Separability in Persistent Petri Nets

Eike Best 1 Philippe Darondeau 2
2 S4 - System synthesis and supervision, scenarios
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Separability in Petri nets means the property for a net k *N with an initial marking k *M to behave in the same way as k parallel instances of the same net N with an initial marking M, thus divided by k. We prove the separability of plain, bounded, reversible and persistent Petri nets, a class of nets that extends the well-known live and bounded marked graphs. We establish first a weak form of separability, already known to hold for marked graphs, in which every firing sequence of k * N is simulated by a firing sequence of k parallel instances of N with an identical firing count. We establish on top of this a strong form of separability, in which every firing sequence of k * N is simulated by an identical firing sequence of k parallel instances of N.
Type de document :
Article dans une revue
Fundamenta Informaticae, Polskie Towarzystwo Matematyczne, 2011, 112, pp.1-25. 〈10.3233/FI-2011-566〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00651208
Contributeur : Ist Rennes <>
Soumis le : mardi 13 décembre 2011 - 10:10:28
Dernière modification le : vendredi 16 novembre 2018 - 01:23:21

Identifiants

Citation

Eike Best, Philippe Darondeau. Separability in Persistent Petri Nets. Fundamenta Informaticae, Polskie Towarzystwo Matematyczne, 2011, 112, pp.1-25. 〈10.3233/FI-2011-566〉. 〈hal-00651208〉

Partager

Métriques

Consultations de la notice

199