Generating a Minimal Interval Arithmetic Based on GNU MPFR

Vincent Lefèvre 1
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : Searching for the hardest-to-round cases for the correct rounding of some function f on an interval I in a fixed precision can be done efficiently by first approximating the considered function by a polynomial, on which specific algorithms are then applied. One also needs to determine an enclosure of the range f(I), more precisely the exponent range. Our implementation currently uses Maple and the intpakX interval arithmetic package in order to compute both the exponent range and the polynomial approximation. But Maple/intpakX has various drawbacks. The GNU MPFR library has since been available and could be used for our computations in arbitrary precision. But we need an interval arithmetic on top of it. As reliability matters more than performance in this context, we seek to implement a minimal interval arithmetic by generating code on the fly using MPFR. The implementation should be as simple as possible so that it could easily be checked and/or proved formally.
Type de document :
Communication dans un congrès
Isaac E. Elishakoff and Vladik Kreinovich and Wolfram Luther and Evgenija D. Popova. Uncertainty modeling and analysis with intervals: Foundations, tools, applications (Dagstuhl Seminar 11371), Sep 2011, Dagstuhl, Germany. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 1, pp.43, 2011, Dagstuhl Reports. 〈10.4230/DagRep.1.9.26〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00651939
Contributeur : Vincent Lefèvre <>
Soumis le : mercredi 14 décembre 2011 - 15:32:23
Dernière modification le : vendredi 29 septembre 2017 - 13:44:03

Identifiants

Collections

Citation

Vincent Lefèvre. Generating a Minimal Interval Arithmetic Based on GNU MPFR. Isaac E. Elishakoff and Vladik Kreinovich and Wolfram Luther and Evgenija D. Popova. Uncertainty modeling and analysis with intervals: Foundations, tools, applications (Dagstuhl Seminar 11371), Sep 2011, Dagstuhl, Germany. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 1, pp.43, 2011, Dagstuhl Reports. 〈10.4230/DagRep.1.9.26〉. 〈hal-00651939〉

Partager

Métriques

Consultations de la notice

199