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Figure 1: Some real-time results obtained with our method, showing large forest scenes with a wide range of view distances,

various tree densities and lighting conditions. The lighting effects reproduced by our method are shown in Fig. 9.

Abstract

Realistic real-time rendering and lighting of forests is an important aspect for simulators and video games. This

is a difficult problem, due to the massive amount of geometry: aerial forest views display millions of trees on a

wide range of distances, from the camera to the horizon. Light interactions, whose effects are visible at all scales,

are also a problem: sun and sky dome contributions, shadows between trees, inside trees, on the ground, and

view-light masking correlations. In this paper we present a method to render very large forest scenes in real-

time, with realistic lighting at all scales, and without popping nor aliasing. Our method is based on two new

forest representations, z-fields and shader-maps, with a seamless transition between them. Our first model builds

on light fields and height fields to represent and render the nearest trees individually, accounting for all lighting

effects. Our second model is a location, view and light dependent shader mapped on the terrain, accounting for the

cumulated subpixel effects. Qualitative comparisons with photos show that our method produces realistic results.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—

1. Introduction

Forest rendering is an important topic in Computer Graphics
because forests are an essential part of many natural scenes.
But it is a difficult problem, in particular in real-time ap-
plications like flight simulators or virtual Earth browsers,
because real aerial forest views can show millions of trees,
each having thousands of leaves. Depicting consistent forest
illumination and reflectance at all scales is a challenge per
itself, but is essential for realism. Lighting gives important
visual cues, up to really far views, that help distinguish trees
and understand the trees and terrain shapes, including (see
Fig. 9):

• view-dependent reflectance: a forest appears brighter
when one is facing away from the sun, rather than fac-
ing it, because one sees mostly lit parts in the first case,
and mostly shadowed parts in the second case.

• slope-dependent reflectance: for the same reasons, and
for given viewing and lighting conditions, the average re-
flectance of a forest varies with the terrain slope.

• opposition effect: a bright hotspot appears opposite to the
sun, where all shadows are masked, at all scales (whole
trees, groups of leaves, and individual leaves).

• silverlining: the silhouettes of backlit trees appear brighter
than the rest of the tree because they are optically thinner
and thus less opaque.

c© 2011 The Author(s)
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• sky illumination: due to the masking of sky light by the
trees, their base (resp. interior) appears darker than their
top (resp. exterior), and the ground is darker below trees.

Rendering and lighting of individual trees is already well
studied. But most forest rendering algorithms use only basic
lighting models, which can not reproduce the above effects
(mostly due to view-light correlations). Thus, our goal is to
propose a newmodel for the real-time realistic rendering and
lighting of forests for medium to far views, supporting tran-
sitions with existing models for inside and close views. Our
goal is to reproduce the above effects, without necessarily
using “exact” equations, but without aliasing nor popping.
We also want a consistent lighting at all scales, i.e., the aver-
age reflectance of a forest patch must be independent of its
screen resolution. Finally, we want to support user control of
as many parameters as possible: density and shape of forests,
geometry of trees, distribution of species and sizes, etc.

To achieve these goals we propose two new forest rep-
resentations, called z-fields and shader-maps, with seamless
transitions between them, which are the main contributions
of this paper. A z-field combines light field and height field
ideas. It is used to render the nearest trees, and supports tran-
sitions with 3D models for close views. A shader-map is a
texture rendered with view and light dependent shaders, and
is used to render the farthest trees.

Our paper is organized as follows. We review related work
in Sections 2 and 3. Then, we present an overview of our al-
gorithm in Section 4, our two new forest representations in
Sections 5 and 6 and the seamless transition between them
in Section 7. We discuss implementation details in Section 8,
and then show our results and validations in Section 9. Fi-
nally, we discuss the limitations of our algorithm in Sec-
tion 10, and explore avenues for future work in Section 11.

2. Related work

Trees and forests have been extensively studied in Computer
Graphics. Here we exclude the review of modeling and level
of detail algorithms for individual trees (see [BMG06] for a
survey). Indeed, we start from already modeled trees, and re-
strict ourselves to medium to far forest views (see Section 4).

Forest representations. A common approach is to rep-
resent each tree with one or more billboards [CCDH05,
FMU05, BCF+05, AMM07]. This approach is simple, and
trees can be distributed arbitrarily. But many billboards are
needed to get accurate parallax effects, and popping occurs
when circling around intersecting trees. Another approach is
to use 3D textures representing whole forest patches, tiled
aperiodically and rendered with slices parallel to the ter-
rain [DN04,BCF+05]. This drastically reduces the geomet-
ric complexity, but the distribution of trees and the forest
boundaries are difficult to control below the scale of patches.
The canopy can also be represented with a height field, ren-
dered with relief mapping [MJ06]. User control is easier but

only far views are supported. Conversely, point-based ren-
dering [DCSD02,GMN05] is more adapted for close views.

None of these methods can reproduce the lighting ef-
fects presented in introduction. [DN04, CCDH05, FMU05,
AMM07] simply ignore shadows. [BCF+05] represent the
light transport with spherical harmonics coefficients stored
in billboard textures, which cannot reproduce shadows from
other trees. [MJ06] compute shadows and ambient occlusion
using the canopy height field, which cannot account for self-
shadowing inside trees. Finally, no method would give a cor-
rect lighting for apparent tree sizes smaller than a pixel.

Trees and forest lighting. Direct sun light shadows in in-
dividual trees are computed using either the tree geome-
try [MO95, MNP01] or a participating media approxima-
tion, i.e., an exponential attenuation based on the optical
depth [RB85, GCRR08, BBP08]. Likewise, direct sky light
is (pre)computed using either the geometry [QNTN03] or a
participating media approximation [HPAD06,BBP08]. This
approximation is also used to estimate indirect lighting in
trees [BBP08], and global illumination in forests [GS08] –
by solving a radiative transfer equation in a 3D grid, which
is not scalable and not real-time. Our method ignores in-
direct lighting, and combines ideas from [RB85, MO95]
and [QNTN03] to estimate the direct sun and sky light in
the nearest trees. For the farthest trees we switch to a view
and light dependent shader modulated with a density map.

Forest reflectance models. There is no large scale for-
est reflectance model in Computer Graphics. The fakefur
model [Gol97] is quite close to our needs. But hairs are
different from trees, and this model ignores view-light cor-
relations and thus does not reproduce the hotspot effect. The
multiscale pine tree BRDF in [MN00] is even closer, but
does not extend to the forest scale. There are however sev-
eral forest models in physics, based either on radiative trans-
fer theory [LS93a], or geometric optics [LS85,SJ90,CL97].
We extend the Strahler et al. model [SJ90, LS92, SLS94],
presented below, because it is best adapted to our needs.

3. Strahler et al. model

In the context of remote sensing, Strahler et al. [SJ90,LS92,
SLS94] modeled the large scale reflectance of forests by us-
ing a geometric optical model based on ellipsoids. Using our
own notations, the hypothesis and parameters of their model
are the following (see Fig. 2). Each tree crown is represented
with an opaque ellipsoid of horizontal radius R and heightH,
on top of a trunk of null radius and height B. R, H and B can

vary, but the tree proportions h
def
= H/R and b

def
= B/R are as-

sumed constant. We note A the average horizontal tree area

A
def
= E[πR2]. The ellipsoid centers follow a Poisson distribu-

tion of mean Λ (number of trees per unit area) on the ground.
We note n the ground normal and uz the vertical. The content
of a pixel P is divided in 4 parts: sunlit ground, shadowed

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time Realistic Rendering and Lighting of Forests

Figure 2: Strahler et al. model (from [SJ90, SLS94]). The

radiance of a forest patch, modeled with ellipsoids (a), is
computed as a weighted sum based on the proportions of

sunlit ground kg, shadowed ground kḡ, sunlit crowns kt and

shadowed crowns kt̄ visible in a pixel (b). A vertical scal-

ing (c) followed by a rotation (d) gives spherical trees on a

horizontal ground without changing kg, kḡ, kt and kt̄ .

ground, sunlit crowns and shadowed crowns, noted respec-
tively Pg, Pḡ, Pt and Pt̄ . The radiance of each part, noted
Lg, Lḡ, Lt and Lt̄ , are supposed constant, i.e., independent of
the view and light vectors v and l. Thus, the radiance L of P
only depends on the fractions of this pixel covered by each
part, noted respectively kg, kḡ, kt , kt̄ :

L= kgLg+ kḡLḡ+ ktLt + kt̄Lt̄ (1)

with kg+ kḡ+ kt + kt̄ = 1. The problem is to compute these
fractions, depending on v, l, n, Λ, A, h and b.

For this, Strahler et al. proceed as follows. They first use a
vertical scaling S of ratio 2/h to get spherical trees, followed
by a rotation R to make the transformed normal RS−1n

vertical (see Fig. 2). These transformations do not change the
k⋆ fractions and allow them to restrict their study to the case
of spherical trees on a horizontal ground. More precisely this
shows that the k⋆(v, l,n,Λ,A,h,b) functions do not have 10
but only 6 independent parameters, namely θv, θl , φ, λ, A
and β, defined in transformed space (see Fig. 2):

cosθv
def
= u(Sv) ·u(S−1

n), with u(v) =
v

‖v‖
(2)

cosθl
def
= u(Sl) ·u(S−1

n) (3)

cosφ
def
=

u(Sv) ·u(Sl)− cosθv cosθl
sinθv sinθl

(4)

λ
def
= Λ

u(S−1n) ·uz
n ·uz

(5)

β
def
= 2

b

h
u(S−1

n) ·uz (6)

Then Strahler et al. show that the proportion of ground
which is visible, kg + kḡ, is equal to exp(−λP(θv)), where
P(θv) = Asecθv is the average area of the projection of a

Symbol Description

R,H,h crown radius, height, and proportion H/R

A average horizontal tree area E[πR2]

Λ,λ tree density on ground, in transformed space
n, n̄,uz ground normal, its average in P , vertical
v, l view and light directions

θv,θl ,φ view and light angles in transformed space
Pg|ḡ|t|t̄ lit / s̄hadowed ground / tree parts in a pixel
kg|ḡ|t|t̄ subpixel fractions corresponding to Pg|ḡ|t|t̄

Lg|ḡ|t|t̄ constant Strahler et al. radiances for Pg|ḡ|t|t̄

Λi
h(x),Λh(x) horizontal tree density for species i, total

Γ(x) coverage of ground by trees in top view
z, z̄ min, max depth z-field channels
α,δ opacity, ambient occlusion z-field channels

o,pv,pl tree center, view and light entry points in tree
αv,δv opacity, ambient occlusion at pv
τ, p,ρ foliage extinction, phase function, albedo
V (pl) Sun visibility (computed with shadow maps)

It(pv),Jt(pv) Sun and sky illumination in a tree at pv
Ig(x),Jg(x) Sun and sky illumination on the ground at x
a1,a2,a3 user parameters for It(pv) and Jg(x)
d(pv) distance of pv from top of canopy
δe,δh ambient occlusion from other trees, in a hole

δg average ambient occlusion on ground
∆(x) empiric contrast factor for δg

r, r̄ ground BRDF, its average in P
Īg, J̄g averages of Ig(x) in Pg, of Jg(x) in Pg∪Pḡ

Īt , J̄t averages of It(pv) in Pt , of Jt(pv) in Pt ∪Pt̄

G,T,D,E precomputed tables
Ĩg, J̃g, Ĩt , J̃t transitions from Ig,Jg, It ,Jt to Īg, J̄g, Īt , J̄t

Table 1: Important symbols used in this paper.

scaled tree on the ground in view direction. Similarly, they
show that the proportion of visible and sunlit ground, kg,
is exp(−λ[P(θv)+P(θl)−O(θv,θl ,φ,β)]), where O is the
average area of overlap between the view and sun projec-
tions of a tree on the ground (see Fig. 2). They propose
an approximate analytical model to compute O in [SJ90].
Finally, they propose in [LS92] an approximate analytical
model for the relative proportion of sunlit areas in visible
crowns, kt

kt+kt̄
. This is trivial for a single tree, but much more

complex when trees occlude each other. Together with the
constraint kg+kḡ+kt +kt̄ = 1, this suffice to evaluate Eq. 1.

The Strahler et al. model reproduces a view and slope-
dependent reflectance, and a hotspot at the scale of trees. But
opaque ellipsoids cannot reproduce the effects due to light-
ing inside trees: hotspot due to leaves, silverlining. Also this
model does not reproduce the sky illumination effects. We
extend their model with arbitrary isotropic tree distributions,
realistic tree shapes, varying radiances inside each P⋆ part,
semi-transparent models, and sky illumination. This allows
us to take all the lighting effects into account, in a consistent
way with our near tree representation (see Section 6).

c© 2011 The Author(s)
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Figure 3: Overview. For each new visible terrain quad (bottom-left) we generate from the input maps (top-left), in two caches,
a coverage map tile (purple and blue) or, for the nearest quads (red and green), tree seeds (position, size, etc). We use this,

together with textures precomputed from 3D trees (top-right), to render the nearest trees with parallax and lighting effects –

with only one OpenGL quad per tree – and the farthest trees with a shader modulated by the coverage map tiles.

4. Our Model

As shown in Section 2, current forest representations are not
sufficient to achieve our goals. First, methods using 3D for-
est patch textures allow only limited user control, and par-
allax and lighting effects are difficult to simulate with bill-
boards. Second, both types of methods do not scale to really
far views (many trees projecting in a single pixel). We solve
the first problem by drawing the nearest trees individually,
with our new z-field tree representation accounting for par-
allax, and local and global lighting (although it uses only
one quad per tree). We solve the second problem by drawing
the farthest trees with our shader-map representation, which
does not use any geometry. Indeed, we render the trees as
tiny disks in a coverage map, applied on the terrain and ren-
dered with a view and light dependent shader.

This section presents an overview of our algorithm. Our
new representations are presented in Sections 5 and 6, and
the transition between them in Section 7.

Inputs. Our algorithm requires a set of positions for the
nearest trees, and a tree density map for the farthest ones.
In this paper we chose to generate positions from the den-
sity map (the converse is also possible). For this we use an
aperiodic tiling of point distribution patterns [CSHD03], and
remove points where needed to match the desired density.
Thus, the inputs of our algorithm are (see Fig. 3):

• a height map, i.e., a digital terrain elevation model.
• a set of coarse tree density maps Λi

h(x) describing the
number of trees of each species i per unit horizontal area.

• a set of tileable point distribution patterns. Each point has
a 2D coordinate and a random rotation, scale, color, etc.

• one or more 3D mesh models per tree species.

Data structures. In order to support very large scenes, we
need to load on GPU only the data that is needed for the cur-
rent view, at the proper resolution. For this, we rely on the

framework of [BN08]. This method uses a dynamic quadtree
on CPU, with GPU producers and caches to generate and
store the terrain data for the currently visible quads. We ex-
tend it with new producers and caches for our forest data.
More precisely, for each new visible terrain quad, and de-
pending on its level in the quadtree (see below), we produce
on GPU either a set of seeds to instantiate trees, or a cover-
age map tile for our shader-map representation (see Fig. 3):

• Each seed contains the 3D position of a tree, its species,
and a rotation, scale, and color. We generate them from an
aperiodic tiling of the input point distribution patterns.

• A coverage map tile has one density channel Λi
h(x) per

species, loaded from the input maps. It also has one chan-
nel Γ(x) containing the percentage of ground covered by
trees, in top view. This channel is generated by drawing
one disk per tree or, to avoid drawing too many disks, as
the total density Λh(x) = ∑i Λ

i
h(x) times the average tree

area A, when the disk area is less than 1
16 of a texel.

Once produced on GPU, we store the seeds and the cover-
age map tiles in two caches (see Fig. 3), so that they can be
reused as long as the quad remains visible. The first cache
is a large vertex buffer object, divided in regions of equal
size, each storing the seeds for a quad. The second cache is
a texture array, each layer storing one coverage tile.

It remains to set the LOD threshold, i.e., to decide when
to generate seeds vs coverage map tiles. Since a coverage
tile is mapped on the terrain it does not add any details to
its silhouettes, unlike instantiated trees. Thus, to avoid pop-
ping at transitions, we should switch between the two rep-
resentations when the apparent tree size is about one pixel.
In our implementation we use 3 pixels, as a compromise to
reduce the number of instantiated trees. In summary, if l is
the smallest quadtree level at which the apparent tree size is
larger than 3 pixels, then we generate coverage map tiles at
all levels from 0 to l−1, and seeds at level l (the other quads
reuse the data of their ancestor at level l).

c© 2011 The Author(s)
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Figure 4: Tree rendering. We render each near tree with a camera facing proxy quad (blue). We reconstruct iteratively the

intersection pv of each view ray v with the tree (a and b), and the corresponding entry point pl of the light ray reaching pv (c),
using precomputed depth maps. We estimate the direct sun illumination at pv with an exponential extinction exp(−τ‖pl −pv‖),
and the direct sky illumination with the ambient occlusion precomputed for an isolated tree, times the ambient occlusion on the

axis of a cylindrical hole approximating the environment (d).

Rendering. We render each frame in three steps, with the
help of textures precomputed from the 3D tree models - see
Fig. 3 and Sections 5 and 6. First, we render the terrain and
the nearest trees, using the cached seeds and our z-field tree
representation, into cascaded shadow maps [ZSXL06]. Sec-
ond, we draw the terrain, using the shadow maps for the
shadows of the nearest trees, and the cached coverage map
tiles and our shader-map representation for the farthest trees.
Third, we draw the nearest trees with our z-field representa-
tion, by using the cached seeds and the shadow maps. Note
that this order enables early z-culling optimizations.

5. Nearest trees: representation and rendering

To support fine grained user control, we want to render the
nearest trees individually. We also want to render them as
efficiently as possible, while accounting for self-shadows,
hotspot, silverlining and sky illumination effects. Finally,
to enable transitions with 3D tree models for close views,
we need accurate parallax effects on each detail. For this,
we propose a new representation called a z-field. It is based
on the precomputed depth maps representation of Max et
al. [MO95], extended with improved rendering and lighting
models inspired from [RB85,QNTN03,TRSK07].

We now describe our representation, its construction, and
how we use it to reconstruct the tree shape, evaluate the sun
and sky illumination, and the illumination on the ground.
Note that we consider 3 levels of light interactions: between
trees, between tree parts, and between leaves. All handle
view-light correlations and thus hotspot effects.

Precomputations. We precompute a set of low resolution
views for each input tree mesh (see Fig. 3). Each view con-
tains 4 values per texel: the minimal and maximal depths z
and z̄, an ambient occlusion δ, and an opacity α (z, z̄ and δ

are α-premultiplied). Depths are computed as distances from
the plane perpendicular to the view direction passing through
the tree center o. Ambient occlusion is precomputed for an
isolated tree on a horizontal ground. In our implementation

we use 181 view directions ωωωi uniformly distributed on the
upper hemisphere Ω+. Each view has 256× 256 RGBA8
texels, allowing us to support apparent tree sizes up to 256
pixels without artefacts (using 45 MB per model).

Run-time shape reconstruction. Max et al. [MO95] ren-
der a tree by interpolating 3 or 4 precomputed depth views,
but this gives ghosting artefacts. To solve this, we use an
iterative method to reconstruct seamless 3D tree shapes, in-
spired from [TRSK07]. We found that, with 181 views, two
iterations for view rays, and one for light rays, were suffi-
cient. So we render each tree with a camera facing proxy
quad covering its 3D bounding box, as follows (see Fig. 4):

1. Find the 3 precomputed view directions ωωωi closest to ωωωo,
and the weights wi such that ωωωo ∝ ∑wiωωωi and ∑wi = 1.

2. Find the intersection p of the view ray v with the plane
passing through o and perpendicular to ωωωo.

3. Iteration 1: project p orthogonally in the 3 nearest views,
yielding 3 (zi, z̄i,δi,αi) texels. Interpolate them to com-
pute q= p+(∑wizi)/(∑wiαi)v.

4. Iteration 2: project q in the 3 nearest views, yielding
3 (z′i , z̄

′
i ,δ

′
i ,α

′
i) texels. Set pv = p+ (∑wiz

′
i)/(∑wiα

′
i)v.

Use pv to set the fragment depth in the z-buffer.
5. Repeat steps 1 to 3 with the light direction l and the light

ray passing through pv, to get pl .

This gives ghosting-free view and light rays entry points pv
and pl , as well as the opacity and ambient occlusion at pv,
αv = ∑wiα

′
i and δv = ∑wiδ

′
i/αv, used for lighting.

Lighting from the sun. We model the foliage as a partici-
pating medium with an extinction coefficient τ, a phase func-
tion p and an albedo ρ (in our implementation we use an
isotropic phase function). We also assume that light scatter-
ing occurs mostly at the tree “surface” (τR ≫ 1) so that we
only consider the light path from pv to pl . The sun light It
scattered at pv is thus ρp(v, l)exp(−τ‖pl −pv‖)Lsun. This
gives silverlining and self-shadows (and thus a hotspot) at
the scale of groups of leaves. To account for self-shadows at

c© 2011 The Author(s)
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the scale of leaves, we add an empiric hotspot term F [CC97]
whose amplitude a1 and width a−1

2 are set by the user:

It(pv) = ρp(v, l)exp(−τ‖pl −pv‖)F(v, l)V (pl)Lsun (7)

F(v, l)
def
= 1−a1[1− exp(−a2 cos

−1(v · l))] (8)

with V (pl) the sun visibility, computed with cascaded
shadow maps [ZSXL06] – we render these maps with step 5
only, and with z̄ instead of z to avoid shadow acne (i.e., we
render the “backside” of trees). We also store the opacity α

in these maps, to get “soft” shadows [BBP08].

Lighting from the sky. We approximate the sky radiance
Jt reflected at pv with the average sky radiance Lsky times
an ambient occlusion δ(pv). Assuming that inter and intra
tree occlusions are uncorrelated, we get δ = δvδe, where δe
is the ambient occlusion due to other trees. We approximate
δe with the ambient occlusion δh on the axis of a cylindrical
hole around the tree (see Fig. 4d), of radius 2/

√

Λh(x) – the
average distance to the nearest tree. Finally, we approximate
δh with the ambient occlusion in a hole of depth d and radius
r in a horizontal ground, 1/(1+ d2r−2), times the one on a
slanted plane, (1+n ·uz)/2. The result is a rough approxi-
mation, but sufficient to get “sky illumination” effects:

Jt(pv) =
ρ

2

(∫
Ω+

p(v,ωωω)dωωω

)

δv(pv)(1+n ·uz)

1+d2(pv)Λh(x)/4
Lsky (9)

Lighting on the ground. To get darker ground areas un-
der trees, we modulate the average ambient occlusion due to
trees on the ground, noted δg (see Section 6) with an empiric
term ∆(x) increasing the contrast close to trees. ∆(x) must
be less than 1 under trees, but its average must be 1. For this,
we compute it from the coverage map tiles with:

∆(x)
def
= 1−a3

[

Γ(x)−Λh(x)A
]

(10)

where a3 is a user defined contrast factor. Thus, if r is the
ground BRDF, we compute the sun and sky light reflected
by the ground, respectively Ig and Jg, with:

Ig(x) = r(v, l,n) max(n · l,0) V (x) Lsun (11)

Jg(x) = δg ∆(x)
∫

Ω+
r(v,ωωω,uz) uz ·ωωω dωωω Lsky (12)

6. Farthest trees: representation and rendering

To ensure scalability in terms of memory and performance,
we render the farthest trees with a shader-map representa-
tion, i.e., shaders modulated by a terrain map. The terrain
map stores the proportion of tree vs ground in top view (we
build it by rendering the trees as tiny disks). From this, we
reconstruct each screen pixel color with a forest shader com-
puting the 4 view-light dependent pixel fractions kg,kḡ,kt ,kt̄
and the corresponding radiances Lg,Lḡ,Lt ,Lt̄ , in the spirit
of Strahler et al. (see Section 3 and Fig. 5). In fact, we re-
visit and extend their model to take into account arbitrary
isotropic tree distributions, realistic tree shapes, intra-tree
lighting and sky illumination, as follows.

Pixel radiance. Strahler et al. rely on constant values for
the radiances of sunlit or shadowed ground and trees, which
is not sufficient for Computer Graphics applications. More-
over, we need to ensure a consistent transition with our de-
tailed lighting model used for near trees, which is view and
light dependent. For this, we introduce

• Īg, average of Ig(x) over the visible and sunlit ground Pg.
• J̄g, average of Jg(x) over the visible ground Pg∪Pḡ.
• Īt , average of Ig(pv) over the visible and sunlit trees Pt .
• J̄t , average of Jg(pv) over the visible trees Pt ∪Pt̄ .

and we redefine Lg = Īg+ J̄g, Lḡ = J̄g, and similarly for trees.
Then the reconstructed pixel radiance in Eq. 1 becomes

L= kg Īg+(kg+kḡ)J̄g+(1−kg−kḡ)

[

kt

kt + kt̄
Īt + J̄t

]

(13)

We now detail how we compute kg,kḡ,kt ,kt̄ and Īg, J̄g, Īt , J̄t ,
depending on v, l, n, Λh(x), τ, p, ρ, r, etc. We assume here
that many trees project in a pixel. The case of apparent tree
sizes of about 1 pixel is discussed in Section 7.

Ground fractions. Strahler et al. compute kg and kḡ by us-
ing the fact that random 2D shapes (here the projection of
trees on the ground), of average area P, distributed with a
Poisson law of mean λ, leave a fraction f = exp(−λP) of
the plane uncovered. But this is no longer true with other
tree distributions. For instance, f = 1−λP with a Poisson-
disk distribution, if the shapes are contained in the disks.
Also, f generally depends on the precise shapes considered.
Thus, to support arbitrary isotropic tree distributions and re-
alistic tree shapes, we replace their analytic model with a
precomputed table. For this, we render a forest patch with
our z-field representation, scaled vertically by a factor 2/h,
and we measure kg for many values of θv,θl ,φ and λ. We
store the result in a 4D table G. At runtime, we compute

kg =G(θv,θl ,φ,λ) (14)

kg+ kḡ =G(θv,θv,0,λ) (15)

where λ = Λh(x) u(S
−1n) ·uz (cf Eq. 5).

Tree fractions. Strahler et al. compute the relative propor-
tion of sunlit areas in visible crowns, kt

kt+kt̄
, by using a bi-

nary test (sunlit or not), only valid for opaque objects. To
account for self-shadows inside trees and silverlining, we re-
place this binary test with our exponential attenuation term
exp(−τ‖pl − pv‖). Then, as above, we measure kt

kt+kt̄
for

many views and tree densities, and store the result in a 4D
table T. At runtime, we compute

kt

kt + kt̄
= T(θv,θl ,φ,λ) (16)

Ground radiances. The sun component of the visible and
sunlit ground radiance, Īg, is the average of Eq. 11 over
Pg, where V (x) = 1. Assuming that the ground BRDF r

is uncorrelated with the tree distribution, so that its aver-
ages over Pg or over the whole pixel P are the same, we
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get Īg =
∫
P
r(v, l,n) max(n · l,0) dx Lsun. For a Lambertian

ground this can be approximated with:

Īg ≈ r̄max(n̄ · l,0)Lsun (17)

with r̄ and n̄ the average ground reflectance and normals in
the pixel.

The sky component of the visible ground radiance, J̄g, is
the average of Eq. 12 over Pg ∪Pḡ. To compute it, we first
need to compute the ambient occlusion δg. We approximate
it as the average ambient occlusion due to trees on a horizon-
tal ground, times the ambient occlusion on a slanted ground,
(1+n ·uz)/2, which gives:

δg =
1+ n̄ ·uz

2
1
π

∫
Ω+

G(θv,θv,0,λ)v ·uzdv (18)

We precompute the integral and store it in a 1D table D(λ).
Then, returning to the remaining terms in Eq. 12, we need to
compute the average of ∆(x) over Pg∪Pḡ. We approximate
it with its average over the whole pixel, 1 by construction.
We finally replace r with its average r̄, which gives for a
Lambertian ground:

J̄g ≈
1+ n̄ ·uz

2
D(λ)r̄πLsky (19)

Tree radiances. The sun component of the visible and sun-
lit trees radiance, Īt , is the average of Eq. 7 over Pt , where
V (pl) = 1. The only other term depending on pv in this equa-
tion is our exponential attenuation term, but it is already
taken into account in T. The other terms are constant over
Pt , which gives:

Īt = ρp(v, l)F(v, l)Lsun (20)

Finally, the sky component of the visible trees radiance, J̄t , is
the average of Eq. 9 over Pt ∪Pt̄ . The only term depending
on pv in this equation is δv/(1+ d2Λh/4). We precompute
its average on the visible tree areas by rendering trees shaded
with this term, as we do for G and T. We store the result in
a 2D table E(θv,λ). At runtime, we compute

J̄t = ρ

(∫
Ω+

p(v,ωωω)dωωω

)

1+ n̄ ·uz
2

E(θv,λ) Lsky (21)

7. Seamless transition between representations

A sudden switch from our z-field to our shader-map repre-
sentation would be very noticeable, for several reasons. First,
at large distances, the visual fidelity of our z-field represen-
tation decreases: the length ‖pl − pv‖ computed with our
iterative algorithm becomes very imprecise, because then it
is computed on very coarse MIP-mapped depth maps. Also,
the exponential of this “average” length is not what we want,
i.e., the average of the exponential over the visible tree pix-
els. The cascaded shadow maps become also imprecise at
this distance, as well as the occlusion effects. Second, al-
though tree locations fit precisely between the 2 models, our

4 color components (tree vs ground, lit vs unlit) are com-
puted on a statistical basis and thus cannot match a given
tree instance. This would give a visible color discontinuity
at the transition. Third, our shader-map model neglects for-
est thickness. Even if we use it when trees are at most 3 pix-
els tall, this would yield popping on the terrain silhouettes.
To solve these problems, we propose a seamless transition
scheme divided in three parts: one transition inside each rep-
resentation, and a transition between them.

Transition in z-field representation. Although the radi-
ances It(pv),Jt(pv), Ig(x) and Jg(x) become imprecise in the
distance, we know the values toward which they should con-
verge. Indeed, we computed them in Section 6. Thus, to
solve the problem, we simply force a transition of these val-
ues toward their expected average. Concretely, if s is the dis-
tance to the viewer, and smax the maximal distance at which
the z-field representation is used, then we render the trees
and the ground with:

Ĩt(pv)
def
= (1−ν)It(pv)+νĪt

kt

kt + kt̄
(22)

J̃t(pv)
def
= (1−ν)Jt(pv)+νJ̄t (23)

Ĩg(x)
def
= (1−ν)Ig(x)+νĪg

kg

kg+ kḡ
(24)

J̃g(x)
def
= (1−ν)Jg(x)+νJ̄g (25)

where ν = smoothstep(0,0.8,s/smax).

Transition in shader-map representation. Up to now, we
have only used the coarse densities Λh(x) in our forest model
components kg,kḡ,kt ,kt̄ . This gives only an average forest
radiance which cannot match the spatial variations obtained
with our z-field model at the transition. Instead, we want the
tree disks in the coverage channel Γ(x) shaded only with
the tree radiance components, and the ground between them
only with the ground components. That is, we want to have
kg = kḡ = 0 when Γ(x) = 1. For this, we simply replace
Λh(x) with Γ(x)/A in Eqs. 14 and 15. Indeed, this changes
nothing for really far trees (where Γ(x) = Λh(x)A), but gives
kg = kḡ = 0 inside distinguishable disks, as desired (pro-
vided we ensure that G(·, ·, ·,1/A) = 0).

Transition between representations. To avoid popping on
the terrain silhouettes, we progressively fade out the trees
rendered with our z-field tree representation. For this, we
multiply the opacity αv with 1− smoothstep(0.8,1,s/smax),
while replacing the ground radiance in this transition region
with our forest radiance model, modified as follows:

L= (1−µ)

[

kg

kg+ kḡ
Īg+ J̄g

]

+µ

[

kt

kt + kt̄
Īt + J̄t

]

(26)

µ= (1− kg− kḡ) smoothstep(0.8,1,s/smax) (27)
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8. Implementation

Implementing our algorithm is relatively easy, thanks to the
features of modern GPUs such as geometry shaders, trans-
form feedback and user defined subpixel coverage masks.

The tree seeds producer must remove points from a pre-
computed stream of points, and must store the result in a
VBO cache. We implement this in one pass with a geome-
try shader and a transform feedback. The coverage map tiles
producer must draw tiny disks in a texture. For this, we use a
geometry shader to generate sprites from the tree seeds. We
draw the cascaded shadow maps in one pass with a geom-
etry shader to select the shadow map layer(s) for each tree.
Finally, we also use a geometry shader to cull the trees out-
side the view frustum, and to generate camera facing proxy
quads for the others.

In general, rendering transparent objects requires sorting,
which is costly and not always possible. One way to avoid
this is to replace opacities with subpixel coverage masks.
The OpenGL alpha to coverage feature does this automat-
ically. But it always converts a given alpha at a given pixel
into the same coverage mask. When n trees project in a pixel
with a similar α the resulting opacity is thus α instead of
1− (1− α)n — since the tree positions are uncorrelated.
This underestimates opacity and introduces a discontinuity
at the transition between our two representations. To solve
this, we enforce a different coverage mask for each tree. We
precompute a combination table associating several possible
coverage masks for each α value, and we use the tree seed
to select one combination at rendering.

9. Results and validation

Results. Our results are shown in Figs. 1, 5 and 9. The com-
ponents of our lighting model are shown in Fig. 5, and the
seamless transition between our two models in Fig. 6. See
also the companion video.

Performance. Given an input mesh of a tree and its am-
bient occlusion, it takes a few seconds to compute the 181
views, and about 10 minutes to precompute the G,T,D,E
tables with a NVidia Geforce 470 GTX (we use 8 samples
for λ, and 16 for each θv,θl ,φ angle). With this GPU, a typ-
ical 1024× 768 frame with about 180,000 z-field trees is
rendered in 30 ms (33 fps), including 7 ms for the terrain,
0.6 for the shader-map, 4.4 for the shadow maps, and 18 for
the z-field trees (respectively 7, 0.6, 1.4 and 10.6 with a 580
GTX – 51 fps).

Validation. We do not target “exact” lighting, so we did not
compare our results quantitatively with ground truth images.
Instead, we did qualitative comparisons. First with photos:
Fig. 9 shows that our method can reproduce all the light-
ing effects presented in introduction. Second, with the view-
dependent plots of a completely different model based on ra-
diative transfer theory (see Fig. 8). Another goal was to get

kg kḡ kt kt̄

Ĩg J̃g Ĩt J̃t

Figure 5: Results. The 8 components of our lighting model.

terrain
only

terrain +
shader-map

terrain +
z-field trees

all
components

Figure 6: Results. Seamless transition between our models.

a consistent result at all scales. We validated this by measur-
ing the radiance of a forest patch rendered with our method
at several distances and for many view angles (see Fig. 7).

10. Discussion

A limitation of our method is the size of the z-field data: 45
MB per tree model. The number of models that can be used
simultaneously in a given view is thus limited. For the same
reason, trees cannot be animated to move in the wind. On
the other hand, adding a normal per texel in each precom-
puted view is feasible (each model would then take 79 MB).
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Figure 7: Validation of scale consistency. The radiance

of a forest patch rendered with our method (insets), as a

function of the view distance s. Each curve shows the ratio

L(θv,φ,s)/L(θv,φ,50) for a different view direction, where

L(θv,φ,s) is the radiance at distance s (θl = 45). Our results
are close to 1, the ideal case where L is independent of s.

This would enable the use of more realistic leaf BRDFs, with
specular reflections, for the nearest z-field trees.

The tables G,T,D,E are precomputed for a given tree
model, tree aspect ratio h, tree distribution law, and foliage
density τ. But they are so small (131 kB in total) that we can
easily use several versions of them to support spatially vary-
ing tree distribution laws or tree foliage densities (spatially
varying tree colors are trivial since ρ and p are not used in
any precomputed data). Likewise, it is easy to extend our
method with a spatially varying tree aspect ratio h: it suffice
to add this parameter to the 1D and 2D tables D and E (the
4D tables G and T remain unchanged since they are com-
puted on rescaled trees). It should also be possible to support
anisotropic tree distributions (e.g., forests with aligned trees)
by adding one or two angle parameters to each table.

11. Conclusion

We presented a method to render large forest scenes in real-
time, with a realistic lighting model, consistent at all scales.
Comparisons with photos show that our method can repro-
duce the main lighting effects observed in real forest scenes.
In future work, we would like to implement seamless tran-
sitions with 3D mesh models for close views, currently not
handled. We would also like to study the applicability of our
model to other kinds of scene (rocks, grass, etc).
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Figure 8: Validation with reference plots. The radiance of

a forest patch rendered with our method, as a function of the

view direction (θl = 60). Bottom: with r = 0 as in [LS93b],

a1 = 0.2 and a2 = 20, our results are quite similar to theirs.
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