Construction of conservative PkPm space-time residual discretizations for conservation laws I : theoretical aspects

Abstract : This paper deals with the construction of conservative high order and positivity preserving schemes for nonlinear hyperbolic conservation laws. In particular, we consider space-time Petrov-Galerkin discretizations inspired by residual distribution ideas and based on a PkPm polynomial approximations in space-time. The approximation is continuous in space and discontinuous in time so that one single space-time slab at the time can be dealt with. We show constructions involving linear high order and nonlinear schemes. Principles borrowed from the residual distribution approach, such as multidimensional upwinding and positivity preservation, are used to construct the Petrov-Galerkin test functions. The numerical results on one dimensional linear and nonlinear conservation laws show that higher accuracy and positivity are obtained uniformly with respect to the physical CFL number.
Type de document :
Rapport
[Research Report] RR-7843, INRIA. 2011
Liste complète des métadonnées

https://hal.inria.fr/hal-00653030
Contributeur : Mario Ricchiuto <>
Soumis le : samedi 17 décembre 2011 - 16:57:54
Dernière modification le : jeudi 5 avril 2018 - 12:30:04
Document(s) archivé(s) le : jeudi 30 mars 2017 - 20:52:55

Fichier

RR-7843.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00653030, version 2

Citation

Adam Larat, Mario Ricchiuto. Construction of conservative PkPm space-time residual discretizations for conservation laws I : theoretical aspects. [Research Report] RR-7843, INRIA. 2011. 〈hal-00653030v2〉

Partager

Métriques

Consultations de la notice

666

Téléchargements de fichiers

187