
HAL Id: hal-00650233
https://hal.inria.fr/hal-00650233v2

Submitted on 5 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Multi-Purpose Network Representation for
Large Scale Distributed System Simulation

Laurent Bobelin, Arnaud Legrand, Márquez David, Pierre Navarro, Martin
Quinson, Frédéric Suter, Christophe Thiery

To cite this version:
Laurent Bobelin, Arnaud Legrand, Márquez David, Pierre Navarro, Martin Quinson, et al.. Scalable
Multi-Purpose Network Representation for Large Scale Distributed System Simulation. CCGrid 2012
– The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2012,
Ottawa, Canada. pp.19, 2012. <hal-00650233v2>

https://hal.inria.fr/hal-00650233v2
https://hal.archives-ouvertes.fr


Scalable Multi-Purpose Network Representation for
Large Scale Distributed System Simulation

Laurent Bobelin1, Arnaud Legrand1, David A. González Márquez2

Pierre Navarro1, Martin Quinson3, Frédéric Suter4, Christophe Thiéry3

1 LIG, Grenoble University, Grenoble, France
2 Departemento de Computacion, Universitad de Buneos Aires, Buenos Aires, Argentina

3 LORIA, Nancy University, Nancy, France
4 IN2P3 Computing Center, CNRS/IN2P3, Lyon-Villeurbanne,France

Abstract—Conducting experiments in large-scale distributed
systems is usually time-consuming and labor-intensive. Uncon-
trolled external load variation prevents to reproduce experiments
and such systems are often not available to the purpose of
research experiments, e.g., production or yet to deploy systems.
Hence, many researchers in the area of distributed computing
rely on simulation to perform their studies. However, the simula-
tion of large-scale computing systems raises several scalability
issues, in terms of speed and memory. Indeed, such systems
now comprise millions of hosts interconnected through a complex
network and run billions of processes. Most simulators thus trade
accuracy for speed and rely on very simple and easy to implement
models. However, the assumptions underlying these models are
often questionable, especially when it comes to network modeling.

In this paper, we show that, despite a widespread belief in
the community, achieving high scalability does not necessarily
require to resort to overly simple models and ignore important
phenomena. We show that relying on a modular and hierarchical
platform representation, while taking advantage of regularity
when possible, allows us to model systems such as data and
computing centers, peer-to-peer networks, grids, or clouds in a
scalable way. This approach has been integrated into the open-
source SIMGRID simulation toolkit. We show that our solution
allows us to model such systems much more accurately than
other state-of-the-art simulators without trading for simulation
speed. SIMGRID is even sometimes orders of magnitude faster.

I. INTRODUCTION

The current evolution of computing and data management
platforms to ever growing and more distributed infrastructures,
such as Data Centers, Computing Grids, Clouds, Desktop
Grids, or Peer-to-Peer (P2P) systems, raises new challenges in
Computer Science. The unprecedented scale of these systems
makes it difficult and costly to test new protocols or algo-
rithms on production infrastructures. Indeed, such systems are
inherently unstable, which hinders experiments reproducibility.
Furthermore, real systems (e.g., a P2P network or a production
computing center) are generally not available to the purpose
of research experiments. Last, researchers may be interested
in studying systems that do not exist yet for example when
performing preliminary study or investigating the efficiency of
solutions under workloads different from the ones available at
hand. Hence, simulation has been extensively used to study
such Large-Scale Distributed Computing (LSDC) systems.

Yet, simulating such LSDC systems raises scalability issues,
both in terms of speed and memory. Indeed, such systems
now comprise millions of hosts interconnected through a

complex network and run billions of processes. The faithful
representation of the interconnection network is generally
difficult. A few simulators rely on a detailed model of the
network (e.g., packet-level simulators that are heavily used
in the network community) but their use in the context of
distributed computing raises two difficult issues. First, such
complex models are much harder to instantiate than simple
ones (detailed topology, network characteristics of the whole
platform, injection of realistic external background load at the
packet-level, . . . ). Second, packet-level simulation is so heavy
that it becomes completely unusable beyond a few thousands
hosts. Hence, most simulators from these domains address
scalability issues by relying on simplistic models that can
be implemented efficiently although such simplifications are
sometimes very debatable.

For example, P2P simulators generally rely on delay-based
models and forget about the underlying physical topology.
Using this approach, tools such as PeerSim [1] can simulate
platforms that scale up to millions of nodes. Yet, such models
do not account for network contention, whereas most peers
generally sit behind asymmetric DSL lines with very limited
bandwidth. Although this kind of assumption may not be
harmful when studying simple overlays and investigating the
efficiency of look-up operations in a Distributed Hash Ta-
ble (DHT), the use of such simulators for streaming operations
and file sharing protocols is much more controversial.

This need for a scalable but accurate network represen-
tation is not specific to P2P studies. Many simulators in
the High Performance Computing (HPC) community assume
that bandwidth has been over-provisioned and that contention
can be ignored. Although this assumption may hold true for
supercomputers, it may not for commodity clusters or future
exa-scale platforms where energy consumption is at stake,
which precludes resource over-provisioning.

The common belief in the distributed computing community
is thus that, when scale is at stake, simplistic network models
have to be used. In this article, we propose an efficient platform
representation that is the final piece missing to the open-
source SIMGRID simulation toolkit to dismantle this belief
by showing that reasonably accurate network models can be
used at large scale. We show that, while using a much more
accurate and complex network model, our simulations are
as fast or even orders of magnitude faster than state-of-the-



art simulators. Moreover, unlike other ad hoc simulators, the
complete separation of application modeling from platform
modeling enables SIMGRID based simulations to be evaluated
seamlessly in a wide range of settings and to easily adjust the
level of details to the scenario under investigation.

Section II details the main concerns related to network
representation and modeling in a simulation context. Sec-
tion III presents related work while Section IV exposes our
proposal which is evaluated in Section V. We summarize
our contributions and give some future work directions in
Section VI.

II. MAIN CONCERNS ABOUT NETWORK REPRESENTATION
AND MODELING IN DISTRIBUTED SYSTEM SIMULATION

A. Community Specific Requirements

Generally speaking, simulation needs to account for key
characteristics of the system under study, that heavily depend
on the investigated scenario. Having a general discussion about
network modeling without specifying the context of use would
be meaningless. Researchers that study the effectiveness of a
modification on a network protocol clearly require accurate
packet-level simulations whereas a researcher interested in
the scalability of a grid middleware involving very large data
transfers over long periods of time would only require a coarse
grain modeling of the network. Hence, we start by listing some
very commonly investigated scenarios in distributed systems
to illustrate the kind of phenomenon that one may wish to be
accounted for.

P2P DHT simulation generally needs to account for the
geographic diversity of peers, communication jitter, and peer
churn. Most DHTs rely on the exchange of small messages
and contention can thus be somehow ignored. Nevertheless
the amount of exchanged messages is generally a measure
of interest. A large amount of messages may indicate that
the contention-free hypothesis is broken and that conclusions
should be disregarded.

P2P streaming simulation is more complex as it involves a
higher network traffic. The key characteristics to account for
are network proximity, connection asymmetry (since peers act
as forwarders) and interference between concurrent connec-
tions on the borders of the network. In such settings, a detailed
modeling of the topology is not important. Only the edge
of the network has to be accurately modeled, as it generally
constitutes the main bottleneck.

Volunteer computing studies imply the simulation of
clients and/or servers. The key characteristics to account
for are the volunteer dynamic availability, properties (e.g.,
CPU speed, number of cores, disk space, . . . ), and reliability
(regarding the correctness of the returned results). In some
cases it may be important to model the characteristics of the
connection of the peers to the Internet as well. Then the same
requirements as for P2P streaming simulations apply.

High Performance Computing studies generally involve
a complex communication workload made of sequences of
very short communications, complex synchronization patterns,
and structured concurrent transfers of large amount of data.

A faithful simulation of such workload requires a precise
modeling of the network characteristics and protocols but can
build on the regularity and homogeneity of the underlying
network topology.

Grid Computing studies often involve numerous large data
transfers across wide area networks that require an accurate
modeling of contention and to account for both platform
heterogeneity and hierarchy.

Cloud computing studies on IaaS may require a mixture of
the previous requirements. For instance, it may be important
to precisely model what happens within data centers. To
reflect a hierarchical organization, high-end compute nodes are
distinguished from low-end compute nodes and storage nodes.
When the infrastructure comprises several sites, the wide area
network connection between sites has also to be accounted for.
Then it is possible to study the different charging mechanisms
involved when going from one site to another. While a precise
modeling of client connectivity may not be required, it is
important to consider their geographic diversity at least.

All these scenarios illustrate a wide variety of needs for
network modeling and representation. It partially explains why
most simulators are domain specific.

B. Scalability Issues

The lack of interdisciplinary simulation approaches can
also be explained by scalability requirements. To allow for
studies at the desired speed and scale, most simulators build
on and take advantage of the specifics of the scenarios they
are designed for. When scalability is at stake, two related
issues come into play that both involve space and time
considerations:

• Platform description: Most simulators take a description
of the platform as input. Its size depends on the expressiveness
of the chosen description format. When some regularity in
terms of topology or characteristics can be exploited, this
description can be reduced to a minimal size and a program
can turn this compact description into an appropriate memory
representation. For instance, describing a homogeneous cluster
or a set of peers whose speed is uniformly distributed does
not require to detail each single entity. Such an approach
greatly reduces both platform description size and parsing
time. However, researchers often need to investigate complex
scenarios to confirm or infirm hypothesis. Then details of the
platform could be specified and modified at will, thus breaking
these regularity assumptions. For such simulation scenarios a
flat description of all components is needed, which greatly
increases platform description size and parsing time.

• Memory representation: In most cases, flat descriptions
are trivially translated into a flat representation leading to
a large memory footprint. Even compact descriptions often
have to be expended in memory. For instance, a homogeneous
cluster of N machines can be solely described by N and the
characteristics of one machine, e.g., CPU speed, latency, gap
and overhead of the network. However, a simulator will have
to keep track of the activity of every single machine. The size



of the description would then be Θ(1)1 while its memory rep-
resentation would be Ω(N). The same occurs when describing
a set of peers by a statistical distribution. Such expansion
heavily impacts the parsing time. In some cases, the regularity
can be preserved leading to a compact memory representation.
For instance, in P2P DHT simulations, assuming that N peers
are interconnected in a general tree topology implies that the
platform description and data structure sizes are both in Θ(N).
This calls for a modular platform representation that allows
researchers to express regularity when possible to help the
simulator and adjust the level of details at will.

C. Network Communication Modeling

Research on networks has been relying on simulation for
a long time, leading to standards and many popular open-
source projects [2], [3], [4], [5]. The validity is these tools
is ensured by a wide usage and the cross reproduction of
experiments. They simulate the entire protocol stack, i.e., each
packet becomes an event. Then the simulation accuracy comes
from a very fine modeling of the entire system. Unfortunately
such simulations are very slow, hence limiting the scalability
of studies on LSDC systems. Moreover, very fine models are
not always meaningful at a very large scale. They require an
instantiation with parameters that are often not available, such
as a complete description of the Internet. At such scale, these
models may be unstable and, badly instantiated, are worse than
simple models. Then simulations of LSDC systems heavily
rely on simpler models classified as follows:

• Delay-based. Representing the communication time by a
constant delay or a statistical distribution is often sufficient.
Such models account for heterogeneity but not for network
proximity. Then many models determine delays based on
coordinate-based systems [6]. They are a good trade-off as
they account for important characteristics with a Θ(N) mem-
ory footprint and a O(1) delay computation time. Since coor-
dinates may change over time and suffer from measurements
issues, noise can be added to these coordinates. Similarly
LogP-like models [7], [8], [9] have been heavily used in
HPC and are extremely scalable since both description size
and delay computation time are in O(1). However, these
very scalable models ignore network congestion and typically
assume an extremely large bisection bandwidth.

• Contention-based. Modeling contention without hinder-
ing scalability requires an abstraction of the network topology
that focuses on the most important parts. For instance, the
bottleneck of a P2P streaming application will be mainly on
the edge of the network. Contention in the core of the network
may safely be ignored. Conversely, studying workload on data
grids or collective communications requires a more precise
model of the core of the network.

Simplistic packet-level simulation, e.g., store-and-forward
or wormhole, of communications is blatantly inaccurate as it
ignores many of the key characteristics of deployed protocols

1Or Θ(log(N)) if we count the bytes needed to describe N . In the
remaining, we omit this log(N) factor in all our complexity estimation as
it is relatively negligible for the platform sizes we consider.

such as TCP. The obtained results are thus very questionable at
best. Furthermore, such simulations are generally rather slow
and not scalable since they involve a lot of simulation events
for a single communication.

A sounder alternative is flow-level simulation in which the
whole communication, or flow, is simulated as a single entity.
The time needed to transfer a message of size S between hosts
i and j is then given by:

Ti,j(S) = Li,j + S/Bi,j , (1)

where Li,j (resp. Bi,j) is the network latency (resp. band-
width) on the route connecting i and j. Although determining
Li,j may be easy, estimating the bandwidth Bi,j is more diffi-
cult as it requires to account for interactions with every other
flow. Then the simulation amounts to solving a bandwidth
sharing problem, i.e., determining how much bandwidth is
allocated to each flow.

Given the computed bandwidth allocation,which defines all
data transfer rates, and the size of the data to be transmitted
by each flow, one can determine which flow will complete
first. Upon completion of a flow, or upon arrival of a new
flow, the bandwidth allocation can be reevaluated. Usually,
this reevaluation is memory-less and does not depend on
past bandwidth allocations. This approach makes it possible
to quickly step forward through (simulated) time, and thus
is attractive for implementing scalable simulations of LDSC
systems with potentially large amounts of communicated data.

It has been shown in [10] that such models can account
for the main characteristics of TCP connections. The slow
start phenomenon models the fact that the TCP protocol does
not send at full speed immediately and constantly adjust the
emission rate to observed packet loss. Such mechanism breaks
the linearity assumption of Eq. (1). A clever instantiation leads
to a very good approximation for large enough messages [10].
For small messages, very good results can be obtained with a
piecewise linear model [11].

The flow control mechanism of TCP is known to prevent
full bandwidth usage as flows may be limited by large la-
tencies [12]. Yet, it can be easily captured in a flow-level
model by bounding the share a flow can get by the maximum
congestion window size divided by the round trip time (RTT).

TCP is also known to be RTT-unfair. When two flows
contend for bandwidth on a bottleneck link, they are assigned
bandwidths inversely proportional to their RTTs [13]. As
demonstrated in [10], the RTT time needs to account both for
latency along the path but also for the possibly low capacity
of some links that may incur large delays. Such RTT values
can then be used to decide how to share bandwidth amongst
flows contending on a bottleneck link.

Finally, it is very common when sitting behind a DSL
connection that upload traffic negatively impact download
traffic, due to delayed acknowledgments. This phenomenon
is known as ACK compression and also occurs on full duplex
high speed Ethernet links directly connecting two machines.
The observed poor link utilization may be explained by a data
pendulum effect where data and ACK segments alternatively



fill only one of the link buffers [14]. A fluid model based on
max-min sharing can easily model the impact of such cross
traffic [15].

Recent and thorough validation studies in [10], [15] plead
for carefully designed and instantiated fluid models as a very
reasonable approximation for most LSDC systems. Although
one may fear that such models are computationally expensive,
bandwidth sharing can be computed in time linear with the
number of connections and their interactions using sparse and
efficient data structures [16].

D. Network Topology and Routing Representation

While an adequate representation should allow for an effi-
cient extraction of all the necessary information to simulate
communications, there exists some non-trivial trade-offs be-
tween information retrieval and representation size. The cost
of representing network topology and routing can thus be
decomposed in terms relative to execution time and data size.
The execution time is made of the parsing time to build the
data structure and the lookup time to retrieve a given route
from this structure. Data size is reflected by both the size of
the input, i.e., the description file provided by the user, and
the memory footprint of the corresponding data structure.

Table I
Θ COMPLEXITY OF NETWORK ROUTING REPRESENTATIONS.

Representation Parsing Lookup Input Footprint

Flat N2 1 N2 N2

Dijsktra N + E E + N logN N + E E + N logN
Floyd N3 1 N + E N2

Clique N2 1 N N2

Star N 1 1 N
Cloud N 1 N N

Let us consider a set of N nodes interconnected by a general
graph with E edges. Table I summarizes the corresponding
costs for most common network representations. For all of
them, the lookup time is actually in Θ(route size) and we
assume a static routing (although some of these representations
support dynamic routing). In the flat representation, each
route is completely defined by the set of equipments belonging
to it. It can represent arbitrarily complex platforms (even
something that would not be a graph) and routing. The main
drawbacks of such a representation are its management cost
and poor scalability [17]. The Dijkstra graph representation
proposed in [18] only stores information on shortest paths
and enables a better scalability. Shortest path routing is only
slightly restrictive since most Internet protocols implement
such a routing. Furthermore, this representation allows the
simulator to recompute the routing for every communication
and then to model dynamic routing. However, this memory
scalability comes at the cost of a lookup time several orders
of magnitude larger [18]. It can be reduced by adding caches,
which are completely ineffective in scenarios that have poor
locality or involve a very large number of entities. The Floyd
graph representation, also proposed in [18], is another way
to store information only on shortest paths with different
time and space requirements. While this approach reduces the

description size and has a very good lookup time, its parsing
time and memory footprint are prohibitive. Finally, network
graphs, such as clique, star graphs or “clouds” (where each
peer is connected to the core of the network where contention
is ignored), exhibit a regularity that can be exploited thanks
to an ad hoc local routing table and a specific routing
management.

III. RELATED WORK

Many tools exist in the literature to simulate LSDC sys-
tems [1], [3], [4], [19], [20], [21], [22], [23], [24], [25], [26].
Most comes from, and are limited to, a specific research
community. Table II details how each tool addresses the
concerns related to network modeling and representation.

Table II
SIMULATION TOOLS ANSWERS TO NETWORK CONCERNS.

Community Input Memory Network model Routing
NS-2 Network API flat packet-level static
NS-3 Network API flat packet-level static

Omnet++ Network text hierarchical packet-level static,dynamic
PeerSim P2P API cloud delay-based static (direct)
OverSim P2P API cloud delay-based static (direct)
SimBA VC text none delay-based none

LOGGOPSIM HPC text cloud delay-based static (direct)
GridSim Grid API flat delay-based none
OptorSim Grid Text file flat contention-based short. path
GroudSim Grid,Cloud API cloud contention-based static (direct)
CloudSim Cloud Brite, API flat delay-based dynamic (short. path)

SIMGRID LSDC XML, API flat Fluid static (indirect)

IV. PROPOSAL

A. Target Platform Characteristics

Most current distributed systems mainly rely on three types
of possibly interconnected and mixed networks: System and
Local Area Networks (SAN and LAN), National Research and
Education Networks (NRENs), or privately and independently
managed networks. Such networks are mostly interconnected
in a hierarchical way.

System and local area networks are generally organized in
a very hierarchical way (e.g., with fat trees) or with large
switches. Most of the time, they locally manage routing based
on shortest path algorithms that differ by distance estimation,
i.e., distance vectors (delay or throughput), link states, or
hybrid, and how they converge upon failures. However, failures
are rare on local networks and the routing behavior is thus
most of the time equivalent to shortest path determination (in
number of hops).

Local networks use gateways, also named point of presence
or network access point, to access to Internet Service Providers
(ISPs) or NRENs, which are, in turn, connected to higher
level networks at the scale of a continent. These high level
networks are named backbone or tier-1 networks in the Internet
terminology. They use their own routing policy, also based on
shortest path. The Border Gateway Protocol (BGP) is the most
deployed algorithm on the Internet.

From a performance point of view, higher hierarchy sub-
networks may use traffic aggregation and dynamic routing
to perform load balancing. However studies have shown that
no change may occur for 80% of the paths in a 24 hour



period [27]. Moreover, such changes may especially affect
load balancing on backbone links, that are usually not com-
munication bottlenecks. Then they can be ignored without any
significant impact on simulation accuracy.

As a conclusion, large scale distributed systems are or-
ganized by a hierarchical aggregation of networks. Most
aggregated networks are named Autonomous Systems (AS),
as they behave independently from each other and may have
very different structures. Each AS is connected with lower
or higher level ASes by a set of entry points. This hierarchy
is often bypassed by direct connections between same level
ASes. Within an AS, a routing policy is applied, most of the
time based on shortest path algorithms, e.g., OSPF or RIP.

B. Description Guidelines

Based on the aforementioned characteristics, we define a
set of guidelines to build a satisfying network representation.
First, the representation has to provide the user an easy
way to directly describe the structure and entities he/she
observes. Second, expressing hierarchy and composition of
entities should be possible as it can reduce the simulation time.
This expressiveness has to match community requirements
from fine, e.g., router backplane, to coarse grain, e.g., cloud
networks in P2P systems. Third, it should take advantage of the
regular structures that exist in the network, such as cliques or
stars, for sake of description simplicity. Fourth, a user should
be able to specify that any AS can instantiate its own routing
protocol. Finally, the path lookup and routing computation
times should depend as less as possible on the size of the
network to ensure a good scalability.

C. Proposal Representation Overview

None of the network routing representations presented in
Section II-D exploits the hierarchy and the regularity of the
platform. Each of them has its own pros and cons. The key
to a scalable network representation is to provide users the
ability to adapt the representation to their needs.

Our proposal is based on four semantic principles. First, we
opt for static routing computation by default for scalability
reasons. As stated in Section IV-A, it is sufficient for stable
LSDC systems. Second, we use fluid models as they offer
the best trade-off between accuracy and speed/memory foot-
print. Third, we take advantage of the hierarchical structure
of current large scale network infrastructures, thanks to the
concept of AS, be they local networks or conform to the
classical Internet definition. Last, we allow users to specify
platform representation within each AS, which allows us to
take advantage of the regular structure of an AS when possible.

We propose stock implementations of well known platform
routing representations, such as Dijkstra, Dijkstra with cache,
Floyd, Flat, and rule-based. The first four were described in
Section II-D. The rule-based model relies on regular expres-
sions to exploit regular structures. Figure 1 shows an example
of such a hierarchical network representation.

Each AS has one or more gateways, which are used to
compute routes between ASes included in an AS of higher

Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Figure 1. Illustration of hierarchical network representation. Circles represent
processing units and squares represent network routers. Bold lines represent
communication links. AS2 models the core of a national network intercon-
necting a small flat cluster (AS4) and a larger hierarchical cluster (AS5), a
subset of a LAN (AS6), and a set of peers scattered around the world (AS7).

level. With this mechanism, the simulator can determine routes
between hosts belonging to different ASes by looking for the
first common ancestor in the hierarchy (see Figure 2). Routing
is then solved recursively using the hierarchy. It allows us
to represent hierarchical platforms in a very compact and
effective way. However, as real platforms are not strictly hier-
archical, we also define bypassing rules to manually declare
alternate routes between ASes.

Figure 2. Main steps of the hierarchical routing mechanism.

In addition to these semantic principles, we also define some
syntactical principles. We define the network representation as
an XML file, as it is a common and easy to handle format. A
user can then use standard XML editors and advance features
such as auto-completion, validation, and well-formed check-
ing. We also define a set of tags that simplify the definition
of regular ASes, such as homogeneous compute clusters, or
peers. The cluster tag creates a set of homogeneous hosts
interconnected through a backbone and sharing a common
gateway. The peer tag allows users to easily create P2P
overlays by defining at the same time a host and a connection
to the rest of the world (with different upload and download
characteristics and network coordinates). With such a tag we
benefit both from the compactness of coordinate-based models
that account for delay heterogeneity and correlation, and from
the accuracy of fluid models for contention. As such, the
Vivaldi [6] and last-mile [28] models can be unified.



V. EVALUATION

We claim that our proposal drastically reduces memory
footprint without implying any prohibitive computational over-
head. We show that this approach competes in terms of speed
and memory usage with state-of-the-art simulators from vari-
ous domains while relying on much more accurate models that
are generally considered as prohibitive. For each domain, we
first define a classical simulation scenario. Then, we simulate
this scenario with SIMGRID and the corresponding state-of-
the-art simulator to evaluate their respective scalability.

Experiments were conducted a single core of a node with
two AMD Opteron 6164 HE 12-core CPUs at 1.7 GHz with
48 GB of memory. SIMGRID v3.7-beta, in which our proposal
is integrated, was used. Source code, logs, platform files and
analysis R scripts related to the experiments are freely avail-
able at http://simgrid-publis.gforge.inria.fr/xps/platform2011/.

A. Expressiveness
Table III

SIZE OF PLATFORM DESCRIPTION FILE IN VARIOUS SCENARIOS.

Community Scenario Size

P2P http://pdos.csail.mit.edu/p2psim/kingdata/ 209KB
P2P http://www.cs.cornell.edu/People/egs/meridian/ 301KB
P2P http://www.eecs.harvard.edu/∼syrah/nc/ 28KB
Grid 10 sites, 40 clusters, 1500 nodes 22KB
HPC 4096 clusters of 64 nodes 27MB
Cloud 3 small data centers + Vivaldi 10KB

Table III exemplifies the flexibility and the compactness of
our multi-purpose network representation proposal by giving
the size of the XML input file in various scenarios.

B. Volunteer Computing

In [16], we compared the performance of SIMGRID to that
of SimBA. It is a discrete-event simulator that models hosts
as finite-state automata with various parameters, i.e., compute,
error, and timeout rates. Task failure or success depends on a
uniform probability distribution while volatility is modeled us-
ing a Gaussian probability distribution. SimBA provides high
scalability at price of simulation realism and is limited to the
simulation of a single project. The SIMGRID implementation
simulates the whole infrastructure and accounts for complex
scheduling decisions on every client, network contention, and
churn. Here, SIMGRID used the peer construct of Section IV-C
and modeled host availabilities described by SETI@home
traces from FTA [29]. About one third of the simulation time
was spent parsing these traces.

The execution times measured with our simulator and those
reported by Estrada et al. in [21] are contrasted as follows.
Both timings were obtained on a 3.0 GHz Intel Pentium 4
with 1GB RAM (the one initially used in [21]). Estrada et al.
simulated 15 days of computation with 7, 810 hosts working
on the Predictor@Home project in 107 minutes. SIMGRID
simulates the same configuration in less than 4 minutes (for
10 runs the 95% confidence interval is [208.13, 223.71] in
seconds). Estrada et al. simulated 8 days of computation
with 5,093 clients working on the CHARMM project in 44

minutes. SIMGRID simulates the same configuration in less
than 90 seconds (for 10 runs the 95% confidence interval is
[80.38, 80.87] in seconds).

While SimBA opts for many simplifications in its design
and SIMGRID for more sophisticated but costly options (e.g.,
use of host availability traces or simulation of processes that
execute arbitrary code), SIMGRID is still much faster.

C. P2P computing

Here we evaluate the impact of our proposal by compar-
ing implementations of Chord simulations with various tools
from the literature [1], [20] to an implementation on top of
SIMGRID. Chord was chosen because it is representative of a
large body of algorithms from the P2P community and already
implemented in most P2P simulators.

Figure 3 reports the simulation timing of the Chord scenario
as a function of the node amount. It compares the results
of OverSim when using its internal simple and scalable net-
work underlay, OverSim using a detailed packet-level network
model based on OMNet++ [19], and PeerSim to SIMGRID us-
ing flow-based [10] or simplistic delay-based network models.

0

10000

20000

30000

40000

0 500000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Figure 3. Running times of the Chord simulation with constant and precise
network models on SIMGRID, compared to Oversim with a simple underlay,
OMNeT++ and PeerSim.

The largest scenario that we managed to run in less than
12 hours using OMNeT++ was 10, 000 nodes, in 1h40. With
PeerSim, we managed to run 100, 000 nodes in 4h36 (but
with a much lighter workload). With the simple underlay of
OverSim, we managed to run 300, 000 nodes in 10h. With
the precise flow-based model of SIMGRID, we ran 2, 000, 000
nodes in 6h43 while the simpler solely delay-based model
of SIMGRID ran the same experiment in 5h30. Simulating
300, 000 nodes with the flow-based model lasts only 32
minutes. The memory usage for simulating 2 million nodes
in SimGrid was about 36 GB, that represents 18 kB per node,
including 16 kB for the user code stack.

These results show that SIMGRID is orders of magnitude
more scalable than state-of-the-art P2P simulators. It is 15
times faster than the fastest ones, and simulates scenarios that
are ten times larger. This trend remains when using the precise
flow-based model, while simulation accuracy is improved.



D. High Performance Computing
In this section, we compare our proposal to the results

published in [8]. LOGGOPSIM is a recent simulator specifi-
cally tailored for the study of MPI programs on large-scale
HPC systems. It builds on the LogGPS model [9], which
is a delay-based model accounting for middleware overhead
and hardware gaps that prevent a perfect sustained usage
of network cards. As explained in [8], the LogGPS model
“ignores congestion in the network and assumes full effective
bisection bandwidth”, which is a valid hypothesis for several
high-end computing platforms but not for cheaper Ethernet
clusters or even torus-based networks as used in BlueGene or
Cray machines. The model used in SIMGRID is an extension
of the one proposed in [11] and accounts for such phenomenon
as well as for network contention occurring in the core of the
network. The importance of accounting for such phenomenon
was demonstrated in [11] for MPI collective operations involv-
ing large amounts of data.

0.01

0.1

1

10

100

1000

10000

10 12 14 16 18 20 22 24

S
im
ul
at
io
n
Ti
m
e
(s
)

Log2 of the Number of Processes

SimGrid
LogGoPSim

Figure 4. Performance comparison of LOGGOPSIM and SIMGRID when
simulating a binomial broadcast.

LOGGOPSIM represents MPI executions as GOAL traces,
i.e., DAGs of computations and communications. SIMGRID
supports the evaluation DAG scheduling algorithms through
the SIMDAG API since 2001. We aimed at comparing our
proposal with LOGGOPSIM in the very same experimental
setting used in section 4.1.2 of [8], i.e., the execution of
a binomial broadcast on various the number of processes.
Unfortunately, the input GOAL traces used in [8] were not
available. Then we have compared our simulation results to
the published one instead of reproducing the experiments
with LOGGOPSIM. The evaluation of LOGGOPSIM was
done on a 1.15 GHz Opteron workstation with 13 GB of
memory. To perform a comparison as fair as possible we scaled
down frequency of our processor down to 1GHz. Figure 4
shows the results. While using significantly more elaborate
platform and communication models, and thus producing more
meaningful results, SIMGRID is only roughly 75% slower
than LOGGOPSIM. This demonstrates that scalability does
not necessarily comes at the price of realism (e.g., ignoring
contention on the interconnect). The genericity of SIMGRID
data structures comes at the cost of a slight overhead since our

memory usage for 223 processors is 15GB, which is slightly
larger than what is achieved in [8]. Yet, we think this loss is
reasonable and amply offset by the gain in flexibility.

E. Grid computing

In this section we compare to GRIDSIM [22] (version 5.2
released on Nov. 25, 2010), a tool used widely in the research
community. The scenario we propose is a simple master
worker setting in which the master distributes N fixed size jobs
to P workers in a round-robin way. In GRIDSIM, we did not
define any network topology, hence only the output and input
baud rate are used to determine transfer speed. For SIMGRID,
we use a model of the Grid 5000 platform [30] (10 sites, 40
clusters, 1500 nodes), modeling each cabinet of the clusters
as well as the core of the wide area network interconnecting
the different sites. The experiments were conducted using an
Intel Xeon Quadcore 2.40GHz with 8GiB of RAM.

The number of tasks ntask to distribute was uniformly
sampled in the [1; 500, 000] interval and the number of workers
W was uniformly sampled in the [100; 2, 000]. We tried larger
range at first but we faced the same scalability issue as
already mentioned in [17]: GRIDSIM cannot run for more
than 10,000 hosts because of Java thread management issues.
We performed 139 such experiments for GRIDSIM (1000 for
SIMGRID as it was much faster) and measured the wallclock
time T (in seconds) and the memory consumption M (in kB).
These experiments prove that TGRIDSIM is quadratic in ntask

and linear in W . As expected, the size (input, output and
amount of computation) of the tasks to distribute have no
influence, hence the following model (the R2 of the linear
regression is 0.9871):

TGRIDSIM ≈ 5.599 10−2W + 1.405 10−8n2
task

Surprisingly, the memory, is not a simple polynom in W and
ntask. It seems to be piecewise linear in both W and ntask

(with a very steep slope at first and then a less steep one).
Furthermore there are a few outstanding points exhibiting par-
ticularly low or high memory usage. All this can be probably
explained by the garbage collection of Java. Hence, we only
report the behaviour for the situation where the number of
tasks is larger than 200,000 and the slope is not steep, taking
care of removing a few outliers (R2=0.9972):

MGRIDSIM ≈ 2.457 106 + 226.6W + 3.11ntask

Conducting the same analysis for SIMGRID shows that it
is much more stable and requires a much smaller time and
memory footprint (R2 equal to 0.9984 and 1 respectively):

TSIMGRID ≈ 1.021 10−4W + 2.588 10−5ntask

MSIMGRID ≈ 5188 + 79.9W

This means that 5.2Mb are required to represent the Grid 5000
platform and the internals of SIMGRID. We did not optimize
the stack size of processes (unlike when simulating P2P
scenarios), which is why we have a payload of 80K per worker.
Last, since tasks are allocated and deallocated on the fly, there
is no visible dependency on ntask.



This clearly indicate that SIMGRID (with a flow-based
network model and a very detailed network topology) is
several orders of magnitude faster and smaller in memory
than GRIDSIM (with a delay-based model and no network
topology). To illustrate the time and memory scalability, the
previous regressions indicate that GRIDSIM requires more than
an hour and 4.4 GB for N = 500, 000 and P = 2, 000 while
SIMGRID requires less than 14 seconds and 165MB.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we reviewed existing approaches to represent
large scale distributed computing systems in a simulation
context. We characterized the underlying problem of the
network representation and proposed an original and efficient
multi-purpose representation. Our experiments showed that our
approach is far more scalable than what is done by state-of-the-
art simulators from any of the targeted research communities.
We integrated this network representation into the SIMGRID
tool. The chosen hierarchical and adaptive description based
on the concept of Autonomous Systems also allows us to com-
bine different kinds of platforms, e.g., a computing grid and a
P2P system, to broaden the range of simulation possibilities.

We also demonstrated that the widespread beliefs that
scalable simulations necessarily imply to simplify the network
models and avoid the use of threads are erroneous. Our
implementation within SIMGRID does not trade accuracy and
meaning for scalability and also allows its users to simulate
complex applications.

As future work we aim at considering the specifics of
emerging systems such as IaaS Clouds. We also plan to further
reduce platform description size (and hence parsing time) and
memory footprint by exploiting stochastic regularity when
available and by improving the programmable description
approach. One particularly promising approach would be to
inject randomness directly into the platform description, to
model host availability or peer characteristics for instance.

ACKNOWLEDGMENTS

This work is partially supported by ANR (Agence National
de Recherche), project reference ANR 08 SEGI 022 (USS
SIMGRID) and ANR 11 INFRA 13 (SONGS). Special thanks
to INRIA, which supported David Marquez’s internship.

REFERENCES

[1] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
Proc. of the 9th Int. Conference on Peer-to-Peer Computing, 2009.

[2] J. Cowie, D. Nicol, and A. Ogielski, “Modeling the Global Internet,”
Computing in Science and Engineering, vol. 1, no. 1, 1999.

[3] S. Mccanne, S. Floyd, and K. Fall, “The Network Simulator (ns2),”
Available at http://nsnam.isi.edu/nsnam.

[4] “The ns-3 Network Simulator,” Available at http://www.nsnam.org.
[5] G. Riley, “Simulation of large scale networks II: large-scale network

simulations with GTNetS,” in Proc. of the 35th Winter Simulation
Conference, 2003.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in ACM SIGCOMM, 2004.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a Realistic Model
of Parallel Computation,” in ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 1993.

[8] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proc. of the 2nd
Workshop on Large-Scale System and Application Performance, 2010.

[9] F. Ino, N. Fujimoto, and K. Hagihara, “LogGPS: a parallel computational
model for synchronization analysis,” in Proc. of the 8th ACM SIGPLAN
symposium on Principles and practices of parallel programming, 2001.

[10] P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proccedings of the 2nd Int.
Conference on Simulation Tools and Techniques (SIMUTools), 2009.

[11] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and
M. Quinson, “Single Node On-Line Simulation of MPI Applications
with SMPI,” in IPDPS, 2011.

[12] M. Jain, R. Prasad, and C. Dovrolis, “The TCP Bandwidth-Delay
Product Revisited: Network Buffering, Cross Traffic, and Socket Buffer
Auto-sizing,” Georgia Institute of Technology, Tech. Rep. GIT-CERCS-
03-02, 2003.

[13] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“TCP-Libra: exploring RTT fairness for TCP,” UCLA Computer Science
Department, Tech. Rep. 050037, 2005.

[14] M. Heusse, S. A. Merritt, T. Brown, and A. Duda, “Two-way TCP
Connections: Old Problem, New Insight,” ACM CCR, vol. 41, no. 2,
2011.

[15] P. Velho, L. Schnorr, H. Casanova, and A. Legrand, “Flow-level Network
Models: Have we Reached the Limits?” INRIA, Research report RR-
7821, 2011. [Online]. Available: http://hal.inria.fr/hal-00646896/en/

[16] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, “Fast and
Scalable Simulation of Volunteer Computing Systems Using SimGrid,”
in Workshop on Large-Scale System and Application Performance, 2010.

[17] W. Depoorter, N. De Moor, K. Vanmechelen, and J. Broeckhove,
“Scalability of Grid Simulators : An Evaluation,” in Proc. of the 14th
EuroPar Conference, ser. LNCS, no. 5168. Springer, 2008.

[18] S. De Munck, K. Vanmechelen, and J. Broeckhove, “Improving The
Scalability of SimGrid Using Dynamic Routing,” in Proc. of the 9th
Int. Conference on Computational Science (ICCS), 2009.

[19] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proc. of the 1st Int Conf. on Simulation Tools and
Techniques for Communications, Networks and Systems, 2008.

[20] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Scalable and Flexible
Overlay Framework for Simulation and Real Network Applications,” in
Proc. of the 9th Int. Conference on Peer-to-Peer Computing, 2009.

[21] M. Taufer, A. Kerstens, T. Estrada, D. Flores, and P. Teller, “SimBA:
A Discrete Event Simulator for Performance Prediction of Volunteer
Computing Projects,” in Proc. of the 21st Int. Workshop on Principles
of Advanced and Distributed Simulation (PADS), 2007.

[22] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for
Grid Computing,” CCPE, vol. 14, no. 13-15, 2002.

[23] W. Bell, D. Cameron, P. Millar, L. Capozza, K. Stockinger, and F. Zini,
“OptorSim: A Grid Simulator for Studying Dynamic Data Replication
Strategies,” IJHPCA, vol. 17, no. 4, 2003.

[24] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: An Event-Based Simulation Framework for Computational
Grids and Clouds,” in CoreGRID/ERCIM Workshop on Grids, Clouds
and P2P Computing, ser. LNCS, vol. 6586. Springer, 2010.

[25] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms,”
Software: Practice and Experience, vol. 41, no. 1, 2011.

[26] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a Generic
Framework for Large-Scale Distributed Experiments,” in Proc. of the
10th Int. Conf. on Computer Modeling and Simulation (UKSim), 2008.

[27] K. Butler, P. McDaniel, and W. Aiello, “Optimizing BGP security by
exploiting path stability,” in Proc. of the 13th ACM Conference on
Computer and Communications Security, 2006.

[28] O. Beaumont, L. Eyraud-Dubois, and Y.-J. Won, “Using the Last-mile
Model as a Distributed Scheme for Available Bandwidth Prediction,” in
EuroPar, ser. LNCS, vol. 6852. Springer, 2011.

[29] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The Failure Trace
Archive: Enabling Comparative Analysis of Failures in Diverse Dis-
tributed Systems,” in CCGrid, 2010.

[30] “Grid’5000,” http://www.grid5000.org/.


