Non-negative Matrix Factorization in Multimodality Data for Segmentation and Label Prediction

Zeynep Akata 1 Christian Thurau 2 Christian Bauckhage 2
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : With the increasing availability of annotated multimedia data on the Internet, techniques are in demand that allow for a principled joint processing of different types of data. Multiview learning and multiview clustering attempt to identify latent components in different features spaces in a simultaneous manner. The resulting basis vectors or centroids faithfully represent the different views on the data but are implicitly coupled and they were jointly estimated. This opens new avenues to problems such as label prediction, image retrieval, or semantic grouping. In this paper, we present a new model for multiview clustering that extends traditional non-negative matrix factorization to the joint factorization of different data matrices. Accordingly, the technique provides a new approach to the joint treatment of image parts and attributes. First experiments in image segmentation and multiview clustering of image features and image labels show promising results and indicate that the proposed method offers a common framework for image analysis on different levels of abstraction.
Type de document :
Communication dans un congrès
Andreas Wendel and Sabine Sternig and Martin Godec. 16th Computer Vision Winter Workshop, Feb 2011, Mitterberg, Austria. 2011, 〈http://cvww2011.icg.tugraz.at/papers_web/p06.pdf〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00652879
Contributeur : Zeynep Akata <>
Soumis le : vendredi 16 décembre 2011 - 15:01:57
Dernière modification le : jeudi 11 janvier 2018 - 06:21:56
Document(s) archivé(s) le : samedi 17 mars 2012 - 02:43:19

Fichier

CVWW.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00652879, version 1

Collections

Citation

Zeynep Akata, Christian Thurau, Christian Bauckhage. Non-negative Matrix Factorization in Multimodality Data for Segmentation and Label Prediction. Andreas Wendel and Sabine Sternig and Martin Godec. 16th Computer Vision Winter Workshop, Feb 2011, Mitterberg, Austria. 2011, 〈http://cvww2011.icg.tugraz.at/papers_web/p06.pdf〉. 〈hal-00652879〉

Partager

Métriques

Consultations de la notice

2791

Téléchargements de fichiers

1385