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Abstract: With the advent of cloud computing and the need to satisfy growing customers
resource demands, cloud providers now operate increasing amounts of large data centers. In order
to ease the creation of private clouds, several open-source Infrastructure-as-a-Service (IaaS) cloud
management frameworks (e.g., OpenNebula, Nimbus, Eucalyptus, OpenStack) have been proposed.
However, all these systems are either highly centralized or have limited fault-tolerance support.
Consequently, they all share common drawbacks: scalability is limited by a single master node and
Single Point of Failure (SPOF).

In this paper, we present the design, implementation and evaluation of a novel scalable and fault-
tolerant virtual machine (VM) management framework called Snooze. For scalability our sys-
tem utilizes a self-organizing hierarchical architecture and performs distributed VM management.
Moreover, fault-tolerance is provided at all levels of the hierarchy, thus allowing the system to self-
heal in case of failures. Our evaluation conducted on 144 physical machines of the Grid’5000 exper-
imental testbed shows that the fault-tolerance features of the framework do not impact application
performance. Moreover, negligible cost is involved in performing distributed VM management and
the system remains highly scalable with increasing amounts of resources.
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Snooze : un gestionnaire de machines virtuelles
pour nuages informatiques privés autonome et
passant a I’échelle

Résumé : Avec ’émergence de l'informatique en nuage et ’augmentation
des demandes en ressources par les utilisateurs, les fournisseurs de nuages in-
formatiques utilisent de plus en plus de centres de données de grande taille.
Afin de faciliter la création de nuages informatiques privés, plusieurs gestion-
naires de nuages informatiques de type Infrastructure-as-a-Service (IaaS) ont été
proposés sous forme de logiciel libre (e.g., OpenNebula, Nimbus, Eucalyptus,
OpenStack). Cependant, tous ces systémes sont fortement centralisés ou ont un
support limité pour la tolérance aux pannes. Par conséquent, ils partagent tous
les mémes limitations : passage a 1’échelle limité par un nceud maitre unique et
point unique de défaillance (SPOF).

Dans cet article, nous présentons ’architecture, la mise en ceuvre et ’évaluation
d’un gestionnaire de machines virtuelles novateur, passant & ’échelle et tolérant
aux pannes, nommé Snooze. Pour passer a 1’échelle, notre systéme utilise une
architecture hiérarchique auto-organisante et effectue une gestion distribuée des
machines virtuelles. De plus, la tolérance aux pannes est fournie & tous les
niveaux de la hiérarchie, permettant ainsi au systéme de s’auto-réparer en cas
de panne. Notre évaluation réalisée sur 144 machines physiques de la plate-
forme expérimentale Grid’5000 montre que la tolérance aux pannes de notre
gestionnaire n’influe pas sur les performances des applications. De plus, le cofit
de la gestion distribuée des machines virtuelles est négligeable, permettant a
notre systéme de passer a 1’échelle pour un nombre croissant de ressources.

Mots-clés : Informatique en nuage, tolérance aux pannes, passage a [’échelle,
auto-organisation, auto-réparation, virtualisation
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1 Introduction

Cloud computing has recently appeared as a new computing paradigm which
promises virtually unlimited resources. Customers rent resources based on the
pay-as-you-go model and thus are charged only for what they use. In order to
meet growing customers resource demands, public TaaS-cloud providers (e.g.,
Amazon EC2, Rackspace) are now operating increasing numbers of large data
centers.

Several open-source laaS-cloud management frameworks such as OpenNeb-
ula [18], Nimbus [14], Eucalyptus [20], and OpenStack [5] have been developed
in order to facilitate the creation of private clouds. Given the ever growing com-
puting power demands, they need to scale with increasing number of resources
and continue their operation despite system component failures. However, all
these frameworks have a high degree of centralization and do not tolerate sys-
tem component failures. For example, the scalability of OpenNebula, Nimbus
and OpenStack is limited by their frontend node/cloud controller. Moreover,
as no replication support exists, a failure of the frontend node makes the VM
management impossible. Similarly, in Eucalyptus each non fault-tolerant cluster
controller suffers from the same drawbacks. Last but not least, no VM monitor-
ing is performed thus limiting the support for advanced VM placement policies
(e.g., consolidation).

In order to provide scalability and fault-tolerance to virtualized data centers,
we proposed Snooze [12], a novel VM management framework for private clouds
which is designed to scale across thousands of nodes. Unlike the existing cloud
management frameworks, Snooze utilizes a self-organizing hierarchical architec-
ture and performs distributed VM management. Particularly, VM management
tasks are performed by multiple managers, with each manager having only a
partial view of the system. Moreover, fault-tolerance is provided at all levels
of the hierarchy by replication and integrated leader election algorithm. Conse-
quently, the system is able to self-heal and continue its operation despite system
component failures. Finally, VM monitoring is integrated into the framework
and a generic scheduling engine exists to support advanced scheduling policies.

The contribution of this paper is as follows. We give an update on the
design of Snooze and now present its implementation specific details. Snooze is
fully implemented from scratch in Java and currently comprises approximately
15,000 lines of code. Moreover, the framework evaluation is presented. Snooze
was evaluated by deploying it on 144 machines of the Grid’5000 experimental
testbed [9] and submitting up to 500 VMs. Three aspects were studied: VM
submission time in a centralized as well as distributed deployment, overhead
of fault-tolerance on application performance and scalability aspects. Note,
that the evaluation of different scheduling policies is out of the scope of this
work. The results show that submission time is not impacted by performing
distributed VM management. Moreover, the proposed system remains highly
scalable with increasing number of resources and its self-organization properties
do not impact application performance.

The remainder of this paper is organized as follows. Section 2 introduces
the design and implementation of Snooze. Section 3 presents the evaluation of
the framework. Section 4 discusses related work. Finally, Section 5 closes the
paper with conclusions and future work.
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2 Design and Implementation

This section describes the architecture and implementation of Snooze. First, the
system model is presented. Afterwards, a global overview of the architecture is
given and the system components are presented. Finally, the self-organization
and self-healing mechanisms are described.

2.1 System Model and Assumptions

We assume a data center whose nodes are interconnected with a high-speed
LAN connection such as Gigabit Ethernet or Infiniband. Each cluster can be
heterogeneous (i.e., different hardware and software). Each node is managed
by a virtualization solution such as Xen [8], KVM [15], OpenVZ [1] which sup-
ports VM live migration. VMs are seen as black-boxes which are organized in
so-called virtual clusters (VC) where each VC represents a collection of one or
multiple VMs hosting one or multiple applications. We assume no restriction
about applications: both compute and server applications are supported. Multi-
cast, support is assumed to be available at network level. Consequently, complex
network topologies supporting multiple clusters are supported given that mul-
ticast forwarding can be enabled on the routers. The current implementation
of Snooze does not tolerate failures that partition the network. However appro-
priate leader election algorithms (e.g., [17]) can replace the implemented one to
tolerate such failures. Finally hosts may fail, and failures are assumed to follow
a fail-stop model.

2.2 Global System Overview

The global system overview of Snooze is shown in Figure 1. Note that for the
ease of explanation this figure focuses on a single cluster while in a real scenario
multiple clusters could be managed in the same manner. The architecture is
partitioned into three layers: physical, hierarchical, and client. At physical
layer, machines are organized in a cluster, in which each node is controlled by
a so-called Local Controller (LC).

A hierarchical layer allows to efficiently manage the cluster, and is composed
of fault-tolerant components: Group Managers (GMs) and a Group Leader
(GL). Each GM manages a subset of LCs, and the GL keeps the summary
information of the GMs.

Finally, a client layer provides the user interface. This interface is currently
implemented by a predefined number of replicated Entry Points (EPs) and is
queried by the clients in order to discover the current GL. Clients can interact
with the EPs by utilizing the provided bindings. In order to provide a simple yet
flexible interface, all system components are implemented as Java RESTful web
services. In the following sections, the details of each component are discussed.

2.3 System Components
2.3.1 Local Controller (LC)

At the physical layer, the LC of a node is in charge of the following tasks: (1)
joining the hierarchy during system boot and rejoining the hierarchy in case
of GM failures, (2) performing total host capacity retrieval (total amount of
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Figure 1: Global system overview

CPUs/cores, memory and network capacity), (3) performing VM monitoring
(current CPU, memory, and network utilization), and (4) enforcing VM man-
agement commands (start, suspend, resume, save, restore, shutdown, destroy,
resize and migrate).

Therefore, a LC has two components: Monitor and Actuator. The Monitor
implements all the logic required to monitor the host and its VMs, including
reporting this information to the assigned GM. Similarly, the Actuator enforces
the VM management commands coming from the GM. Both components rely on
the Common Cluster Monitoring and Management Interface (CCMMI), which
allows to support different virtualization solutions, like the libvirt virtualization
management library used in the current implementation, as well as external
monitoring frameworks such as Ganglia [4].

2.3.2 Group Managers (GMs)

Each node (i.e., LC) of the physical layer is managed by one of the GMs within
the hierarchical layer (see Figure 2). This management involves six tasks: (1)
receive, store, and answer queries for host and VM monitoring information, (2)
estimate VM resource demands, (3) schedule VMs, (4) send VM management
(e.g., start, stop) enforcement requests to the LCs, (5) transmit GM summary
information to the GL and finally (6) announce its presence.

The host and VM monitoring information supporting the VM scheduling
engine decisions is periodically sent to the GMs by the LCs and stored in an
in-memory repository (other backends like Apache Cassandra [16] can be used
to implement this repository).

Based on this monitoring information, VMs’ resource demand estimates,
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Figure 2: Hierarchical architecture overview

that are required by advanced optimization policies like VM consolidation, are
performed by an integrated estimation engine using interfaces to support dif-
ferent CPU, memory, and network demand estimators. For instance, a Double-
Exponential-Moving-Average (DEMA) (resp. Autoregressive-Moving-Average
(ARMA))) estimator can be used to estimate CPU (resp. memory) demand.

VM scheduling is performed on each GM by a generic engine that currently
distinguishes between three types of policies implemented by the administrator:
(1) scheduling, (2) optimization, and (3) planning. While scheduling policies
(e.g., round robin, load balance) are used for the incoming VMs, optimization
and planning policies can be used to periodically optimize the VM placement.
The specified optimization policy computes the optimized VM placement and
the planning policy computes a migration plan which gives the order of migra-
tions required to move the system from the current state to the optimized one.
For example, given that the administrator enables continuous optimization and
specifies the proper reconfiguration interval (e.g., daily at 1 AM), Snooze at-
tempts to optimize the current VM placement periodically using the pluggable
optimization policy (e.g., consolidation). To this end, the engine queries the
estimation engine in order to get the current VM resource demand estimates,
triggers the optimization and planning policies, and finally sends live migration
requests to the actuators of the LCs. Note, that the evaluation of scheduling
features it out of the scope of this paper.

GM summary information is periodically sent by each GM to the current GL
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in order to support high-level scheduling decisions of the GL such as delegating
VMs to be scheduled on the GMs, and to detect GM failures. This information
is also used in case of GL failure to rebuild the GL system view. Currently, the
GM summary includes the total amounts of used and free capacity available on
all the managed LCs, as well as the VM networking related information (see the
following sections for more details).

Finally, to support GM failure-detection, each GM is part of a heartbeat
multicast group on which it periodically announces its presence.

2.3.3 Group Leader (GL)

The GL oversees the GMs and fulfills the following tasks: (1) stores incoming
GM monitoring summary information, (2) dispatches incoming VC submission
requests, (3) assigns joining local controllers to GMs, (4) manages VM network
addresses, and (5) periodically announces its presence. Note, that unlike on
GMs, only lightweight (i.e., dispatching) VM placement decisions are performed.
Still, its scalability can be further improved with replication and an additional
load balancing layer.

GM summary information is received and stored in the GL repository in
order to guide VC dispatching as well as LCs to GM assignment. Therefore, the
GL integrates a scheduling engine using two types of policies. VC dispatching
policies take as input a VM description as well as a repository reference and
output the GM to which the VM start request should be delegated. The GL
then sends the VM start requests to the assigned GMs, waits for the replies
and returns the output (i.e., status of VMs, assigned IP addresses, and GM
descriptions) to the caller (see Section 2.3.5). LC assignment policies take as
input a LC description as well as the GM repository reference and output the
assigned GM. Passing this references allows to support advanced (e.g., based on
GM load) assignment policies. A LC needs to know which GM it is assigned
to in order to join the hierarchy (see Section 2.4 for the details of the join
procedure).

VM network management is handled transparently for the user by Snooze.
Each GL maintains a system administrator configurable subnet from which it is
allowed to allocate IP addresses. When a VC is submitted to the GL, each of its
VMs automatically gets an IP address from this subnet. The IP address is then
encoded in the MAC address of the VM description before it gets dispatched to
the GM. When the VM boots it executes a script which decodes the IP from the
VM MAC address and performs the network configuration. A similar approach
is applied in OpenNebula [18]. In order to let the GL recycle IP addresses, the
summary information of a GM includes a list of the IP addresses of its managed
VMs that have recently been terminated.

Finally, similar to GMs, the GL announces its presence on a predefined GL
heartbeat multicast group.

2.3.4 Entry Points (EPs)

The EPs are used by the client software to discover the current GL. In order to
keep track of the GL’s address, all EPs subscribe to the GL heartbeat multicast
group and listen for current GL announcements.

RR n° 7833
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2.3.5 Command Line Interface (CLI)

A Java-based CLI is implemented on top of the RESTful interfaces exported
by the EPs, GL and GMs. It supports the definition and management of VCs
as well as visualizing and exporting the current hierarchy organization in the
GraphML format.

When a user defines a VC and attempts to start it, the CLI first tries to
transparently discover an active EP by walking through the EPs list specified
in its configuration file and testing the EP status. Given that an active EP
exists, a GL lookup is sent in order to receive the current GL information. Fi-
nally, the request to submit the VC is delegated to the GL which dispatches
the VMs on the available GMs. The result is returned to the CLI and pre-
sented to the user. Currently, the following information is provided: Assigned
VM IP addresses, GM descriptions (i.e., hosts and ports), status (e.g., RUN-
NING) and an error code which is displayed if problems occurred during the
submission. Finally, the GM information on which the VMs were dispatched
is stored in the local CLI repository, thus allowing the CLI to directly contact
the GM whenever VC/VM management commands need to be performed. The
following management commands are currently supported: starting, stopping,
suspending, resuming, inter-GM migration, dynamic resizing (number of vir-
tual cores and memory size) as well as retrieving the current live resource usage
statistics of the VMs. Finally, it is important to mention that on GM failures
the CLI repository information becomes obsolete. When the CLI detects that
a GM is not reachable (e.g., during VM resource usage information retrieval)
it first queries the EP in order to discover the current GL. Afterwards a GM
discovery request including the VM identifier is sent to the GL. Upon reception
of the request, the GL queries the currently active GMs in order to find the one
assigned to the VM, and returns the result to the CLI. Thus the management
command can be performed on the new GM.

2.4 Self-Organization and Self-Healing of the Hierarchy

GM join process and GL election When a new GM attempts to join
the system, the leader election algorithm is triggered. Currently, our leader
election algorithm is built on top of the Apache ZooKeeper [13] highly available
and reliable coordination system, with its implementation following the recipe
proposed by the authors of the service in [2].

ZooKeeper is integrated as follows. When Snooze is deployed, the ZooKeeper
service is installed on the EPs in replication mode. The GM connects to the
ZooKeeper service upon boot, creates an ephemeral node in its hierarchical
namespace and attaches the GM description (i.e., networking information and
an internal Snooze identifier) to it. This node is assigned a unique sequential
identifier by the service in the namespace and is used by the GMs in order
to discover the current GL and elect a new GL in case of failure. After the
node creation each GM first tries to find another node in the namespace with a
lower identifier (i.e., predecessor). If such a node already exists, the GM starts
watching it and initiates the GL heartbeat multicast listener. Finally, upon
reception of a GL heartbeat message, the GM sends a join request along with
its description to the GL. Otherwise, if no node with a lower identifier could
be detected, the current GM becomes the new GL and starts announcing its
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presence by sending multicast messages on the GL heartbeat multicast port.

GL and GM failure recovery Each time a failure of a GL or GM occurs,
an event is triggered on its successor GM as each node watches its predeces-
sor. The successor GM becomes the new GL if its identifier is the lowest and
stops all the GM related logic. Otherwise it simply starts watching the next
predecessor GM. When a GM is promoted to be a GL, it gracefully terminates
all its tasks such as the heartbeat and monitoring data sender, its open LC
connections, and the repository manager. Afterwards the GL logic is started
along with the GL heartbeat sender. Finally, as all the existing GMs are still
listening for GL heartbeat messages they receive the new GL information and
automatically trigger the GL rejoin procedure. Note that in case of a GL failure
all its internal knowledge about the existing GMs as well as the distributed VM
networking information (i.e., assigned IP addresses) is lost. In order to restore
this knowledge, each time a GM rejoins the GL, the GM sends its description
along with the VM networking information stored in its repository. Moreover,
GM resource utilization summaries are periodically sent back to the GL, thus
making it completely recover the system view.

Finally, as a GM has been promoted to become the new GL and thus has
terminated all its GM related logic, LCs which were previously assigned to it
fail to receive its heartbeat messages and trigger the system rejoin procedure.

LC join process and recovery The join process of a LC works as follows.
Each time a LC attempts to join the hierarchy it starts listening for the GL
multicast heartbeat messages. When it receives a heartbeat message, the join
process is started by sending a GM assignment request with its current descrip-
tion (i.e., host address, port and total capacity) to the GL. The GL then triggers
the GM assignment policy and dispatches the LC to an active GM. The contact
information of the allocated GM is returned to the LC, which then initiates
the actual GM join process by sending its description to the GM. Afterwards,
it starts listening for GM heartbeat messages and periodically sends its own
heartbeat, host and VM monitoring information to the GM. On an LC failure,
the GM gracefully removes it from its database, and adds the IP addresses of
the LC’s VMs to the list of freed addresses. Note, that in case of LC failure,
VMs executing on the LC are terminated. Therefore, snapshot features of hy-
pervisors can be used by LCs in order to periodically save VM states (i.e., CPU,
memory, disk) on stable storage on behalf of the GM. This will allow the GM
to reschedule the failed VMs on its active LCs.

Finally, in case of a GM failure, the LC rejoins the hierarchy by triggering
again the join procedure. Because VM information (i.e., identifier, assigned IP
address, etc.) stored by the previous GM might get lost, each time a LC joins the
newly assigned GM, it transfers its local state (i.e., information about currently
running VMs), thus allowing the GM to update its repository. This update is
needed by the clients to discover the new VM location (see Section 2.3.5) and by
the GM to perform VM management operations as well as scheduling decisions.

RR n° 7833



Snooze: A Scalable and Autonomic Virtual Machine Management Frameworkl0

3 Experimental Results

In order to evaluate the features of the Snooze framework we have deployed it
on a 144 nodes cluster of the Grid’5000 experimental testbed in Nancy (France).
Each node is equipped with one quad-core Intel Xeon X3440 2.54 GHz CPU,
16 GB of RAM, and a Gigabit Ethernet interconnect. The operating system
on each server of the selected cluster is Debian with a 2.6.32-5-amd64 kernel.
All tests were run in a homogeneous environment with gemu-kvm 0.14.1 and
libvirt 0.9.6-2 installed on all machines. Each VM is using a QCOW2 disk image
with the corresponding backing image hosted on a Network File System (NFS).
Debian is installed on the backing image and uses a ramdisk in order to speed
up the boot process. Finally, the NFS server is running on one of the EPs with
its directory being exported to all LCs.

Our study is focused on evaluating the VM submission time in a centralized
as well as distributed deployment, the impact of fault-tolerance on application
performance, and finally the scalability of the framework.

3.1 Submission time: Centralized vs. Distributed

Submission time was evaluated by deploying a large amount of VMs and is
defined as the time between initiating the submission request and receiving the
reply on the client side. This involves assigning IP addresses, dispatching VMs
to the GMs, scheduling VMs on the GMs and finally returning the response to
the client.

Two deployment scenarios were created: centralized and distributed. In the
former the EP, GL, GM as well as the Apache ZooKeeper service were running
on the same machine while 136 nodes were hosting the LCs. This allowed us
to reproduce the traditional frontend/backend-model as close as possible. In
the latter, the system was configured in a distributed manner with two EPs,
each of them hosting a replica of the Apache ZooKeeper service. In addition
6 GMs (including one GL) and 136 LCs were used. Finally, in both scenarios
increasing numbers of VMs were submitted simultaneously to the system, the
numbers varying from 0 to 500 in 50 VM steps. Each VM required one virtual
core and 2 GB of RAM. All VM templates and disk images were pre-created
on the NFS-server and submissions happened sequentially directly after the
predecessor VMs were terminated. 500 VMs were a good tradeoff (i.e., ~4 VMs
per LC) in order not to risk application performance degradation due to possible
resource overcommit.

The experimental results of this evaluation are plotted in Figure 3. As it can
be observed, submission time increases approximately linearly with the amount
of VMs in both the centralized and distributed deployment. However, more
interesting is the fact that besides minor measurement errors, submission times
in both scenarios are nearly equivalent thus indicating the good scalability of the
system as no overhead of being distributed can be observed. Finally, submission
of 500 VMs were finished in less than four minutes which indicates the good
quality of our prototype implementation.
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Figure 3: Submission time: Centralized vs. Distributed

3.2 Fault-Tolerance and Application Performance

To evaluate the impact of fault-tolerance on application performance the sys-
tem was configured in a distributed manner (see Section 3.1). Two types of
VMs with the following applications were created: (1) VMs hosting the MPI-
implementation of the NAS Parallel Benchmark (NPB) 3.3 [7], that represent
high performance computing workloads and (2) VMs hosting the Linux, Apache,
MySQL, PHP (LAMP) stack running the Pressflow v6 content management sys-
tem (CMS) [6], that represent scalable servers workloads.

For MPI we have selected the FT benchmark from NPB, because of its heavy
use of collective communication thus leading to high average network utilization
(approximately 100 Mbit/s per VM). The benchmark was run with the Class A
problem size across 100 VMs and the total execution time was measured. For
web applications, the performance of Pressflow v6 was analyzed while running
on a dedicated VM by running the Apache HTTP server benchmarking tool [3]
with concurrency set to 100 and number of requests to 1000. All measurements
were repeated five times and the average values were taken.

To get an insight in the actual impact of fault-tolerance on application per-
formance (i.e., execution time and throughput), system component failures were
injected randomly in the middle of the benchmark execution. Three types of
failures were injected: single GM failure, catastrophic GM failures (i.e., 1/2 of
GMs fail) and finally a GL failure.

The results of this evaluation are shown in Figure 4 and 5. As it can be
observed, apart from measurement errors neither in the MPI nor in the web-
based benchmarks any performance degradation can be observed. This is not
surprising as the heartbeat overhead is negligible (see Section 3.3). Moreover,
due to the ZooKeeper service supporting GL election process, the amount of
traffic in case of GL failure is low. Indeed, our leader election implementation
only requires to watch (i.e., small heartbeat messages) the predecessor nodes
(see Section 2.4). Similarly, the amount of data required for a GM to rejoin
the new GL is approximately 100 bytes (i.e., GM host, port and networking
information). Finally, in case of GM failures only small description information
(i.e., LC host, port and VM descriptions) needs to be transferred by LCs to the
current GL and the new GM thus not requiring substantial amounts of network
capacity. Consequently, no overhead of fault-tolerance can be observed.
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3.3 Scalability of the Framework

The network load scalability of the framework was evaluated by measuring the
network utilization at the GL, GM and LC. From these values we estimated the
upper bounds for the network load scalability of the framework. Therefore, to
isolate the heartbeat and monitoring traffic the framework was deployed with
one EP, GL, GM and LC. Heartbeat intervals of the GL as well as of the GM
were set to 3 seconds. Moreover, monitoring information summary was sent by
the GM and LC periodically in 10 second intervals. Accounting the monitoring
information is important as it is involved in the process of failure-detection (see
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Section 2.4). During all tests, the LC assignment policy as well as the VC
and VM scheduling policy were set to round robin thus resulting in a balanced
hierarchy in terms of LC assignments as well as VM locations.
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Figure 6: Network load scalability

Figure 6 depicts the correlated incoming and outgoing network traffic of the
GL, GM and LC. As it can be observed, the heartbeat multicast messages of
the GL only account to approximately 2.5 kB/s thus not putting any significant
pressure on the network. On the other hand, GL incoming traffic is mainly dom-
inated by the received GM monitoring summary information which amounts to
approximately 4.5 kB/s and is sent using TCP sockets. Given that the summary
information is of a fixed size and assumed a gigabit network interconnect, a GL
could handle approximately up to 140,000 of GMs until its network capacity
would become saturated. This theoretical upper bound is much higher than
what any existing deployment would need.

When considering the network load scalability of the GMs, heartbeats are
sent from the each GM to its LCs and vice versa. Analogously to the GL, GM
heartbeat messages are multicast based while LC monitoring information is
periodically sent using TCP sockets. For scalability and system design reasons,
only one TCP connection exists per LC to its assigned GM over which all
host, VM and heartbeat monitoring information is sequentially transmitted.
Thus when no VMs are active, still a fixed amount of data (i.e., heartbeat) is
periodically sent by each LC. This amount of data can be observed in Figure
6. Particularly, as the LC monitoring information is of the same structure as
the one from a GM, approximately 4.5 kB/s are arriving at the GM. Similarly,
the heartbeat information sent by the GM and GL is equivalent in terms of
size (i.e., ~2.5 kB/s). Putting all these facts together and making the same
assumptions about the network bandwidth, similar amount (i.e., ~140,000) of
LCs could be handled by each GM. Finally, when considering the network load
scalability upper bound of the GL as well as of the GMs, theoretically Snooze
would be able to manage up to 20 billions of compute nodes (i.e., LCs).

We now discuss the CPU and memory load scalability of the GL as well as of
the GMs. Figure 7 first presents the GL CPU and memory statistics obtained
during the distributed VM submission time evaluation (see paragraph 3.1).

We notice that there is a short spike in CPU load and memory usage at
the beginning of the experiment. Indeed the GL service needs to be started
first. Afterwards, the actual VC submission is started. After the boot period
the system settles at a fixed memory amount of approximately 327 MB (includ-
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Figure 7: GL CPU and memory during VM submission

ing OS services) which remains constant with the number of VMs submitted.
Similarly, small CPU load spikes can be clearly observed during periods of VM
submissions which are as well independent of the VMs amount and never exceed
10% of CPU utilization. Both results emphasize the good scalability of the GL.

In order to get more insights about the GL as well as GM scalability with
increasing amount of resources we have evaluated our system with varying num-
bers of GMs and LCs. In the first experiment, the amount of LCs was fixed
and the number of GMs was dynamically doubled every minute until 128 GMs
were researched. Same study was conducted with a single GM by increasing the
amount of LCs up to 128 and measuring the resulting overheads.

Figure 8 depicts the results from the first evaluation.

;\3 50 T T T T T T T T 400 g
- - o 4 350
c 40 R - 4 300 L
c P
£ 80 [ : 1250 @
8 ' 120 §
s 20 1180 2
S5 10 1 100 5
% 0 L I 1 1 1 ! 1 i 0 g
02:16 02:17 02:18 02:19 02:20 02:21 02:22 02:23 02:24 02:25
Time
CPU usage Memory usage -------

Figure 8: GL CPU and memory during VM submission

While the system scales well with respect to CPU utilization (i.e., small
spikes during GM joins), because GM summaries are stored in-memory, the
memory usage increases linearly with the number of GMs. Note, that this bot-
tleneck can be resolved by providing a different implementation for the reposi-
tory interface (e.g., based on Apache Cassandra [16]).

Figure 9 presents the results from the second experiment. Apart from a
similar repository bottleneck, the system shows good CPU load scalability with
increasing number of LCs.
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Figure 9: GM CPU and memory with increasing amount of LCs

4 Related Work

Several VM management frameworks such as OpenNebula [18], Nimbus [14],
Eucalyptus [20], and OpenStack [5] have been developed during the last years.
Thereby, as previously discussed in Section 1, the architectures of the first three
frameworks follow the traditional frontend /backend model and thus suffer from
limited scalability and SPOF.

Eucalyptus is the closest open-source system in terms of architecture. Similar
to the architecture of Snooze, a higher instance (i.e., cloud controller) oversees
the underlying cluster controllers. The cluster controllers on the other hand are
in charge of managing the compute resources each running a node controller.
However, unlike in Snooze where a group manager is designed to manage a subset
of each cluster, each cluster controller in Eucalyptus is designed to manage the
entire cluster thus making it suffer from SPOF. Moreover, Eucalyptus does
not include any self-healing features and strictly distinguishes between cloud
and cluster controllers (i.e., static hierarchy) while Snooze follows a more self-
organizing approach in which each group manager (GM) is promoted to a group
leader (GL) dynamically during the leader election procedure and upon GL
failure detection. In addition, cluster controllers of Eucalyptus do not support
VM resource (i.e., CPU utilization, memory and network) monitoring. Thus
they are limited to simple static VM scheduling policies (e.g., greedy, round
robin). On the contrary, in Snooze each GM is designed to periodically receive
VM resource usage information from the local controllers (LCs).

Recently in [23] a more distributed peer-to-peer (P2P) based VM schedul-
ing approach is introduced. However, this work is still in very early stages
as it is limited to a single load balancing policy and no evaluation regarding
its scalability and fault-tolerance aspects is performed. Finally, only limited
simulation-based results are presented. Another VM management framework
based on a P2P network of nodes is presented in [22]. The nodes are organized
in a ring and scheduling is performed iteratively upon underload and overload
events triggered by the nodes. However, neither the overhead of maintaining
the ring structure nor the scalability and fault-tolerance aspects are discussed.
Similarly to the previous work only preliminary simulation-based results target-
ing the scheduling time are presented. In contrast to these two works, nodes
in Snooze are dynamically organized in a self-healing hierarchical architecture.
This allows it to scale with the increasing number of nodes (i.e., GL does not
require global knowledge) as well as to provide the required fault-tolerance prop-
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erties without the need to rely on P2P technology. In fact, our experimental
results show that a lightweight approach taken in our work is sufficient in or-
der to provide scalability and fault-tolerance properties for data center sizes
which go beyond existing deployments. Moreover, Snooze is a working imple-
mentation which provides most of the features (i.e., client interface, support for
different scheduling policies, virtual network management, etc) required for it to
be called a management framework. Last but not least, it is evaluated in a real
environment and shown to be scalable and fault-tolerant. Still, it is clear that
the scalability of our system is bounded by its GL which acts as a fault-tolerant
lightweight central point. Despite the fact that GL can be replicated and a
load balancing layer can be added to improve its scalability, when developed
and evaluated, fully decentralized P2P-based systems could turn out to be even
more scalable alternatives.

Besides the existing VM management frameworks, more generic frameworks
targeting scalability and fault-tolerance issues in distributed systems have been
proposed in the past. Particularly, the hierarchical layer of Snooze is inspired
from the idea introduced in the Hasthi [21] framework which takes a hierarchical
self-stabilizing approach for managing large-scale distributed systems. Through
simulations the authors show that their system is able to scale up to 100,000
resources. Contrary to Hasthi whose design is presented to be system agnostic
and utilizes a distributed hash table (DHT) based peer-to-peer (P2P) network,
Snooze follows a simpler design and does not require the use of P2P technology.
Moreover, it targets virtualized platforms and thus its design and implementa-
tion is driven by the platform specific objectives and issues. Finally, Snooze has
a working implementation which is evaluated in a real environment. Similarly
to Hasthi our system is shown to achieve excellent scalability.

Another system based on a hierarchical architecture is called DIET [10].
However, DIET implements the GridRPC programming model while Snooze
targets VM management. Consequently, both frameworks are orthogonal. For
example, virtual resources of Snooze can be used by the DIET framework in
order to perform computation tasks.

5 Conclusions and Future Work

In this paper, we have presented a novel scalable and fault-tolerant VM man-
agement framework called Snooze. Unlike the previous open-source virtual in-
frastructure managers, Snooze employs a self-organizing hierarchy in which the
VM management tasks are distributed across multiple self-healing group man-
agers (GMs) with each GM having only a partial view of the system. Thereby,
each GM is only in charge of managing a subset of the compute nodes (i.e.,
local controllers (LCs)). Moreover, a group leader (GL) dispatches VM submis-
sion requests and handles the VM networking. This allows our framework to
stay highly scalable as the GL does not require any global system knowledge.
In addition, the GL facilitates the system management by playing the role of a
fault-tolerant coordinator. Such a coordination helps keeping the design and im-
plementation simple. Finally, to the best of our knowledge this is the first work
to analyze the load scalability and fault-tolerance of an IaaS-cloud computing
framework in a real environment.

Our extensive evaluation conducted on the Grid’5000 experimental testbed
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has shown that: (1) submission time is not impacted by performing distributed
VM management, (2) systems fault-tolerance properties do not impact applica-
tion performance and finally (3) the system scales well with increasing number
of resources thus making it suitable for managing large-scale virtualized data
centers. Finally, thanks to the integrated VM monitoring and resource demand
estimation support as well as the generic scheduling engine, the system is well
suitable as a research testbed to design, implement and evaluate advanced VM
placement policies in a real environment.

In the future, we plan to conduct a performance comparison of Snooze with
existing open-source cloud management frameworks. Recent evaluating efforts
(e.g., [25], [24]) mainly focus on the functional aspects. Moreover, the system
will be made even more autonomic by removing the distinction between GMs
and LCs. Consequently, the decisions when a node should play the role of GM
or LC in the hierarchy will be taken by the framework instead of the system
administrator upon configuration. In addition, we will improve the scalability of
the database and GL. Particularly, current in-memory repository implementa-
tion will be replaced by a distributed NoSQL database (i.e., Apache Cassandra).
Scalability of the GL will be improved by adding replication and additional load
balancing layer. Finally, the NFS-based VM image storage will be replaced by
a distributed file system (e.g., BlobSeer [19]).

Another important aspect of our work is power management. Snooze already
has experimental support for power management and VM consolidation which
will be evaluated along with the integration of our recently proposed nature-
inspired VM placement algorithm [11] in the near future. Ultimately, Snooze
will become an open-source project.
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