G. Albanese, S. Merler, R. Jurman, and . Visintainer, MLPy: high-performance Python package for predictive modeling, NIPS, MLOSS workshop, 2008.

C. C. Chang and C. J. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, LIBLINEAR: A library for large linear classification, The Journal of Machine Learning Research, vol.9, pp.1871-1874, 2008.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, vol.33, issue.1, 2010.
DOI : 10.18637/jss.v033.i01

URL : http://doi.org/10.18637/jss.v033.i01

I. Guyon, S. R. Gunn, A. Ben-hur, and G. Dror, Result analysis of the NIPS 2003 feature selection challenge, 2004.

M. Hanke, Y. O. Halchenko, P. B. Sederberg, S. J. Hanson, J. V. Haxby et al., PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data, Neuroinformatics, vol.12, issue.1, pp.37-53, 2009.
DOI : 10.1007/s12021-008-9041-y

T. Hastie and B. Efron, Least Angle Regression, Lasso and Forward Stagewise, 2004.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin et al., A supervised clustering approach for fMRI-based inference of brain states. Patt Rec, page epub ahead of print, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00589201

S. M. Omohundro, Five balltree construction algorithms, 1989.

V. Rokhlin, A. Szlam, and M. Tygert, A Randomized Algorithm for Principal Component Analysis, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.3, pp.1100-1124, 2009.
DOI : 10.1137/080736417

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr et al., Gehl, and V. Franc. The SHOGUN Machine Learning Toolbox, Journal of Machine Learning Research, vol.11, pp.1799-1802, 2010.

S. Van-der-walt, S. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, vol.13, issue.2, 2011.
DOI : 10.1109/MCSE.2011.37

URL : https://hal.archives-ouvertes.fr/inria-00564007

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes, Modular toolkit for Data Processing (MDP): a Python data processing framework, Frontiers in Neuroinformatics, vol.2, p.2830, 2008.
DOI : 10.3389/neuro.11.008.2008