Unsupervised Activity Extraction on Long-Term Video Recordings employing Soft Computing Relations

Abstract : In this work we present a novel approach for activity extraction and knowledge discovery from video employing fuzzy relations. Spatial and temporal properties from detected mobile objects are modeled with fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows finding spatio-temporal patterns of activity. We present results obtained on videos corresponding to different sequences of apron monitoring in the Toulouse airport in France.
Type de document :
Communication dans un congrès
8th International Conference on Computer Vision Systems, ICVS 2011, Sep 2011, Sophia Antipolis, France. 2011
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00650048
Contributeur : Jose Luis Patino Vilchis <>
Soumis le : vendredi 9 décembre 2011 - 12:33:56
Dernière modification le : mardi 24 juillet 2018 - 15:48:06
Document(s) archivé(s) le : samedi 10 mars 2012 - 02:25:10

Fichier

ICVS2011_patino_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00650048, version 1

Collections

Citation

Jose Luis Patino Vilchis, Murray Evans, James Ferryman, François Bremond, Monique Thonnat. Unsupervised Activity Extraction on Long-Term Video Recordings employing Soft Computing Relations. 8th International Conference on Computer Vision Systems, ICVS 2011, Sep 2011, Sophia Antipolis, France. 2011. 〈hal-00650048〉

Partager

Métriques

Consultations de la notice

273

Téléchargements de fichiers

127