R. Baldacci and M. Boschetti, A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem, European Journal of Operational Research, vol.183, issue.3, pp.1136-1149, 2007.
DOI : 10.1016/j.ejor.2005.11.060

J. Beasley, Algorithms for Unconstrained Two-Dimensional Guillotine Cutting, Journal of the Operational Research Society, vol.36, issue.4, pp.297-306, 1985.
DOI : 10.1057/jors.1985.51

J. Beasley, An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure, Operations Research, vol.33, issue.1, pp.49-64, 1985.
DOI : 10.1287/opre.33.1.49

J. Beasley and A. Mingozzi, A new formulation for the two-dimensional orthogonal cutting problem, Tech. rep, 1996.

N. Beldiceanu and M. Carlsson, New filtering for the cumulative constraint in the context of non-overlapping rectangles, In: Lecture Notes in Computer Science, vol.08, issue.5015, pp.21-25, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00481541

N. Beldiceanu, M. Carlsson, and S. Thiel, Sweep synchronization as a global propagation mechanism, Computers & Operations Research, vol.33, issue.10, pp.2835-2851, 2006.
DOI : 10.1016/j.cor.2005.01.013

G. Below and G. Scheithauer, Lower-dimensional bounds and a new model for higher-dimensional orthogonal packing, 2008.

A. Caprara and M. Monaci, On the two-dimensional Knapsack Problem, Operations Research Letters, vol.32, issue.1, pp.5-14, 2004.
DOI : 10.1016/S0167-6377(03)00057-9

J. Carlier and E. Néron, A new LP-based lower bound for the cumulative scheduling problem, European Journal of Operational Research, vol.127, issue.2, pp.363-382, 2000.
DOI : 10.1016/S0377-2217(99)00494-4

C. Chen, S. Lee, and Q. Shen, An analytical model for the container loading problem, European Journal of Operational Research, vol.80, issue.1, pp.68-76, 1995.
DOI : 10.1016/0377-2217(94)00002-T

N. Christofides and E. Hadjiconstantinou, An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts, European Journal of Operational Research, vol.83, issue.1, pp.21-38, 1995.
DOI : 10.1016/0377-2217(93)E0277-5

N. Christofides and C. Whitlock, An Algorithm for Two-Dimensional Cutting Problems, Operations Research, vol.25, issue.1, pp.30-44, 1977.
DOI : 10.1287/opre.25.1.30

F. Clautiaux, J. Carlier, and A. Moukrim, A new exact method for the two-dimensional orthogonal packing problem, European Journal of Operational Research, vol.183, issue.3, pp.1196-1211, 2007.
DOI : 10.1016/j.ejor.2005.12.048

F. Clautiaux, C. Alves, and J. De-carvalho, A survey of dual-feasible and superadditive functions, Annals of Operations Research, vol.183, issue.6, 2008.
DOI : 10.1007/s10479-008-0453-8

URL : https://hal.archives-ouvertes.fr/inria-00522674

F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim, A new constraint programming approach for the orthogonal packing problem, Computers & Operations Research, vol.35, issue.3, pp.944-959, 2008.
DOI : 10.1016/j.cor.2006.05.012

URL : https://hal.archives-ouvertes.fr/hal-01378284

H. Dyckhoff, A typology of cutting and packing problems, European Journal of Operational Research, vol.44, issue.2, pp.145-159, 1990.
DOI : 10.1016/0377-2217(90)90350-K

S. Fekete and J. Schepers, New Classes of Lower Bounds for Bin Packing Problems, Mathematical Programming, vol.91, pp.11-31, 2001.
DOI : 10.1007/3-540-69346-7_20

S. Fekete and J. Schepers, A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing, Mathematics of Operations Research, vol.29, issue.2, pp.353-368, 2004.
DOI : 10.1287/moor.1030.0079

S. Fekete, J. Schepers, and J. Van-der-veen, An Exact Algorithm for Higher-Dimensional Orthogonal Packing, Operations Research, vol.55, issue.3, pp.569-587, 2007.
DOI : 10.1287/opre.1060.0369

URL : http://arxiv.org/abs/cs/0604045

E. Ferreira and J. Oliveira, Fekete and Schepers??? Graph-based Algorithm for the Two-Dimensional Orthogonal Packing Problem Revisited, 2008.
DOI : 10.1007/978-3-8349-9777-7_2

M. Garey and D. Johnson, Computers and intractability: A guide to the theory of np-completeness, 1979.

L. Mercier and P. Hentenryck, Edge Finding for Cumulative Scheduling, INFORMS Journal on Computing, vol.20, issue.1, pp.143-153, 2008.
DOI : 10.1287/ijoc.1070.0226

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Onodera, Y. Taniguchi, and K. Tamaru, Branch-and-bound placement for building block layout, pp.28-433, 1991.
DOI : 10.1145/127601.127708

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Padberg, Packing small boxes into a big box, Mathematical Methods of Operations Research (ZOR), vol.52, issue.1, pp.1-21, 2000.
DOI : 10.1007/s001860000066

D. Pisinger and M. Sigurd, Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem, INFORMS Journal on Computing, vol.19, issue.1, pp.36-51, 2007.
DOI : 10.1287/ijoc.1060.0181

G. Wäscher, H. Haubner, and H. Schuman, An improved typology of cutting and packing problems, European Journal of Operational Research, vol.183, issue.3, pp.1109-1130, 2007.
DOI : 10.1016/j.ejor.2005.12.047