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Abstract: High performance computing applications must be tolerant to faults, which are com-
mon occurrences especially in post-petascale settings. The traditional fault-tolerance solution is
checkpoint-rollback, by which the application saves its state to secondary storage throughout exe-
cution and recover from the latest saved state in case of a failure. An oft studied research question is
that of the optimal checkpointing strategy: when should checkpoints be saved. Unfortunately, even
using an optimal checkpointing strategy, the frequency of checkpointing must increase as platform
scale increases, leading to higher checkpointing overhead. This overhead precludes high parallel ef-
ficiency for large-scale platforms, thus mandating other more scalable fault-tolerance mechanisms.
One such mechanism is replication, which can be used in addition to checkpoint-rollback. Using
replication, multiple processors perform the same computation so that a processor failure does not
necessarily mean application failure. While at first glance replication may seem wasteful, it may
be significantly more efficient than using solely checkpoint-rollback at large scale. In this work we
investigate two approaches for replication. In the first approach, each process in a single instance
of a parallel application is (transparently) replicated. In the second approach, entire application
instances are replicated. We provide a theoretical study of these two approaches, comparing them
to checkpoint-rollback only, in terms of expected application execution time.
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La réplication pour la résilience des systémes
exascales

Résumé : Les applications de calcul haute-performance doivent étre tolérantes
aux pannes, et ce d’autant plus que les pannes seront fréquentes dans les plates-
formes post-petascale. La solution traditionnelle de tolérance aux pannes est
la sauvegarde de points de reprise (checkpoint) et le retour-arriere (rollback).
Dans ce cadre, une application, au cours de son exécution, sauve son état
dans un espace de stockage secondaire, état a partir duquel elle redémarrera
en cas de panne. Une question souvent étudiée est celle de la politique de
sauvegarde optimale: quand les points de reprises doivent-ils étre pris ? Mal-
heureusement, méme avec une politique de sauvegarde optimale, la fréquence
des sauvegardes doit augmenter avec la taille de la plate-forme, induisant une
augmentation du surcoilit dii au mécanisme de tolérance aux pannes. Ce sur-
colit interdit d’atteindre une bonne efficacité pour les applications paralleles
sur plates-formes de trés grande taille. D’autre mécanismes de tolérance aux
pannes doivent donc étre utilisés. Un de ces mécanismes est la réplication, qui
peut étre utilisée en association avec un mécanisme de sauvegarde de points
de reprise. Avec la réplication, plusieurs processeurs exécutent le méme cal-
cul de telle sorte que la panne d’un processeur n’implique pas forcément une
interruption de I’exécution de I'application. Bien que la réplication paraisse, a
premiére vue, étre un gaspillage de ressources, utiliser conjointement réplication
et sauvegarde de points de reprise peut s’avérer significativement plus efficace
que la seule utilisation des points de reprise, sur les plates-formes de tres grande
taille. Dans ce travail nous considérons deux mises en ceuvre de la réplica-
tion. Dans la premiere approche, chaque processus d’une unique instance d’une
application paralleéle est répliqué (de maniére transparente). Dans la seconde
approche, des instances entiéres de 'application sont répliquées. Nous menons
une étude théorique de ces deux approches, et nous les comparons a la seule
sauvegarde des points de reprise, du point de vue de I’espérance du temps de
complétion.

Mots-clés : Tolérance aux fautes, résilience, checkpoint, ordonnancement,
réplication, exascale
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1 Introduction

As plans are made for deploying post-petascale high performance computing
(HPC) systems [8| [17], solutions need to be developed to ensure that applications
on such systems are resilient to faults. Resilience is particularly critical for
applications that enroll large numbers of processors, including those applications
that are pushing the limit of current computational capabilities and that could
benefit from enrolling all available processors. However, for such applications,
processor failure is the common case rather than the exception. For instance,
the 45,208-processor Jaguar platform is reported to experience on the order of
1 failure per day [106 2], and its scale is modest compared to platforms in the
plans for the next decade. Unfortunately, not all faults can be automatically
detected and corrected in hardware, which leads to failures. For such faults,
rollback recovery is used to resume job execution from a previously saved fault-
free execution state, or checkpoint. Rollback recovery implies frequent (usually
periodic) checkpointing events at which the job state is saved to resilient storage.
More frequent checkpoints lead to higher overhead during fault-free execution,
but less frequent checkpoints lead to a larger loss when a failure occurs. A
checkpointing strategy then specifies when checkpoints should be taken.

To achieve high performance in a failure-prone environment, it is necessary
to design efficient checkpointing strategies, i.e., ones that minimize expected
job execution time. A large literature is devoted to identifying good strategies,
including both theoretical and practical efforts. The former typically rely on
assumptions regarding the probability distributions of times to failure of the
processors (e.g., Exponential, Weibull), while the later rely on simulations driven
by failure datasets obtained on real-world platforms. In a previous paper [4], we
have made several contributions in this context, including optimal solutions for
Exponential failures and dynamic programming solutions for Weibull failures.

A major problem with checkpoint-rollback is its lack of scalability as plat-
forms become large: the necessary checkpoint frequency for tolerate faults in
large-scale platforms is so large that processors spend more time saving state
than computing state. It is thus expected that future platforms will lead to
unacceptably low parallel efficiency if only checkpoint-rollback is used, no mat-
ter how good the checkpointing strategy. Consequently, additional mechanisms
must be used. In this work we focus on replication: several processors perform
the same computation synchronously, so that a fault on one of these processors
does not lead to an application failure. Replication is an age-old fault-tolerant
technique, but it has gained traction in the HPC context only relatively re-
cently. While replication wastes compute resources in fault-free executions, it
can alleviate the poor scalability of checkpoint-rollback.

We study two replication approaches. Consider a parallel application that
is moldable, meaning that it can be executed on an arbitrary number of pro-
cessors, which each processor running one application process. In the first ap-
proach, process replication, a single instance of the application is executed but
each application process is (transparently) replicated. For instance, instead of
executing the application with 2n distinct processes on a 2n-processor platform,
one executes the application with n processes so that there are two replicas of
each process each running on a distinct physical processor. The advantage of
this approach is that the mean time to failure of a group of two replicas is larger
than that of a single processor, meaning that the checkpointing frequency can
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4 M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni

be lowered in a view to improving parallel efficiency. In the second approach,
group replication, multiple application instances are executed. For the same
example, one could execute 2 distinct n-process application instances on the
2n-processor platform. Each instance runs at a smaller scale, meaning that it
has better parallel efficiency than a single 2n-process instance due to a smaller
checkpointing frequency. Furthermore, once an instance saves a checkpoint, it
is possible for another instance to use this checkpoint immediately.
Given the above, our contributions in this work are:

e A theoretical analysis of the optimal number of processors to use for a
checkpoint-rollback execution of a parallel application for various parallel
workload models;

o A theoretical analysis of process replication, which leads to a dynamic
programming solution for determining a good checkpointing policy.

o A simple yet effective algorithm for group replication and a theoretical
analysis that yields a bound on the expected application execution time
achieved by this algorithm.

This paper is organized as follows. Section [2] discusses related work. Sec-
tion |3| defines our theoretical framework and states our key assumptions. Sec-
tion [4] discusses the optimal number of processors for a checkpoint-rollback ex-
ecution of a parallel application. Section [5| presents our results for process
replication, and Section [f] presents our results for group replication. Finally,
Section [7] provides some final remarks and perspectives.

2 Related work

Checkpointing policies have been widely studied in the literature. In [7], Daly
studies periodic checkpointing policies for Exponentially distributed failures,
generalizing the well-known bound obtained by Young [23]. Daly extended his
work in [I3] to study the impact of sub-optimal checkpointing periods. In [20],
the authors develop an “optimal” checkpointing policy, based on the popular
assumption that optimal checkpointing must be periodic. In [5], Bouguerra et
al. prove that the optimal checkpointing policy is periodic when checkpointing
and recovery overheads are constant, for either Exponential or Weibull failures.
But their results rely on the unstated assumption that all processors are reju-
venated after each failure and after each checkpoint. In our recent work [4], we
have shown that this assumption is unreasonable for Weibull failure. We have
developed optimal solutions for Exponential failures and dynamic programming
solutions for Weibull failures, demonstrating performance improvements over
checkpointing approaches proposed in the literature in the case of Weibull fail-
ures. Note that Weibull distribution is recognized as a reasonable approximation
of failures in real-world systems [I2}[19]. The work in this paper relates to check-
pointing policies in the sense that we study a replication mechanism that is used
as an addition to checkpointing. Part of our results build on the algorithms and
results developed in [4].

In spite of all the above advances in the areas of checkpointing policies,
several studies have questioned the feasibility of pure checkpoint-rollback for
large-scale systems (see [I0] for a discussion of this issue and for references to
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such studies). In this work we study the used of replication as a mechanism
complementary to checkpoint-rollback. Replication has long been used as a
fault-tolerance mechanism in distributed systems [I1] and more recently in the
context of volunteer computing [I5]. The idea to use replication together with
checkpoint-rollback has been studied in the context of grid computing [22]. One
concern about replication in HPC is the induced resource waste. However, given
the scalability limitations of pure checkpoint-rollback, replication has recently
received more attention in the HPC literature [I8, 24} [@]. Most recently, the
work by Ferreira et al. [I0] has studied the use of process replication for MPI
applications. They provide a theoretical analysis of parallel efficiency, an imple-
mentations of MPI that supports transparent process replication, and a set of
convincing experimental and simulation results. The work in [I0] only considers
2 replicas per application process. The theoretical analysis, admittedly not the
primary objective of the authors, is not developed in details. Furthermore, it
relies on an analogy with the birthday problem to compute the MTTF of the
machine, which turns out to be incorrect. In Section [5| of this work we provide
a full-fledge theoretical analysis of process replication.

3 Framework

We consider the execution of a tightly-coupled parallel application, or job, on
a large-scale platform composed of p processors. We use the term processor
to indicate any individually scheduled compute resource (a core, a multi-core
processor, a cluster node) so that our work is agnostic to the granularity of the
platform. We assume that a standard checkpointing and roll-back recovery is
performed at the system level.

The job must complete W units of (divisible) work, which can be split ar-
bitrarily into separate chunks. The job can execute on any number ¢ < p
processors. Letting W(q) be the time required for a failure-free execution on ¢
processor, we use three models:

o Embarrassingly parallel jobs: W(q) = W/q.

« Generic parallel jobs: W(q) = W/q+~yW. As in Amdahl’s law [1], v < 1
is the fraction of the work that is inherently sequential.

o Numerical kernels: W(q) = W/q +yW?/3/,/q. This is representative of
a matrix product or a LU/QR factorization of size N on a 2D-processor
grid, where W = O(N?). In the algorithm in [3], ¢ = r? and each proces-
sor receives 2r blocks of size N2/r? during the execution. Here v is the
communication-to-computation ratio of the platform.

Each participating processor is subject to failures. A failure causes a down-
time period of the failing processor, of duration D. When a processor fails,
the whole execution is stopped, and all processors must recover from the pre-
vious checkpointed state. We let C'(q) denote the time needed to perform a
checkpoint, and R(q) the time to perform a recovery. The downtime accounts
for software rejuvenation (i.e., rebooting [14] [6]) or for the replacement of the
failed processor by a spare. Regardless, we assume that after a downtime the
processor is fault-free and begins a new lifetime at the beginning of the recovery
period. This recovery period corresponds to the time needed to restore the last
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checkpoint. Assuming that the application’s memory footprint is V' bytes, with
each processor holding V/q bytes, we consider two scenarios:

o Proportional overhead: C(q) = R(q) = aV/q = C/q for some constant
«. This is representative of cases in which the bandwidth of the network
card/link at each processor is the I/O bottleneck.

o Constant overhead: C(q) = R(q) = oV = C, which is representative of
cases in which the bandwidth to/from the resilient storage system is the
I/0O bottleneck.

We asssume coordinated checkpointing [21], meaning that no message logging /replay
is needed when recovering from failures. Finally, we assume that failures can
happen during recovery or checkpointing, but not during a downtime (otherwise,

the downtime period could be considered part of the recovery period).

We assume that the parallel job is tightly coupled, meaning that all ¢ pro-
cessors operate synchronously throughout the job execution. These processors
execute the same amount of work W(q) in parallel, chunk by chunk. The total
time (on one processor) to execute a chunk of size w, and then checkpointing
it, is w + C(g). Finally, we assume that failure arrivals at all processors are
independent and identically distributed (#id).

4 Optimal number of processors for execution

In this section we consider a parallel job of size W executing on ¢ processors,
with values for W(q), C(q) and R(q) given by one of the previous scenarios.

We assume that failure laws follow an Exponential distribution law. Let
E(q) be the expectation of the execution time when using ¢ processors. Is it
true than choosing ¢ = p minimizes this quantity? Otherwise, what can we
say about the optimal number of processors gop: which minimizes E(q)? This
question was partially and empirically addressed in [20], via experiments for
4 MPI applications for up to 35 processors. Our approach here is radically
different since we target large-scale platforms and seek theoretical results in
the form of optimal solutions. The main objective of this section is to show
analytically that, for Exponential failures, E(q) decreases and then increases as
q increases, and thus admits a unique minimum.

Assume that failure inter-arrival times follow an Exponential distribution
with parameter A. In our recent work [4], we have shown that the optimal
strategy to minimize the expected makespan E(g) is to split W into K* =

max(1, | Ko(q)]) or K* = [Ky(q)] same-size chunks, whichever leads to the
AW(q)
1+]L(:Ie—q)\qc(q)f1)

ber of chunks. L. denotes the Lambert function, defined as L(z)e™(*) = 2. This
result shows that the optimal strategy is periodic. The optimal expectation of
the makespan is computed as:

smaller value, where Ky(q) = is the optimal (non integer) num-

E*(q) = K*(q) (ql/\ +E(Trec(q))> (eqﬁz\zfﬁ +gXC(q) 1) (1)

where E(T..(q)) denotes the expectation of the recovery time, i.e., the time
spent recovering from failure during the computation of a chunk. All chunks
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Using replication for resilience on exascale systems 7

have the same recovery time because they all have the same size and because
of the memoryless property of the Exponential distribution. It turns out that
although we can compute the optimal number of chunks (and thus the chunk
size), we cannot compute E*(¢) analytically because E(T..(q)) is difficult to
compute. This is because failures can occur during recovery. Many previous
works conveniently assume that no failure occurs during recovery. To circumvent
this difficulty we write the following recursion:

Xp(q) + R(q) if no processor fails during
Tree(q) = R(q) units of time, (2)
Xp(q) + Tiost (R(q)) + Trec(q) otherwise.

Xp(q) is the downtime of a group of ¢ processors, that is the time between
the first failure of one of the processors and the first time at which all of them
are available (accounting for the fact a processor can fail while another one
is down, thus prolonging the downtime). Tj,s:(R(q)) is the amount of time
spent computing by these processors before a first failure, knowing that the
next failure occurs within the next R(q) units of time. In other terms, it is the
compute time that is wasted because checkpoint recovery was not completed.
The time until the next failure of a group of ¢ processors is the minimum of ¢
7id Exponentially distributed variables, and is thus Exponential with parameter
g\. We can thus compute E(Tjos(R(q))) = & — 249 (see [] for details).

qX ed R(a) —1
Plugging this value into Equation [2] leads to:

E(Trec(Q)) =
e MU(E(Xp(q)) + R(q))
+(1— e PRW@) (E(Xp(q)) + qi - eqMIj((iq?)_l + ]E(T’“eC(Q))) ®

Equation reads as follows: after the downtime X p(q), either the recovery suc-
ceeds for everybody, or there is a failure during the recovery and we have to
make another attempt. Both events are weighted by their respective probabili-
ties. Simplifying the above expression we get:

E(Tpree(q)) = B(Xp(q))eH9 + q%(eqm(q) -1 (4)

The difficulty to compute E(T}.(q)) now comes from the E(Xp(q)) term. With
a single processor (¢ = 1), Xp(q) has constant value D, but with several pro-
cessors there could be cascading downtimes. At any rate, we can compute the
following lower and upper bounds for E(Xp(q)):

Proposition 1. Let Xp(q) denote the downtime of a group of q processors.
Then
e(q—l))\D -1

(g— 1A (5)

Proof. We always have Xp(q) > Xp(1) > D, hence the lower bound. For the
upper bound, consider a date at which one of the ¢ processors, say processor
19, just had a failure and initiates its downtime period for D time units. Some
other processors might be in the middle of their downtime period: for each

D <E(Xp(qg)) <
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processor i, 1 < i < g, let t; denote the remaining duration of the downtime of
processor . We have 0 <t; < D for 1 <i<gq, t;, =D, and t; = 0 means that
processor 4 is up and running. Let XtDl""t" (¢q) be the remaining downtime of a
group of ¢ processors, knowing that processor 7, 1 < i < ¢, will still be down
for a duration of ¢;, and that a failure just happened (i.e., there exists ig such
that t;, = D). Given the values of the t;’s, we have the following equation for

the random variable XB""tq (q):

D
if none of the processors of the group fails
XtDl""tq (q) = during the next D units of time
t1,.t ;b
Tipe (D) +Xp" " (q)

otherwise.

In the second case of the equation, consider the next D time-units. Processor i
can only fail in the last D —¢; of these time-units. Here the values of the t/’s de-
pend on the t;’s and on Tt (D). Indeed, except for the last processor to fail,

lost

say i1, for which t; = D, we have t; = max{t; — Tltols’;’tq (D),0}. More impor-
tantly we always have Tltolstt" (D) < Tl?s’g """ %(D) and XtDl""tq (9) < XB’O""O(q)

because the probability for a processor to fail during D time units is always larger
than that to fail during D—t; time-units. Thus, E(X,tjl""t“ (9)) <E(X5"%q)).
Following the same line of reasoning, we derive an upper-bound for X g’o’“’o(q):

D
if none of the ¢ — 1 running processors of the group fails
Xg’o’”’o(q) < during the downtime D
D,0,..,0 D,0,..,0
T‘lost (D) + XD (q)
otherwise.

Weighting both cases by their probability and taking expectations, we obtain

lost

E (Xg,o,..,o(q)) < ef(qfl))\DD+(1767(q71)/\D) (E (TD,O,..,O(D)) LB (XB’O""O((])>)

hence E <Xg’0""0(q)) < D4 (ela=DP_1)E (TD’O""O(D)>, with E (TD’O""O(D)> =

lost lost
1 D .
(@-DX — el pD_7" We derive

e(qfl))\D -1

E(xp ") <E (X5 °0) < g

which concludes the proof. As a sanity check, we observe that the upper bound
is at least D, using the identity e* > 1+ x for = > 0. O

We use the lower bound on E(Xp(gq)) to prove the following result: for
several relevant scenarios, the expected execution time E*(¢) is minimum when
using a finite number of processors (while in a failure free environment, it would
always decrease as ¢ increases). We obtain the following theorem:

Inria



Using replication for resilience on exascale systems 9

Theorem 1. E*(q) reaches its minimum for some finite value of q in the fol-
lowing scenarios: all job types (embarrassingly parallel, generic and numerical)
with constant overhead, and generic or numerical jobs with proportional over-

head.

Proof. We show that lim,_, 4~ E*(¢) = 400 for the relevant scenarios. We first
plug the lower-bound of Equation [5] into Equation [f] and obtain:

1
> DedMR(9) aAR(q) _ 1)
E(Tpee(q)) > De s <e 1)

From Equation [I| we then derive the lower-bound:

E*(¢) > Ko(q) (1)\ + D) M) (e Sotel +aAC(a) _ 1)
q

is minimized by Ky, where Ky(q) = AW (q)

1+L(—e—9rC(a)—1) "

using the fact that, by definition, the expression in the right hand-side of Equa-
tion

Embarrassingly parallel jobs with constant overhead. Here we assume
that W(q) = W/q and use constant overhead C(q) = R(q) = C. We get the
lower bound:

E*(q) > Ko(q) (1)\ + D) e (eif%% FAC 1)
q

where Koy(q) = W. We show that lim, 4o Ef . (¢) = +00. As a
consequence, we will also have lim,_, y o E*(¢) = +00, hence the desired result.
When ¢ tends to +o00, Ko(q) tends to AW, while (q%\ + D)edr¢ (e Rot +IAC _ 1)

tends to +oo. This concludes the proof. This result also implies that E*(q)
reaches a minimum for a finite ¢ value for other job types (generic, numerical)
with constant overhead, just because the execution time is larger in that case
than with embarrassingly parallel jobs.

Generic parallel job with proportional overhead. Here we assume that
W(q) = W/q+ W, and use proportional overhead: C(q) = R(q) = %. We get
the lower bound:

B (0) = Kolo) (5 + D) € (¢HIPC 1)
q

where Kq(q) = %. As before, we show that lim,_, 4 E} . (q) = +oo

to get the result. When ¢ tends to 400, Ky(q) tends to +oo, while (q%\ +

AC [ AWERAIW 4 5o . .
D)e (e Ko(a) — 1) tends to some positive constant. This concludes the

proof. Note that this proof also serves for generic parallel jobs with constant
overhead, simply because the execution time is larger in that case than with
proportional overhead.
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10 M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni

Numerical kernels with proportional overhead. Here we assume that
W(q) = W/q+~yW?*?/,/q, and use proportional overhead: C(q) = R(q) = %.
We get the lower bound:

1 AWHAYW2/3 /g
E*(q) = Ko(q) (A + D) e (eKo(q> A 1)
q

2/3
where Ky(q) = %. As before, we show that lim, o E} .. (¢) =
+o0o to get the result. When ¢ tends to 400, Ko(g) tends to +oo, while

AW Ay W2/3

va
(q%\ + D) (e Fo@ A _1) tends to some positive constant. This

concludes the proof.
O

Note that the only open scenario is with embarrassingly parallel jobs and
proportional overhead: the lower bound for E*(g) decreases to some constant
while the upper bound tends to infinity as g tends to infinity.

5 Process Replication

Process replication was recently studied in [10], in which the authors propose to
replicate each application process transparently on two processors. Only when
both these processors fail must the job recover from the previous checkpoint. If
there are p available processors, the job executes on p/2 pairs of processors. By
definition, one replica performs redundant computations, which may be seen as
a waste of resources. However, the probability that both replicas fail is much
smaller than that of a single replica, thereby allowing to reduce the checkpoint
frequency. The results in [10] show large performance improvements due to
process replication. The authors also develop an MPI library that implements
transparent process replication (failure detection, consistent message ordering
among replicas, etc.).

The objective of this section is to provide a full theoretical analysis of
PROCESS REPLICATION, considering the general case in which each application
process is replicated g > 2 times. In the following we call replica-group the
set of all the replicas of a given process, and we denote by n,, the number
of replica-groups. Altogether, there are replica — group x n,q < p processes
running on the platform.

5.1 Mean number of failures needed to bring down an
application
Following [I0], we assume that when one of the g replicas of a replica-group

fails, it is not restarted and the execution of the application proceeds as long
as there is still at least one running process in each of the replica-groups E

1One can envision a scenario where the failed process is restarted based on the current
state of the remaining replicas. This would increase application resiliency but would also be
time-consuming. A certain amount of time would indeed be needed to copy the state of one
of the remaining replicas. Because all replicas of a same process must have a coherent state,
the execution of the still running replicas would have to be paused during this copying. In
our tightly coupled application model, the copying-time would be a time during which the

Inria
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Then, for the whole application to fail, one of the replica-group must be hit
by ¢ failures. Ferreira et al. [10] consider the case g = 2, and observe that
the generalized birthday problem is related to the problem of determining the
number of process failures needed to induce the failure of the whole application.
The generalized birthday problem answers the following question: what is the
lowest integer n such that, when randomly drawing n integers from a discrete
uniform distribution with range [1,m], there is a probability at least equal to
50% that two numbers are the same? In our scope, m = n,4 is the number of
replica-groups, and n denotes the number of failures. In [I0] it is stated that
the mean number of faults that can happen so that there is a 50% chance that
both replicas have not failed is:

e Npg! ™ 2
NF(n,.) =1 rg ~ Mg 4 2 6
(rrg) =14 2 G s, SV 2 T3 ©)

=1

However, the target problem is not identical to the generalized birthday prob-
lem, and Equation [6] turns out incorrect. Consider the case g = 2 and the
situation right after the first failure occurred. In the generalized birthday prob-
lem one assumes that all integers in the range are uniformly distributed. In our
problem, the replica-group that suffered from the first failure only contains a
single running replica after that failure, while all the other replica-groups still
contain two running replicas. Therefore, if the probability of failures is uni-
formly distributed among still running processes (which is usually assumed),
then the replica-group hit by the first failure has a probability to be stricken by
the second failure twice smaller than the other replica-groups, because it has
twice less running replicas! The following theorem gives the correct value of the
mean number of failures needed for the whole application to fail:

Theorem 2. If the failure inter-arrival times on the different processors are
independent and identically distributed, then under the PROCESS REPLICATION
scheme, the expectation of the number of failures needed for the whole application
to fail, that is the Mean Number of Failures To Interruption (MNFTI), is:

Case g =2: MNFTI = E(NFTI|0) where

E(NFTIng) = 4 g = Tirg,
( Ing) = 1+ %E(NFTHTLJI +1) otherwise.

execution of the whole application must be paused. Consequently, restarting a failed replica
would only be beneficial if the restarting cost were very small, when taking in consideration the
frequency of failures, and the checkpoint and restart costs. The benefit of such an approach
is doubtful, and we do not consider it (it was also ignored in [I0]). In any case, if a scheme
involving process restart were to be put in place, it is unlikely that there would beneficial
cases with g > 2.
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General case: MNFTI =E | NFTI| 0,...,0 | where:
——

g—1 zeros

W (-1 _
E(NFTI|nf e )_

'<n7"9 Ez lnfz) E

1+ G
g'nrg—Zi:M'nf

@ (-1
(NFTI|nf P, )

g-2 N L (8
—1)-n
+ & )q L B (NFTIR, om0 P 1 (D 1 0
D19 g — 2 1 iny

Proof. We begin by studying the case g = 2 before generalizing. Let E(NFTI|ny)
be the expectation of the number of failures needed for the whole application to
fail knowing that the application is still running and that failures have already
hit ns different replica-groups. Because each process initially has 2 replicas, this
means that ny different processes are no longer replicated, and that n,, — ny
are still replicated. Overall, there are ny+2(n,q —nys) = 2n,4 —ny still running
processors.

The case ny = n,y is the simplest: a new failure will hit an already hit
replica-group and hence lead to an application failure, hence

E (NFTI |nyy) = 1.

For the general case 0 < ny < n,q — 1, either the next failure hits a new
replica-group with 2 still running replicas, or it hits a replica-group that had
already been hit. The latter case leads to an application failure; in that case,
after ny failures, the expected number of failures needed for the whole appli-
cation to fail is exactly one. The failure probability is uniformly distributed
among the 2n,;, — ny running processors, hence the probability that the next

2npg— 2nf

failure hits a new replica-group is ST . In this case, the expected number

of failures needed for the whole apphcatlon to fail is one (the considered failure)
plus E (NFTI|n; 4+ 1). Altogether we have derived that:

2n,g — 20y ny

E(NFTI 1+E(NFTI 1 — x 1.
(NFTI{ng) = S0 s (14 B (NFTT g 1) 4+ 5
Therefore,
2n.g — 2ny
E(NFTI|ns) =1+ ——E (NFTI|n; +1).
2n.g — Ny

We now consider the general case g > 2. Let E (NFTI|n(1) . (g U) be

the expectation of the number of failures needed for the whole apphcatlon to
fail, knowing that the application is still running and that, for ¢ € [1..g — 1],
there are ngf) replica-groups that have already been hit by exactly 7 failures.
Note that a replica-group hit by 4 failures still contains exactly g — ¢ running

Inria
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Using replication for resilience on exascale systems 13

replicas. Therefore, in a system where ngf) replica-groups have been hit by
exactly 4 failures, there are still overall exactly g - n,q — Zz h L pl f running
replicas, g - ( Zg ] ngf)) of which are in replica-groups that have not yet

been hit by any fallure. Now, consider the next failure to hit the system. There
are three cases to consider.

1. The failure hits a replica-group that has not been hit by any failure so far.
This happens with probability:

g (mo X0 ')

g Nrg — Zz 1Z nf

and, in that case, the expected number of failures needed for the whole ap-
plication to fail is one (the studied failure) plus E (NFTI|1 +ny 28 n}z), " ;g U).
Remark that we should have conditioned the above expectation with the

statement “if n,, > Zz ] n(z)”. In order to keep Equation EI as simple
as possible we rather do not explicitly state the condition and use the
following abusive notation:

g+ (g - X021 nY))

g Mg — S0 i ngf)

1 2 1
(1 +E (NFTI|1 + D 0@l ))) :

considering than when n,, = Zl 1 n ) the first term is null and thus that
it does not matter that the second term is not defined.

2. The failure hits a replica-group that has already been hit by g — 1 failures.
Such a failure leads to a failure of the whole application. As there are
n(fg Y such group, each containing exactly one running replica, this event
happens with probability:

(g 1)
ny

g Npg — ZZ lz n

In this case, the expected number of failures needed for the whole appli-
cation to fail is exactly equal to one (the considered failure).

3. The failure hits a replica-group that had already been hit by at least one
failure, and by at most g — 2 failures. Let ¢ be any value in [1..g — 2].
The probability that the failure hits a group that had previously been the
victim of exactly ¢ failures is equal to:

(g—1)- n&“
g Nrg — Zl 1 i nf

as there are ngf) such replica-groups and that each contains exactly g —
i still running replicas. In this case, the expected number of failures

needed for the whole application to fail is one (the studied failure) plus

RR n° 7830



14 M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni

E (NFTI\n;l),.. ngf 1) f) 1, n(Hl) +1,n (HQ) ...,n;g71)> as there is
one less replica-group hlt by exactly 1 failures and one more hit by exactly
1+ 1 failures.

We aggregate all the cases to obtain:
E (NFT1|n(1), ™ 1>) -
- (o =TI}

g Nrg — Zz 1 i nE‘Z)

9-2 (g— ( )
g—i)-n
+ — g_1
=1 rg E P
§1+E(NFTI|n(1) R R R R )

1
ng)

(L+E(NFTIL 0 0, ) )

+
g TNrg — Zz 17’ nf

which can be rewritten as

E (NFT]|n(1) ...,n(g‘”) -

. (nrq Z (i )
14 E(NFTI1 400 0, )
g.nrg Z ;. ()
(g 72) (Z)
i=1 9 Nrg — Zz 1 i- Tl
E (NFTIIR, . “ D) <1 41,0, nle )

O

We point out that Theorem [2] does not make any assumption on the failure
distribution. It only assumes that all processors are subject to independent and
identically distributed failures.

5.2 Application failure distribution and mean time to in-
terruption

In [I0], for the case g = 2 the mean time to application interruption is computed
using the formula:

MTTI = systemMTBF(2n,4) x NF(n,q)

where the value of FN(n, ) is given by Equation [6] Here systemMTBF de-
notes the mean time between failures of a platform made up with 2n,, pro-
cessors. This expression assumes that the failures follow an Exponential dis-
tribution. This expression is inaccurate, even when one substitutes to NF' the
expression of MNFTI given by Theorem [2| The reason is the following: while
systemMTBF(2n,4) is the expectation of the date at which the first failure will

Inria



Using replication for resilience on exascale systems 15

happen, this is not the expectation of the inter-arrival time of the first and sec-
ond failures. Indeed, after the first failure there only remains, overall, 2n,, — 1
running replicas. Therefore, the inter-arrival time of the first and second failure
has an expectation of systemMTBF(2n,, — 1).

One can in fact compute an exact expression for the application MTTI when
failures follow an Exponential distribution. The reasoning is similar to the proof
of Theorem

Theorem 3. If the failure inter-arrival times on the different processors fol-
low an FExponential law of parameter A then, under the PROCESS REPLICA-
TION scheme with g = 2, the expectation of the time an application runs be-
fore failing, that is the Mean Time To application Interruption (MTTI), is:
MTTI = E(TTI|0) where

11 )
e X if ng = nrg,
P— rg
E(TTI|ny) { 1 Ly 2npg=2ng E(TTIlns + 1) otherwise.

@nrg—mys) X 2npg—ny

Proof. We denote by E(TTI|ny) the expectation of the time an application will
run before failing, knowing that the application is still running and that failures
have already hit ny different replica-groups. Since each process initially has 2
replicas, this means that ns different processes are no longer replicated and that
nyq — ny are still replicated. Overall, there are thus still ny + 2(n,g —ny) =
2n,4 — Ny running processors.

The case ny = n,4 is the simplest: a new failure will hit an already stricken
replica-group and hence leads to an application failure. As there are exactly n,,
remaining running processors, the inter-arrival times of the n,4-th and (n,,+1)-
th failures is equal to ﬁw (minimum of n,, Exponential laws). Hence:

1

rg

For the general case, 0 < ny < n,y — 1, either the next failure hits a replica-
group with still 2 running processors, or it strikes a replica-group that had
already been victim of a failure. The latter case leads to an application failure;
then, after ny failures, the expected application running time before failure is
equal to the inter-arrival times of the ny-th and (ny + 1)-th failures, which is
equal to m The failure probability is uniformly distributed among the
2n,4 —ny running processors, hence the probability that the next failure strikes

2n,g—2ny

a new replica-group is . In this case, the expected application running

2Mpg—ny
time before failure is equal to the inter-arrival times of the ns-th and (ny+1)-th
failures plus E (TTI|ny + 1). We derive that:

2Mpg — 20 1
E(TTI|n;) = =9 ! E(TTI 1
(TT1ng) = e =20 (o B (TTHn +1)

+ nf % 1 .

Mpg —nyp  (2npg — M)A

Therefore,
1 Mypy — 2
E(TTI|ns) = + e TSV (T + 1)

(2nrg —ng)A 2Nypg — Ny
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16 M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni

One can generalize Theorems [2] and [3| to deal with any value of g. But
this technique, based on recurrence equations, is limited to failures following an
Exponential distribution. To extend the computation of the MTTTI to arbitrary
distributions, we use another approach, based on the failure distribution law
at the platform level. We explicit in Theorem [4] the probability of successfully
completing a work of size YW under the PROCESS REPLICATION scheme, and
this for any failure distribution. This theoretical result (Theorem [4)) enables
us to compute the MTTI for arbitrary failure distributions, using numerical
integration schemes. We refine the result and provide closed-form expressions
for the MTTI when failures follow an Exponential distribution (Theorem [5)) or
a Weibull distribution with fresh processors (Theorem @ These closed-form
expressions are directly amenable to numerical evaluation (see Section

Theorem 4. Consider an application with n,q processes, each replicated g times
under the PROCESS REPLICATION scheme, such that processor P;, 1 <@ < g-nyg,

executes a replica of process B—‘ . Assume that the failure inter-arrival times on

the different processors are independent and identically distributed,vand let T;
denote the time elapsed since the last failure of processor P;. Let F denote
the cumulative distribution function of the failure probability, and F(t|T) be the
probability that a processor fails in the next t units of time, knowing that its last
failure happened T units of time ago. The probability that the application will
still be running after t units of time is equal to:

Rit) =] <1 -1IF (t|n-+g(j_1))> . (8)

j=1 i=1

And the Mean Time To application Interruption is equal to:

+o00 Mry g
MTTI = / 11 (1 ~-1IF (tmg(jl))) dt. (9)
0 =1 i=1

While failure independence is necessary to prove Theorem [4] the hypothesis
that the failures are identically distributed can be removed. We have added this
hypothesis assumption to simplify the writing of Equations [§] and9]

Proof. The probability that processor P; suffers from a failure during the next
t units of time, knowing that the time elapsed since its last failure is 7;, is equal
by definition to F;(t) = F(t|r;). Then the probability that the g processors
running the replicas of process j, 1 < j < n,g, all suffer from a failure during
the next t units of time is then equal to:

g g
FO(t) = [[ Fregi—1®) = [T F (trivgi-)) -
i=1

i=1

Therefore, the probability that at least one the g duplicates of process j is still
running after ¢ units of time is equal to:

g9

1- HF (t17i+g(-1)) -

i=1

oy
J
Q
S
<
~+
=
Il
—_
|
&l
1
Q
S
<
~
=
Il
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Using replication for resilience on exascale systems 17

For the whole application to still be running after ¢ units of time, each of the
n,q application processes must still be running (i.e., each must have at least one
of its g initial replicas still running). So, the probability that the application is
still running after ¢ units of time is:

R(t) = ﬁ R§-g)(t) = 1_[‘7 (1 -1IF (tTiJrg(jl))) :

j=1 j=1 i=1

We can then compute the Mean Time To Interruption of the whole application:

+o00 +oo My 9
MTTI = R(t)dt = / 11 (1 -1IF (tmg(jl))) dt.
0

0 j=1 i=1

We now consider the case of the Exponential law.

Theorem 5. Consider an application made of n,.q processes, each replicated g
times under the PROCESS REPLICATION scheme. If the probability distribution
of the time to failure of each processor follows an Ezponential law of parameter
A, then the Mean Time To application Interruption is equal to:

Proof. According to Theorem [4 the probability that the application is still
running after ¢ units of time is:

R(t) = (1 —(1- e—At)g)nTg
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and the Mean Time To Interruption of the whole application is:

“+o0
MTTI = R(t)dt

[}

|
S—
+
3
N
—
|
—
—
I
m|
>
X
S—
Q
N———
3
3
«Q
o,

+o00 Mrg ) .
(nfg) (—1)" (1—e )"t

Il I I I I
S— S— S— S— S—
T T + i
8 8 8 8
S — 3 3
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Thus,

O

Corollary 1. Consider an application made of n,q processes, each replicated 2
times under the PROCESS REPLICATION scheme. If the probability distribution
of the time to failure of each processor follows an FExponential law of parameter
A, then the Mean Time To application Interruption is equal to:

) Nrg 02 (n;g)(if)(_l)z‘—&-y‘ g Nrg ) i (n:g)
MTTI = 5 ZZ( =7 Z(?) (nrg +1)

i=1 j=1 J i=0
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Proof. The first expression is a simple corollary of Theorem [ffor the case g = 2.
The second expression is obtained through direct computation. Let f(¢) be the
probability density function associated to the cumulative distribution function

F(t). Then, we have:

+oo
MTTI = / t- f(t)dt
0
+o0 €_>\t k—1
= / t 2FEA (1 — e ) e (1 - ) dt
0 2
oo — (k—1\ (1)
_ ok —At\ ,—Akt — it
—2k)\/0 t(l—e )e ;( ; ><2)e dt

k—1 k 1 1 7 “+o00

— 2kk)\ - - t(1— —At 7A(k>+i)tdt
S()E) L e
k—1 i +o0

_ okk) (k - 1> <—21> / (tefA(kJri)t _ tefA(kJriJrl)t) dt.
. i 0

—+o0
1
As / te™™ = =, the expression of MTTI can be further refined as follows:
0

MTTI = 2’%/\21 (k; 1) <_21> ((k +1)2/\2 - (k+i-1F1)2A2>

5006 ()

6D ) e G )

2k (1 /—1\" 1  EH[/-1\" 1 k-1 k-1
=27 = — ) —= — ] — 2 .
A <k2+<2) 2w 2 <2> it i) << i )* (z‘—l))
Using the equation (kzl) + 2(’;:11) = (’f) (kzi), we derive the desired expression
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for MTTI:

Theorem 6. Consider an application made of n,q processes, each replicated g
times under the PROCESS REPLICATION scheme. If the probability distribution
of the time to failure of each processor follows a Weibull law of scale parameter

A and shape parameter k, then the Mean Time To application Interruption is
equal to:

Proof. According to Theorem [4 the probability that the application is still
running after ¢ units of time is:

R(t) = (1 -(1- e—(i)k)gym .

Inria
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and the Mean Time To Interruption of the whole application is:

“+o0
MTTI = / R(t)dt
0

= /;oo n_z (n29> (-1 (1- e*(§)k)l ! at
BB re)
- _ (") -y 1+§_j () oy et ) o

i=0 i=0 j=1
SR e (e
:n_l (”ZW)( 1)! Z_q;(’]g) (1)’ /;m () a

We consider any value j € [0..n,4 - g] and we make the following change

of variable: u = ﬁtk This is equivalent to t = A (’j)Z and thus dt =

1
% (;) " (7Y du. With this notation,

Therefore,

o 5 (B() v )

Thus,

5.3 Comparison of MNFTI values

Table 1| shows the MNFTT values as computed by the formula in [I0] and by our
recursive formula in Theorem 2, for various values of n,, and for g = 2. The
percentage relative difference is indicated as well. We see that the two values
diverge significantly, with relative differences over 25% for large values of n,4.
We conclude that the formula in [10] significantly under-estimates the MNFTI.
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Table 1: Comparison of the MNFTI (Mean Number of Failures To Interruption)
as computed by the formula in [I0] and by the recursive formula developed in
this work, for n,, =2°,...,2% with g = 2.

| Number of processors [ 20 [ 2t [ 22 [ 25 [ 20 [ 25 | 2° |
Formula in [10] 2 25 322 |425| 57 | 7.77 | 10.7
Recursive Formula (Theorem 2) | 2 | 2.67 | 3.66 | 5.09 | 7.15 | 10.1 | 14.2
% Relative Diff 0 -6.2 | -12 | -17 | -20 -23 -25

‘ Number of processors ‘ 27 ‘ 28 ‘ 29 ‘ 210 ‘ 211 ‘ 212 ‘ 213 ‘
Formula in [10] 149 | 20.7 | 29 | 40.8 | 57.4 | 80.9 | 114
Recursive Formula (Theorem 2) | 20.1 | 28.4 | 40.1 | 56.7 | 80.2 | 113 | 160
% Relative Diff -26 | -27 | -28 | -28 | -28 -29 -29

| Number of processors [ 24 [ 25 [ 216 [ 2T7 [ 218 [ 219 T 920 ]
Formula in [10] 161 | 228 | 322 | 454 | 642 | 908 | 1284
Recursive Formula (Theorem 2) | 227 | 321 | 454 | 642 | 907 | 1283 | 1815
% Relative Diff 29 | =29 | 29 | -29 | -29 | -29 | -29

Table 2: Comparison of the MTTT as computed by the formula in [I0] and by
the recursive formula of Section for n,.q = 20, ...,2%0 with g = 2.

‘ Number of processors ‘ 20 ‘ 21 ‘ 22 ‘ 23 ‘ 21 ‘ 25 ‘ 26 ‘
Formula in [10] 1 0.625 0.402 0.265 0.178 0.121 0.0836
Recursive Formula (Theorem 3) 1.5 0.917 0.582 0.381 0.255 0.173 0.119
% Relative Diff -33.33 -31.82 -30.89 -30.32 -29.97 -29.75 -29.6
Simulated MTTI 1.498 0.9184 0.5831 0.3808 0.2542 0.1725 0.1188

‘ Number of processors ‘ 27 ‘ 2 ‘ 29 ‘ 210 ‘ 211 ‘ 212 ‘ 213 ‘
Formula in [10] 0.058 0.0405 0.0284 0.0199 0.014 0.00987 0.00696
Recursive Formula (Theorem 3) | 0.0823 0.0574 0.0402 0.0282 0.0198 0.014 0.00985
% Relative Diff -29.5 -29.44 -29.39 -29.36 -29.34 -29.33 -29.31
Simulated MTTI 0.08226 0.05738 0.0401 0.02825 0.01982 0.01399 0.009853
Number of processors Pie 215 216 217 21 219 2%0
Formula in [10] 0.00492 0.00347 | 0.00245 | 0.00173 0.00123 0.00086 0.000612
Recursive Formula (Theorem 3) | 0.00695 0.00491 | 0.00347 | 0.00245 0.00173 0.00122 0.000866
% Relative Diff -29.31 -29.3 -29.3 -29.3 -29.29 -29.29 -29.29
Simulated MTTI 0.006929 | 0.004913 | 0.00347 | 0.002448 | 0.001732 | 0.001225 | 0.0008677

5.4 Comparison of MTTI values

Table [2[ shows the MTTI values as computed by the formula in [I0] and by
our recursive formula, for various values of n,, and for g = 2. The percentage
relative difference of the formula of [I0] from our recursive formula is indicated
as well. We see that the two values diverge significantly, with relative differences
between 29% and 33%. We conclude that the formula in [I0] significantly under-
estimates the MTTIL.

Of course, our recursive formula and the two formulas of Corollary [1] have
the same numerical values. Furthermore, to assess the validity of these three
equations, we computed the MTTT through simulations. For each studied value
of n,4, we randomly generated 200,000 instances of failure dates, computed the
Time To application Interruption for each instance and then the mean. This
simulated MTTI, also reported in Table[2] is in full agreement with our formulas.
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Algorithm 1: DPNEXTFAILURE (W, C, Nyg, g, T1;s -y Tgon,y, quantum)

Function RECDPNEXTFAILURE (X, n)

begin
if x =0 then
| return 0
if solution[z]|[n] = unknown then
best < 0
0+ W — 2z quantum) +n-C/* Time elapsed since

beginning of execution */
for i =1 tox do
work = first(RECDPNEXTFAILURE(xz — i,n + 1))

cur + T1;75 (1 =TIy F (i - quantum + C|7ipg(j—1) +0)) X
(i - quantum + work)
if cur > best then
| best < cur; chunksize < 1
solution|z][n] + (best, chunksize)
return solution[z][n]

return RECDPNEXTFAILURE (0, 0)

5.5 Checkpointing policy

Theorem [4] gives the probability that the application will still be running after ¢
units of time, knowing the history of the failures of the different processors. It is
then straightforward to adapt the DPNEXTFAILURE algorithm proposed in [4]
to be used in the context of the PROCESS REPLICATION scheme. Algorithm
presents the resulting algorithm.

6 Group replication

In GROUP REPLICATION, different application instances execute on different
groups of processors. But instead of having completely independent concurrent
executions, groups can help each other. All groups always compute the same
chunk simultaneously, and do so until one of the groups succeeds, potentially
after several failed trials. Then all other groups stop executing the current chunk
and recover from the checkpoint stored by the successful group. All groups then
attempt to compute the next chunk. Like for PROCESS REPLICATION, GROUP
REPLICATION wastes resources. However, the groups co-operate to face failures.

A key difference between PROCESS REPLICATION and GROUP REPLICATION
is that PROCESS REPLICATION requires a sophisticated replication-aware imple-
mentation of the MPI library so as to make PROCESS REPLICATION transparent.
Instead, GROUP REPLICATION can work with any MPI implementation. As far
as the application is concerned, checkpointing is only slightly more complex (for
implementing the aggressive use of a saved checkpoint from another group as
soon as it is produced).

In addition, PROCESS REPLICATION induces a larger increase in the number
and volume of communications. Let V,; be the total volume of inter-processor
communications for a traditional execution. With PROCESS REPLICATION us-
ing g replicas per replica-groups, each original communication now involves g
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sources and ¢ destinations, hence the total communication volume becomes
Viot X g?. Now with GROUP REPLICATION using g groups, each original commu-
nication takes place g times, hence the total communication volume increases
only to Vit X g.

In this section we describe an execution protocol called ASAP (As Soon As
Possible) for implementing GROUP REPLICATION. We then analyze its perfor-
mance for Exponential failures.

6.1 The ASAP execution protocol

We start with some notations. We consider g groups, where each group has ¢
processors, with g x ¢ < p. Recall that a group is available for execution if and
only if all its ¢ processors are available. As before, let R(q) and C(g) denote the
recovery and checkpointing time for one group. Moreover, recall that in case
of a failure, the downtime of a group is a random variable Xp(q) > D, whose
expectation is bounded in Proposition[I] If a group encounters a first failure at
time ¢, the group is down between ¢ and t 4+ X (q). Finally, the total size of the
work is W, and thus the total amount of work that must be executed by each
processor of each group is W(q), as defined in Section

An execution of the ASAP algorithm can be described as k macro-steps,
where macro-step j, 1 < j < k, corresponds to all groups executing the j-th
chunk of size w;. Note that the value of k, the total number of chunks, as well
as the values of the w;’s, the chunk sizes, are inputs to the algorithm (we always
have Z§:1 w; = W(q)). We discuss how to optimally choose these values for
Exponential distributions in Section [6.2}

During macro-step 7, each group independently attempts to execute the j-th
chunk of size w; and then to checkpoint, restarting as soon as possible in case
of failure. As soon as one of the groups succeeds, say at time tj-”d, all the other
groups are immediately stopped, macro-step j is over, and macro-step (5 + 1)
starts (if j < k). Let A; = t;f"d —t;’j‘{ be the length of macro-step j, where t5"¢
is the starting time of the algorithm. The total execution time of the ASAP
algorithm is Z§:1 A

The previous description hides two important things. First, before being
able to start macro-step (j + 1), a group that has been stopped must execute a
recovery, in order to restart from the checkpoint of the successful group. Second,
this recovery may well start later than at time t;”d, in the case where the group is
down at time t;”d (see group 1 in Figure . The only group that does not need
to recover at the beginning of the next step is the group that was successful
for the previous step, except during the first step where all groups can start
computing right away.

In the next section, we provide an analytical evaluation of ASAP for Expo-
nential failure laws, and show how to compute the optimal set of inputs, namely
the number of macro-steps k and the values of the chunk sizes w;.

6.2 Exponential law

In this section, we consider the case where the failure rate of each processor obeys
an Exponential law of parameter A. For the sake of the theoretical analysis, we
introduce a slightly modified version of the ASAP protocol, where each group,
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Group 1
- } Failure
Recover

Downtine (of a group)
I Downtine (of a processor)

Group 2

Group 3 N R(a): w2 (Clg)

tend g

Figure 1: Execution of chunks w; and ws (macro-steps 1 and 2) using the
ASAP protocol. At time t{"?, group 1 is not ready, and group 2 is the only one
that does not need to recover.

c P IR X3 N | Bla) + e+ C)

NN
a N\
Group 1 - Jobs NN Attempt i (of step 2) has size X?

and is followed by a downtime of size Y;?

NN
Group 2 Joby W

N
Gr 3 J Job,
roup ob\g N oby

end end
t tg

Figure 2: Zoom on macro-step 2 of the execution depicted in Figure|l] using the
(X,Y) notation of Algorithm Recall that Job; has size X?+Y;? for 1 <i < 3,
and Joby has size R(q) + w2 + C(q).

including the successful one, executes a recovery at the beginning of each macro-
step. This strategy includes the first macro-step. This new version of ASAP is
described in Algorithm[2] It is completely symmetric, which renders its analysis
easier: now the amount of work to be executed at macro-step j is R(q)+w;+C(q)
for all groups.

Let us now turn to the analysis of Algorithm [2] Consider the j-th macro
step, number the attempts of all groups by their start time, and let IN; be the
index of the earliest started attempt that succeeds to process w;. For example
in Figure [2| the successful chunk of size R 4+ w; + C is the fourth attempt,
so No = 4. Now, to represent each attempt, we sample random variables Xij
and Yij , where 1 <4 < Nj, that correspond respectively to the it" tentative
execution of the chunk and to the i'" downtime that follows it (if i # N;). Note
that X/ < R+w;+C fori < Nj, and X} > R+uw; + C. All the X/ follow
the same distribution Dy, namely an Exponential law of parameter ¢gA. And
all the Yij follow the same distribution Dx, (¢q), that of the the random variable
Xp(q) corresponding to the downtime of a group of ¢ processors.

The main idea here is to view the N; execution attempts as jobs, where the
size of job i is Xij + Yij , and to distribute them across the g groups in a greedy
manner (see Proposition . The key point is that this formulation allows us to
provide an upper bound for the starting time of job N;, and hence for the length
of macro-step j, using a well-known scheduling argument (see Proposition .

Proposition 2. The j-th macro-step of the ASAP protocol can be simulated
using Algorithm [3: the last job scheduled by Algorithm [3 ends ezactly at time
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Algorithm 2: ASAP (wy, ..., wg)

for j=1tokdo

todo < R(q) +w; + C(q)

for each group do in parallel

repeat

finish current downtime (if any)

try to execute chunk of size todo

if execution successful then
signal other groups to immediately stop their attempt
t;”d + time of success

else
| restart immediately
until one of the groups has a successful attempt

makespan < t,i”d

Algorithm 3: Step j of ASAP (wy, ..., wk)

141
/* i represents the number of attempts/jobs */
L0
/* L represents the list of attempts/jobs */

while X/ < R(q) +w; + C(q) do
add Job;, with processing time Xij + Yij, to L
14+ 1+1
sample Xij and Yij using Dx and Dx (4 respectively
N]' —1
add Joby;, with processing time R(q) +w; + C(q), to £
/* the first successful job has size R(q)+wj; + C(q), not le\,j + YJ{,J_
*/
from time t;ﬁdl on, execute a Greedy Scheduling algorithm to distribute jobs of
L tdo)the different groups (recall that some groups may be not be ready at time
59

sample Xij and Y7 using Dx and Dxp,(q) respectively
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end
tj .

Proof. The Greedy Scheduling algorithm distributes the next job to the first
available group. Because of the memoryless property of Exponential laws, it is
equivalent (i) to generate the attempts a priori and greedily schedule them, or

(ii) to generate them independently within each group. O
- A -
xi,
TG R(g) 4+ Clo)|

tjf‘{ t;nd
Figure 3: Notations used in Proposition [3

Proposition 3. Let TEDHHC@D) b the time elapsed between tend and the

truestart

beginning of Joby, (see Fzgure@) We have

E(N)E(X) —E(X;") + (E(N;) — 1)E(Y)

J
g

R(q)+w;+C

E (Tt(ru(e(i)taﬁj (@ ))) S E(Y) +
where X and Y are random wvariables corresponding to an attempt (sampled
using Dx and Dx g respectively). Moreover, we have

, v 1

E(N;) = PB@O+w+C@)  gng E(X]7) = o @+ e+ Clo).
Proof. For group z, 1 < z < g, let Y, denote the time elapsed before it is ready
for macro-step j. For example in Figure l we have Y; > 0 (group 1 is down at
time te"d), while Y, = Y3 = 0 (groups 2 and 3 are ready to compute at time
tjﬁd) Propositionhas shown that executing macro-step j can be simulated by
executing a Greedy Schedule on the job list £’ = LUJ?_, Y,. Note that the job
list £’ may contain fewer jobs than macro-step j: the jobs that start after the
successful job Joby, are discarded from the list £'. However, both schedules
have the same makespan, and jobs common to both bybtems have the same

o XJ J
running dates. Thus, we have Téﬁg;ﬁ’ o) < = HZ ), : this

key inequality is due to the property of greedy Scheduhng the group Wthh is
assigned the last job is the least loaded when this assignment is decided, hence
its load does not exceed the average load (which is the total load divided by the
number of groups). Given that E(Y,) < E(Y), we derive

E(CE X)) +E(SE0))
g

E (T(R(Q)+Wj+C(Q))) < E(Y) +

truestart

But N; is the stopping criterion of the (Xj ) sequence, hence using Wald’s
theorem we have ]E(ZZV:JI X7) = E(N;)E(X) which leads to E(Z Xj) =
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E(N;)E(X) — E(XJNJ) Moreover, as N; and Y/ are independent variables,

we have E(Zf\gfl Y/) = (E(N;) — 1)E(Y), and we get the desired bound for
]E(T(R(Q)erﬂrc(tﬁ)).

truestart
Finally, as the expected number of attempts when repeating independently

until success an event of probability « is é (geometric law), we get E(N;) =
era(F(a)+w;+C(a) - The value of ]E(X;Vj) can be directly computed from the

definition, recalling that X;Vj > R(q) + wj + C(q) and each X} follows an
Exponential distribution of parameter gA. O

Building on Proposition [3] we derive the following upper bound on the exe-
cution time of ASAP:

Theorem 7. The expected execution time of ASAP has the following upper
bound:

EW(Q) + 1 (1 + E(Y)) AU(R(@)+C()) * N W)
g g \gA
g1 11 >
+k*<]EY +R(q)+C(q)) — =—
p (E(Y) + R(q) + C(q)) . D

which is obtained when using k* = max(1, |ko]) or k* = [ko| same-size chunks,
whichever leads to the smaller value, where

ko — AW (g) .
1+L ((g 14 (g_l)qiiljg(fa)&?(Q))_g) e—(1+)\q(R(Q)+C(q))))

Here 1L, the Lambert function, is defined as L(z)e“(*) = 2.

Proof. From Proposition [3] the expected execution time of ASAP has upper
bound Tagap = Z?:l o, where

+ (R(q) +w; + C(q))-

Our objective now is to find the inputs to the ASAP algorithm, namely the num-
ber k of macro-steps together with the chunk sizes (wy,...,w), that minimize
this TASAP bound.

We first have to prove that any optimal (in expectation) policy uses only a fi-
nite number of chunks. Let a be the expectation of the ASAP makespan using a
unique chunk of size W(q). According to Proposition a = B(T O PV@+0@)y
C(q) + W(q) + R(q), and is finite. Thus, if an optimal policy uses k* chunks,
we must have k*C(q) < «, and thus k* is bounded.

In the proof of Theorem 1 in [4], we have shown that any deterministic
strategy uses the same sequence of chunk sizes, whatever the failure scenario,
thanks to the memoryless property of the exponential distribution. We cannot
prove such a result in the current context. For instance, the number of groups
performing a downtime at time ¢{"? depends on the scenario. There is thus
no reason a priori for the size of the second chunk to be independent of the
scenario. To overcome this difficulty, we restrict our analysis to strategies that
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use the same sequence of chunk sizes whatever the failure scenario. We optimize
Tasap in that context, at the possible cost of finding a larger upper bound.
We thus suppose that we have a fixed number of chunks, k, and a sequence of
chunk sizes (w1, . ..,wg), and we look for the values of (w1, .. .,ws) that minimize
Tasap = Z?Zl a;. Let us first compute one of the a; term. Replacing E(NV;)

and E(X;Vj) by the values given in Proposition and E(X) by q%\, we get

o= 91 éekq(R(quﬁC(q)) <1 N E(y)>

9 qA
g—1 11
+—(EY)+ R(q)+C(q)) — ——
7 (E(Y) + R(q) + C(q)) T
—1 1/1 b
Tasap = LW 4= ( + E(Y)) e M (R(9)+C(a) § eNW;
g g \gA =
g—1 11>
+/<:(IEY + R(q)+C - ——
— (E(Y) + Rlg) + Cla) —

By convexity, the expression Z?:l e is minimal when all w;’s are equal (to
W(q)/k). Hence all the chunks should be equal for Tagap to be minimal. We
obtain:

— 1 1 1 .
Tasap = QTW + g (q)\ + E(Y)) A R(D+C() e wa

T <g;1 (E(Y) + Rlq) + C(q)) — ;q&) |

W(a)
Let f(z) = e = + mox, where

et (1 N E(y)) Aa(R(@)+C(a)
9 \gA
and ) L1
g—

o= |—— (E(Y)+ R(q) + Clq >

2= (50 B + R+ Cl) -
A simple analysis using differentiation shows that f has a unique minimum,
and solving f’(x) = 0 leads to Tlekqw (1 — %@) + 75 = 0, and thus to

= M(TQ) = k*, which concludes the proof. O

14L(£2)

2
1€

Using the upper-bound of E(Y) = E(Xp(q)) provided in Proposition |1} we
can compute numerically the number of chunks and the expectation of the upper
bound of ASAP’s makespan given by Theorem [7] .

7 Conclusion

In this paper we have presented a rigorous study of replication techniques for
large-scale platforms. These platforms are subject to failures, the frequencies
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of which increase dramatically with platform scale. For a variety of job types
(embarrassingly parallel, generic or numerical) and checkpoint cost models (con-
stant or proportional overhead), we show that using the largest possible number
of processors does not always lead to the smallest execution time. This is be-
cause using more resources implies facing more failures during execution, hence
wasting more time tolerating them (via an increase in checkpointing frequency)
and recovering from them. This waste results in a slow-down despite the addi-
tional hardware resources.

This observation leads us to investigate replication as a technique to better
use all the resources provided by the platform. Replication comes in two fla-
vors, GROUP REPLICATION and PROCESS REPLICATION. GROUP REPLICATION
consists in partitioning the platform into several groups, which each executes
an instance of the application concurrently in phases. All groups synchronize as
soon as one of them completes a phase. Instead, PROCESS REPLICATION repli-
cates each application process onto several processors (a replica-group), thereby
reducing the need to recover from a failure only when all processors in a replica-
group have failed. PROCESS REPLICATION is the approach followed in [I0] with
two processors per replica-group.

While both replication techniques improve reliability, they have very differ-
ent characteristics. GROUP REPLICATION can be used for any kind of parallel
application, while PROCESS REPLICATION is much more intrusive than GROUP
REPLICATION, in that it requires a sophisticated replication-aware implementa-
tion of the MPI library. Also, the total communication volume is increased by
a factor proportional to the square of the replication degree, while the increase
is only linear for GROUP REPLICATION.

We have provided a thorough analysis of PROCESS REPLICATION, providing
recursive formulas for the MNFTI and MTTI, analytical expressions for arbi-
trary distributions, and closed-form expressions for Exponential and Weibull
distributions. We have explained why the MNFTI and MTTI values deter-
mined in [I0] are not accurate, leading to a different of roughly 30% with our
own calulations, which are validated via simulation experiments.

We also have provided a detailed analysis of GROUP REPLICATION for Ex-
ponential failures, owing to an analogy with a Greedy Schedule to bound the
number of attempts and the execution time of each group. We have derived
the optimal number of chunks, together with their sizes. We do not have a
closed-form formula because we do not know the expectation of the downtime
of a processor group, but we have provided lower and upper bounds.

Ongoing work is devoted to conducting an extensive set of simulations for
Exponential, Weibull and trace-based failures. We use a realistic set of fail-
ure rates and checkpoint /recovery overheads, and we explore all the combina-
tions of job types and checkpoint cost models that we have presented in this
report. Preliminary results confirm that both GROUP REPLICATION and PRO-
CESS REPLICATION do reduce total execution time for a wide range of typical
exascale parameters. Within a few weeks, we expect to be able to produce an
extended version of this report with comprehensive simulations.
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