IS equal to 1. Services from a Contractual Perspective.Pioc. of CAISE’09volume
As a very last step of the update process, the end-user can sse5 of LNCS pages 290-304. Springer, 2009.

validate the behavior described by the new client interfacd2] A. Azough, E. Coquery, and M. S. Hacid. Supporting Webviter

For instance, in our example, we assume that the end-user [1°°9! Changes by Propagation. foc. of WI'03 pages 438-441.

would not accept a consultation with a general practitione] s. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romangysand
— i.e, the user requirement set is now updated with the M. Tivoli. Towards an Engineering Approach to Component ptdtion.

; ; In Architecting Systems with Trustworthy Componentdume 3938 of
message nameegDoc. In this case, our approach will reset LNCS pages 193215, Springer, 2006.

the user interface to its initial version and restart theai@d (4] p. Brand and P. Zafiropulo. On Communicating Finite-Sthtachines.
process taking the requirement set into account. Unfotélya J. ACM 30(2):323-342, 1983.

; ;] J. Camara, J. Antonio Martin, G. Salaiin, J. Cubo, M.e@arni,
the process cannot return a compatible user interface becal® C. Canal, and E. Pimentel. ITACA: An Integrated Toolbox foe t

the satisfaction of his/her requirements leads to a statle Wi Automatic Composition and Adaptation of Web Services. Phoc. of
internal choices which may cause system deadlock (as shown ICSE'09 pages 627-630. IEEE, 2009.

; : 2 ; ;] J. Camara, G. Salain, C. Canal, and M. Ouederni. lotee Specifi-
in Section V; C)’ and an error message 1S returned to |nforr{§ cation and Verification of Behavioural Adaptation Contsactn Proc.

the end-user of this issue. of QSIC'09 pages 65-75. IEEE Computer Society, 2009.
[7] R. Cleaveland and O. Sokolsky. Equivalence and Predtiecking for
Mapping Treel Mapping Tree2 User' ™\ Finite-State SystemsHandbook of Process Algehrpages 391-424,
(c1,s1) 2001.
_____ AW srt [8] M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebrad a
a(cz 23 ! u:string Visual Notation for Service Interface Adaptation. Rmoc. of BPM'06
volume 4102 ofLNCS pages 65-80. Springer, 2006.
inco, 138 - "o wdt [9] F. Duran, M. Ouederni, and G. Salaiin. Checking Prdt@mmpatibility
! s:str:ing using Maude. InProc. of FOCLASA’09volume 255, pages 65-81.
: ENTCS, 2009.
[10] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BP®leb Services.
In Proc. of WWW'04 pages 621-630. ACM Press, 2004.
>® @ [11] X. Fu, T. Bultan, and J. Su. Synchronizability of corsations among
reqDoc! reqDoc? web services|EEE Trans. Software Eng31(12):1042—-1055, 2005.
_ d:date id:string) [12] M. Hennessy and H. Lin. Symbolic Bisimulation3.CS 138(2):353—
389, 1995.
[13] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and Fa@ag\n Aspect-
Fig. 7. Mapping Trees and Updatédser. Oriented Framework for Service Adaptation. Broc. of ICSOC'06
volume 4294 ofLNCS pages 15-26. Springer, 2006.
[14] R. Mateescu, P. Poizat, and G. Salaun. Adaptation ofiGe Protocols
Using Process Algebra and On-the-Fly Reduction TechnigleBroc.
VII. CONCLUSION AND PERSPECTIVES of ICSOC'08 volume 5364 ofLNCS pages 84-99. Springer, 2008.

In this paper, we have introduced a framework to resolV&] M. Ouederni, G. Salain, and E. Pimentel. Measuring@benpatibility
of Service Interaction Protocols. IAroc. of SAC'11 volume 2, pages

REFERENCES

(c4, s5)

the (;ompatlblllty issues related tol the evolution of bldcke . 1560-1567. ACM, 2011.
services. We proposed a systematic method to update timé cli@s] G. J. Pace, F. Lang, and R. Mateescu. Calculating-Centie Compo-
and ensure System Compat|b|l|ty The use of our Compaybm sitionally. In Proc. of CAV’03 volume 2725 ofLNCS pages 446-459.

. Springer, 2003.
measure has enabled us to compare the interfaces and OMm. P. Papazoglou. The Challenges of Service Evolutitm.Proc. of

detect the mismatches to be worked out. The update process CAISE'08 volume 5074 ofLNCS pages 1-15. Springer, 2008.

can be parameterized with some user requirements to prevédit g H. F:,ywt';- %asati' 'HE SﬁO%SFUd}\‘?V- E%nata"ahﬁ at”d ﬁ‘g_@f’iu'-
. . . upporting the Dynamic volution o e ervice Protocoiservice-

the behavior that a designer does not want to appear in the qienied ArchitecturesTWER 2(2):1-46, 2008.

client interface. Our solution is automated by a prototym#,t [19] G. Salaiin, L. Bordeaux, and M. Schaerf. Describing Redsoning on

calledUpdator, we have implemented and experimented with ~ Web Services using Process AlgebtaBPIM, 1(2):116-128, 2006.

many examples.

