J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 1976.

W. Borchers and H. Sohr, On the equations rot v=g and div u=f with zero boundary conditions, Hokkaido Mathematical Journal, vol.19, issue.1, pp.67-87, 1990.
DOI : 10.14492/hokmj/1381517172

M. Boulakia and S. Guerrero, A regularity result for a solid???fluid system associated to the compressible Navier???Stokes equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.3, pp.777-813, 2009.
DOI : 10.1016/j.anihpc.2008.02.004

URL : https://hal.archives-ouvertes.fr/inria-00538038

M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM: Control, Optimisation and Calculus of Variations, vol.14, issue.1, pp.1-42, 2008.
DOI : 10.1051/cocv:2007031

URL : https://hal.archives-ouvertes.fr/inria-00542535

C. Conca, J. San-martin, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, vol.25, pp.5-6, 2000.

B. Desjardins and M. J. Esteban, On Weak Solutions for Fluid???Rigid Structure Interaction: Compressible and Incompressible Models, Communications in Partial Differential Equations, vol.40, issue.1, pp.1399-1413, 2000.
DOI : 10.1007/BF01094193

A. Doubova and E. Fernández-cara, SOME CONTROL RESULTS FOR SIMPLIFIED ONE-DIMENSIONAL MODELS OF FLUID-SOLID INTERACTION, Mathematical Models and Methods in Applied Sciences, vol.15, issue.05, pp.783-824, 2005.
DOI : 10.1142/S0218202505000522

C. Fabre and G. Lebeau, Prolongement unique des solutions de l'equation de Stokes, Comm. Partial Differential Equations, vol.21, pp.3-4, 1996.
DOI : 10.1080/03605309608821198

A. V. Fursikov and O. Yu, Imanuvilov, Controllability of evolution equations. Lecture Notes Series, 34, 1996.

Y. Giga and H. Sohr, Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, Journal of Functional Analysis, vol.102, issue.1, pp.72-94, 1991.
DOI : 10.1016/0022-1236(91)90136-S

C. Grandmont and Y. Maday, Existence for an Unsteady Fluid-Structure Interaction Problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.34, issue.3, pp.609-636, 2000.
DOI : 10.1051/m2an:2000159

M. Hillairet, Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow, Communications in Partial Differential Equations, vol.336, issue.9, pp.1345-1371, 2007.
DOI : 10.1142/S0218202506001303

M. Hillairet and T. Takahashi, Collisions in Three-Dimensional Fluid Structure Interaction Problems, SIAM Journal on Mathematical Analysis, vol.40, issue.6, pp.2451-2477, 2009.
DOI : 10.1137/080716074

O. Yu, Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var, vol.6, pp.39-72, 2001.

O. Yu, T. Imanuvilov, and . Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl, vol.87, issue.9 4, pp.408-437, 2007.

O. Nakoulima, Contr??labilit?? ?? z??ro avec contraintes sur le contr??le, Comptes Rendus Mathematique, vol.339, issue.6, pp.405-410, 2004.
DOI : 10.1016/j.crma.2004.07.005

J. San-martin, V. Starovoitov, and M. Tucsnak, Global Weak Solutions??for the Two-Dimensional Motion??of Several Rigid Bodies??in an Incompressible Viscous Fluid, Archive for Rational Mechanics and Analysis, vol.161, issue.2, pp.93-112, 2002.
DOI : 10.1007/s002050100172

T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, vol.8, issue.12, pp.1499-1532, 2003.

L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Course, 2000.

R. Temam, Navier-Stokes equations. Theory and numerical analysis. Revised edition. With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 1979.

E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, 1986.