
HAL Id: hal-00653367
https://inria.hal.science/hal-00653367

Submitted on 19 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally verified optimizing compilation in ACG-based
flight control software

Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, Jean Souyris

To cite this version:
Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc Pantel, et al.. Formally
verified optimizing compilation in ACG-based flight control software. ERTS2 2012: Embedded Real
Time Software and Systems, AAAF, SEE, Feb 2012, Toulouse, France. �hal-00653367�

https://inria.hal.science/hal-00653367
https://hal.archives-ouvertes.fr

Formally verified optimizing compilation in ACG-based flight control software

Ricardo Bedin França∗†, Sandrine Blazy‡, Denis Favre-Felix∗, Xavier Leroy§, Marc Pantel† and Jean Souyris∗

∗AIRBUS Operations SAS

316 Route de Bayonne, Toulouse, France

{ricardo.bedin-franca,denis.favre-felix,jean.souyris}@airbus.com
†Institut de Recherche en Informatique de Toulouse

2 Rue Charles Camichel, Toulouse, France

{ricardo.bedinfranca,marc.pantel}@enseeiht.fr
‡IRISA - Université de Rennes 1

Campus de Beaulieu, Rennes, France

sandrine.blazy@irisa.fr
§ INRIA Rocquencourt

Domaine de Voluceau, Le Chesnay, France

xavier.leroy@inria.fr

Abstract—This work presents an evaluation of the CompCert
formally specified and verified optimizing compiler for the
development of DO-178 level A flight control software. First,
some fundamental characteristics of flight control software
are presented and the case study program is described.
Then, the use of CompCert is justified: its main point is to
allow optimized code generation by relying on the formal
proof of correctness and additional compilation information
instead of the current un-optimized generation required to
produce predictable assembly code patterns. The evaluation
of its performance (measured using WCET and code size) is
presented and the results are compared to those obtained with
the currently used compiler.

Keywords-Safety critical systems, Optimized code generation,
Toolset performance evaluation

I. INTRODUCTION

Flight Control Software (FCS) development is a very

challenging task: not only it has the typical constraints of

other software projects, such as budget, delivery schedule

and available hardware, but also those that apply to hard real-

time, safety-critical software. There are specific regulations

for the avionics domain - in particular, the DO-178/ED12 [1]

that enforce rigorous development of embedded software in

avionics systems.

In this context, it is not trivial to develop software that can

perform optimally while complying with all requirements.

This paper focuses on the compilation, which is a very

important step in the generation of good performance critical

software: compilers are very complex tools that carry out

the delicate task of generating low-level code that behaves

exactly as expected from the high-level source code. Thus,

the compiler has clear influence over software performance

and safety, but it is commonly developed by third parties

(Commercial Off-The-Shelf “COTS” software) and are not

necessarily oriented towards the needs of avionics software.

We present experiments carried out by Airbus with the use

of a formally-verified compiler, CompCert, in flight control

software development. The goal of these experiments is to

evaluate its performance in a realistic environment, with

software modules similar to actual FCS ones and the same

development and verification tools as real FCS. This paper

extends the performance evaluation presented in [2], using

a new version of CompCert that includes an annotation

mechanism (for traceability and timing analysis purposes)

and using more criteria to compare a CompCert-based

development with the currently used approach. This paper

compares Worst-Case Execution Times (WCET) taking into

account the size and function of the modules.

The paper is structured as follows: Section II presents the

fundamentals of flight control software development and the

method we use to assess software performance. Section III

presents the CompCert compiler and its features that led to

its choice for this work. Section IV presents the results of

its performance evaluation and Section V draws conclusions

and research perspectives.

II. FLIGHT CONTROL SOFTWARE, COMPILERS AND

PERFORMANCE

A. An Overview of Flight Control Software

While older airplanes had only mechanical, direct links

between the pilots’ inputs and their actuators, modern air-

craft rely on computers and electric connections to transmit

these inputs. As Traverse and Brière [3] describe, digital,

electrical flight control systems are used on all aircraft

control surfaces since the development of the Airbus A320.

Hardware and software used in flight control systems

are subject to very strict requirements, just as any other

component. Every kind of avionics software is subject to

the DO-178 (currently, version B) regulations, and the DO-

178B guidelines become more numerous and more stringent

according to the criticality of a given software program. The

correct operation of flight control software is essential to a

safe flight, hence they belong to “software level A” and their

planning, development, verification and project management

must comply with very strict regulations.

In addition, aircraft manufacturers usually have their own

internal development constraints, ranging from additional

safety considerations (e.g. dissymetry and redundancy) to

industrial ones, such as delivery delays.

B. The Case Study

In order to carry out a realistic study, we have chosen

to use a case study that closely resembles actual flight

control software: not only the source code is representative

(in functionalities and size) of flight control laws, but the

target computer is also representative of true flight control

hardware, so as to illustrate typical constraints on hardware

usage. The hardware and software used in this work are

similar to those described in [4]: the relevant hardware in the

scope of this work comprises the MPC755 microprocessor,

and an external RAM memory. The MPC755 is a single-core

microprocessor, which is much less complex than modern

multi-core ones but does have pipelines, an internal cache

and superscalar architecture, three elements that make its

behavior less predictable. Naive timing analysis of this mi-

croprocessor could lead to the “timing anomalies” described

by Lundqvist and Stenström [5].

It must be noted that the choices of hardware and software

are led by a combination of factors – besides performance

needs, there are other constraints, such as weight, size, power

dissipation, cost and – most importantly in the scope of this

paper – verifiability. Thus, choosing the MPC755 for this

case study is consistent with flight control systems of mod-

ern aircraft. The development process described below also

reflects the intent of developing deterministic and verifiable

software.

The development described in the next paragraphs follows

the basic steps that are recommended by the DO-178B: spec-

ification, design, coding/integration and verification. One

must take into account, though, that specification and design

are treated together, due to the highly detailed software

specification.

1) Specification and Design: The largest part of the

software program – the “application” subset, which contains

the implementation of the flight control laws – is specified

as a set of sheets with the graphical formalism SCADE,

each sheet being composed of interconnected basic operators

(addition, filter, etc). There is no “main sheet”: they all

belong to the same hierarchical level and they communicate

via their input and output parameters. In order to simplify the

specification and the code generation, all the symbols used

in the sheets are custom-made by the developers. SCADE

(V6) state machines are not used, mainly for determinism

purposes – conditional statements are kept inside some

library symbols.

Figure 1 depicts instances of the custom-made symbols

ABS, HWACQDSI, BPO and AFDX FSOUT. Each symbol

has inputs and outputs, which are connected to their left and

right sides, respectively. At the bottom of the HWACQDSI

and AFDX FSOUT symbols, there are some “hidden in-

puts”, which have the same semantics as a normal input but

are used to underline symbol parameters (in our example,

integer constants) that are not related to the data flow.

Figure 1. SCADE custom-made operators

The program also contains a manually-coded part that

goes through distinct specification and design phases, but

further details about this part are beyond the scope of this

paper, as it makes no use of automatic code generation.

2) Coding: The specification is translated to source code

by an automatic code generator (ACG). Automatic code

generation, when applicable, has the advantages of being

less error-prone and offering much smaller coding times than

manual code generation. In order to lighten the burden of

source code verification activities, the ACG is qualified as a

development tool, according to the DO-178B standards for

level A software.

In this study, we use C as a source code language, as it

is widely used in critical systems and there are many devel-

opment and verification tools for C-coded critical systems.

Each symbol is represented in C as a macro: a “symbol

library” (a set of macros) is manually coded in order to

implement each SCADE operator, and the ACG-generated

code consists in a sequence of macro instantiations that

respect the data flow specified in SCADE. A SCADE sheet

is represented by a C function that contains a sequence of

macro instantiations – all the data-flow constraints are taken

into account by the ACG in order to make sequential C

programs that are consistent with the parallel SCADE ones.

It must be noted that all the sheets are activated periodically,

but their activation period may vary. Thus, the execution

cycle is divided into several sequential “tasks” and each

sheet may be activated in one or more tasks during a cycle.

The C code is finally compiled with a COTS compiler1

and linked to produce an executable file. It must be noted

that the compiler – like the vast majority of compilers

industrially used – is seen as a “black box” by the de-

velopment and verification teams. In this case, the object

code must be verified thoroughly, and the safest solution

to carry out a complete verification taking into account the

use of a COTS compiler and the high reactivity of the

ACG process is to forbid compiler optimizations in order

to force the generation of constant code patterns for each

symbol. As our ACG-generated code is a (potentially long)

sequence of a limited number of symbols and the symbol

library code changes much less often than the application

in actual flight control programs, it is less onerous to carry

out thorough verification activities over each possible code

pattern for this symbols than verifying all code “sheets” in

each compilation.

3) Verification: Every development phase must be veri-

fied and this verification must meet the DO-178B require-

ments. As this paper focuses on the compilation, we shall

describe the main activities that verify software coding and

integration:

• Source Code Verification: The source code must be

traceable and compliant to the design (in our case,

the SCADE specification). Also, it must respect the

software resource and time constraints.

• Object Code Verification: Object code also must be

traceable and compliant to the SCADE specification

and the integration of software modules, as well as their

integration with the target computer, must be verified.

The DO-178B demands requirement-based verification: a

program must be verified with respect to its high-level and

low-level requirements. In this paper, we suppose that low-

level verification is carried out at symbol level (e.g. tests

and/or formal proofs of symbol outputs), hence the compiler

must not optimize away the symbol outputs, even if they are,

indeed, intermediate results of a function.

Usually, these verification activities (especially object

code verification) involve testing. For level A software, the

whole code must be tested with Multiple Condition/Decision

Coverage (MC/DC) and traceability between source code

and object code is necessary to validate code coverage:

• If coverage is measured over the source code, trace-

ability is necessary to ensure that there is no added,

unverified functionality in the object code. Typical

cases of “added, unverified” functionalities could be

found in compilers that add array bound checks or that

have a complex management for switch statements.

1For confidentiality reasons, the currently used compiler, linker and
loader names are omitted.

• The DO-178B report for clarification [6] states that if

coverage is measured over the object code, traceability

is necessary to ensure that the measured coverage

is equivalent to MC/DC, as the object code (such

as Assembly language) may not contain the multiple

conditions found in the source code.

Traceability analysis is much less complicated if the

object code presents no optimization and no untraceable

code added by the compiler. Once again, it is useful to hinder

compiler optimizations in order to simplify the verification

activities.

C. Estimating Software Performance

Besides being a DO-178B requirement, Worst-Case Exe-

cution Time (WCET) analysis is a safe and reliable timing

verification in the avionics software context. Hardware and

software complexity make the search for an exact WCET

nearly impossible; usually one computes time values which

are as close as possible to the actual WCET, but always

higher than it. In our case study, the main purpose of WCET

analysis is to make sure that no application task oversteps

its allowed execution time.

As mentioned by Souyris et al [4], it was once possible

to compute the WCET of avionics software by measurement

and analysis, but such method is not feasible in state-of-

the-art programs. The current approach at Airbus relies on

AbsInt2’s automated tool a3 [7] to compute the WCET

via static code analysis of the executable file. In order to

obtain accurate results, the tool requires a precise model

of the microprocessor and other relevant components; this

model was designed in close cooperation between Airbus

and AbsInt.

Sometimes it is important or even essential to give a3

extra information about loop counts or register value bounds

to refine its analysis. As described in [4], annotations are

necessary when memory access address ranges cannot be

computed precisely because of limitations in a3 value anal-

ysis (e.g. floating-point). The imprecisions that arise from

such limitations degrade WCET analysis and can go as far

as stopping a3 from completing WCET computation. Such

a situation is depicted in Algorithm 1: as a3 is not yet

able to carry out the floating-point comparison, it cannot

evaluate the range of addresses that may be accessed in line

6. In this case, a3 has to continue its computation assuming

that the access might occur in any memory address, and

the great deal of complexity that is added incurs a strongly

overestimated – if not unbounded – WCET. For instance, if

it is known that variable i is always within the bounds of

the array, this information should be provided to a3 as an

annotation.

In our case, annotations are needed only in a few symbols,

so as to compute some addresses more precisely – with a3,

2www.absint.com

Algorithm 1 Example of a code that needs annotations

1: register double x; // Assume that x fits

2: // inside the array bounds

3: register int i;

4: extern double lookup table[];

5: i = (int)x;

6: register double y = lookup table[i];

this kind of annotation can be assigned only to micropro-

cessor registers, which are depicted in the Assembly code.

Let us assume that Algorithm 1 is part of the C macro

of a symbol and that its corresponding (non-optimized)

Assembly code is depicted by Algorithm 2. One can notice

that the C variable i is stored in r31, since it is loaded with

the resulting value of the floating-point to integer conversion.

Thus, if we know that i is always between, say, 0 and 9, the

annotation should be:

instruction "Checkpoint" + 0x14 bytes

is entered with r31 = from 0 to 9;

In order to keep the fast pace of the ACG-based approach

(and avoid potential human mistakes), an automatic anno-

tation generator was devised to avoid manual activities and

keep the efficiency of the development process. Each symbol

that needs annotations will need them repeatedly for all of

its instances, but it is not difficult to annotate automatically

the correct Assembly lines with a non-optimized compilation

that always generates similar code patterns for all instances

of the symbol. Whenever the macro containing Algorithm

1 is instantiated, an annotation would be needed at the

same offset 0x14 from the tag Checkpoint. Thus, one has to

track the possible code patterns for the symbols that need

annotations (to make sure that subtle variations in the code

patterns do not change the offset of the instruction that needs

an annotation) and find the right offsets to assign those value

ranges. This annotation strategy is simple and effective, but

would not work if the compiler could optimize the code.

Algorithm 2 Example of a loop that needs annotations

Checkpoint:

00 fctiwz f0,f31

04 stfd f0,8(r1)

08 lwz r31,12(r1) ⊲ a3 cannot infer this value

0c addis r11,r0,lookup table@ha

10 addi r11,r11,lookup table@l

14 rlwinm r10,r31,3,0,28 ⊲ we should help a3 here

18 lfdx f30,r11,r10

Annotations are also used in the manually-coded subsets

in order to specify – for instance – the behavior of other

hardware components, but those are created manually and

are not in the scope of this paper.

III. COMPCERT: TOWARDS A TRUSTED COMPILER

One can figure out that, in extremely critical systems,

traditional COTS compilers must be used with great caution

with respect to code optimization. However, there are recent

advances in the compilation field: in the scope of this work,

a most promising development is the CompCert3 compiler.

Besides working in a more realistic environment (a large C

subset as input language, MPC755 as one of the possible

target processors) than other experimental compilers, its

development is taking into account the needs of critical

systems and its own code is available for study if its end

users need to know its internal details in order to devise

verification strategies for their software.

As described in [8], CompCert is a multiple-pass,

moderately-optimizing compiler that is mostly programmed

and proved correct using the Coq proof assistant. Its op-

timizations are not very aggressive, though: as the com-

piler’s main purpose is to be “trustworthy”, it carries out

basic optimizations such as constant propagation, common

subexpression elimination and register allocation by graph

coloring, but no loop optimizations, for instance. As no code

optimizations are enabled in the currently used compiler,

using a few essential optimization options could already give

good performance benefits.

The semantic preservation proof of CompCert guaran-

tees that the generated code behaves as prescribed by the

semantics of the source program. The observed behaviors

in CompCert include termination, divergence and “going

wrong”. To strengthen the preservation theorem, behaviors

also include a trace of the input-output operations performed

during the execution of the program. Input-output operations

include system calls (if an operating system is used) as well

as memory accesses to global variables declared “volatile”

(corresponding in particular to memory-mapped hardware

devices). The formal verification of CompCert proves, in

effect, that the source program and the generated machine

code perform the same input-output operations, in the same

order, and with the same arguments and results.

A. CompCert annotation mechanism

To strengthen the guarantees implied by CompCert’s

formal verification, we have introduced a generic program

annotation mechanism enabling programmers to mark source

program points and keep track of the values of local vari-

ables at these points. Syntactically, annotations are presented

as calls to a compiler built-in function, taking a string literal

and zero, one or several program variables as arguments:

__builtin_annot("x is %1 and y is %2", x, y);

The formal semantics of this statement is that of a pro

forma “print” statement: when executed, an observable event

is added to the trace of I/O operations; this event records

3http://compcert.inria.fr

the text of the annotation and the values of the argument

variables (here, x and y). In the generated machine code,

however, annotations produce no instructions, just an assem-

bler comment or debugging information consisting of the

text of the annotation where the escapes %1, %2 are replaced

by the actual locations (in registers or memory) where the

argument variables x, y were placed by the compiler. For

example, we obtain

annotation: x is r7 and y is mem(word,r1+16)

if x was allocated to register r7 and y was allocated to

a stack location at offset 16 from the stack pointer r1.

Despite executing no instructions, this special comment

is still treated, from the standpoint of formal semantics,

as a pro forma “print”, generating an observable event.

The semantic preservation proof of CompCert therefore

guarantees that annotations are executed in the same order

and with the same argument values both in the source C

program and in the generated assembly code.

A typical use of annotations is to track pieces of code

such as library symbols. We can put annotations at the

beginning and the end of every symbol, recording the

values of the arguments and result variables of the symbol.

The semantic preservation proof therefore guarantees that

symbols are entered and finished in the same order and

with the same arguments and results, both in the source and

generated codes. This ensures in particular that the compiler

did not reorder or otherwise alter the sequence of symbol

invocations present in the source program – a guarantee that

cannot be obtained by observing systems calls and volatile

memory accesses only.

This possibility of finer-grained semantic preservation is

most welcome, since some of our verification activities may

be carried out at symbol level and semantic preservation

needs to be ensured at this level to be useful in our context.

In particular, we consider using per-symbol annotations in

order to generalize the results of symbol-based tests: the

test results for a given symbol remain valid for all possible

code patterns generated when instantiating this symbol. This

approach is currently under discussion and such discussions

are not in the scope of this paper.

Another use of annotations is to communicate additional

information to verification tools that operate at the machine

code level, such as the WCET analyzer of the a3 tool suite.

Continuing the example of section II-C, we insert a source-

level annotation as shown below.

During compilation, this source-level annotation is turned

into a special comment in the generated assembly file, where

the placeholder %1 is replaced by the machine register

containing variable i. Algorithm 4 below shows the assembly

code generated by CompCert for two successive instantia-

tions of the symbol containing Algorithm 3.

The two instantiations generate significantly different as-

sembly code fragments, since the second instantiation reuses

Algorithm 3 Adding a source-level annotation to Algo-

rithm 1

register double x;

register int i;

extern double lookup table[];

i = (int)x;

builtin annot(”a3: entered with %1 = from 0 to 9”, i);

register double y = lookup table[i];

Algorithm 4 Generated assembly code for two instantiations

10 fctiwz f13, f1

14 stfdu f13, -8(r1)

18 lwz r3, 4(r1)

1c addi r1, r1, r8

20 # annotation: a3: entered with r3 = from 0 to 9

20 rlwinm r4, r3, 3, 0, 28

24 addis r12, r4, (lookup table)@ha

28 lfd f1, (lookup table)@l(r12)

. . .

40 # annotation: a3: entered with r3 = from 0 to 9

20 rlwinm r6, r3, 3, 0, 28

44 addis r12, r6, (lookup table)@ha

48 lfd f2, (lookup table)@l(r12)

some of the intermediate results computed by the first instan-

tiation (common subexpression elimination). Nonetheless,

the two special comments corresponding to the source-

level annotation are correctly placed and correctly reveal the

location of variable i, namely registre r3.

From these special comments and their locations in the

assembly listing, an automatic tool can easily extract the

information that at points 20 and 40 from the beginning of

the current function, register r3 (holding the array index) is

in the range [0, 9], and communicate this information to the

WCET analyzer.

Some aspects of this annotation mechanism are still under

discussion with the CompCert and a3 developers, but an

experimental annotation generator has already been devel-

oped and the ease of its development is a testimony to the

usefulness of the CompCert annotation mechanism: readily-

available, formally-verified variable information simplify the

task of automating annotation generation for a3. One should

remember that, in comparison, the annotation generator for

the “default” compiler code must be reconfigured for each

symbol library change: a new analysis must be carried out in

order to verify which are the possible Assembly patterns for

all symbols that need annotations, and which are the offsets

that need these annotations.

IV. PERFORMANCE EVALUATION OF COMPCERT

The evaluation environment is essentially the same as in

our previous work [2] and is depicted in Figure 2. CompCert

is used only to generate Assembly code from the ACG-coded

files, as these files are by far the most voluminous part of the

program. Compilation of other software subsets, assembling

and linking were done with the compiler, assembler and

linker that are used in actual FCS.

Figure 2. The development chain of the analyzed program

In order to ensure greater realism in the experiments,

about 3600 files that are functionally equivalent to a whole

flight control program were compiled with CompCert 1.9.

These files represent about 3600 SCADE sheets – when

compiled with the default compiler, they correspond to 3.96

MB of Assembly code. The symbol library that was used

comprises 145 symbols whose sizes vary from less than 10

to more than 100 lines of code. CompCert’s source-level

annotation mechanism was used to track symbols’ inputs

and outputs, and also to generate additional information for

some variables that need range annotations. As explained in

section III-A, this information is available in the generated

assembly files, which are examined by the annotation gen-

erator to produce an annotation file in the suitable format

for a3.

a3 was used to compute WCET at two different levels:

the most important benchmark is at task level, as it is

the measure used for timing analysis in actual programs.

While a traditional WCET analysis consists in verifying

that each task is performed within its allocated time, we

opted to compare the average WCET of all tasks in order

to have a synthesis of the results for every task. In addition,

we analyze individually the WCET of all SCADE sheets:

we do not seek interprocedural optimizations or a register

allocation that goes beyond one single module, hence indi-

vidual WCET computations are meaningful in this context

and are useful to find out which kind of algorithms get

the most of CompCert’s optimizations. The baseline for the

benchmark is the WCET of an executable file generated with

the default compiler and the compilation options used in a

real flight control program. Some analyzed sheets instantiate

symbols that need range annotations; CompCert’s annotation

mechanism was used together with a simple annotation

generation script to assign variable ranges for a3 when

needed. Figure 3 depicts the flow of annotation data, from

the C macros (where the necessary extra information is

specified by the user) to the execution of a3.

Figure 3. Automatic annotation generation for a3

In addition to WCET computations, code size measures

were carried out as an auxiliary performance indicator –

smaller code size often means better-performing code.

The results of the WCET analysis are quite encouraging,

as the average WCET improvement per task was 10.6%,

which is a significant improvement by flight control software

standards. As already pointed out in [2], this is mainly due

a better register allocation that saves many loads and stores

that had to be performed to keep symbol inputs and outputs

on stack.

Figure 4 depicts the WCET computed for all sheets,

ordering them according to the WCET obtained when they

were compiled with the default compiler. The WCET im-

provement may change from one region of the graph to

another (modules with a very low or very high WCET do

not always have a visible improvement, whereas CompCert

clearly improved the WCET of those in the middle part of

the curves) and even inside a region – the WCET curve for

CompCert-compiled modules is not smooth.

Figure 4. Overall result of WCET comparison

In order to refine the general results obtained by the

analysis of this large number of files, special attention was

dedicated to files that had extreme values of WCET and

code size. The 10% longest and shortest files (in WCET

or code size) had results that differed from the average and

had specific statistics in order to underline those differences.

In addition, some “unexpected” results (e.g. the default

compiler performing better than CompCert) were analyzed

individually.

The WCET of all analyzed modules was computed for

the executable files generated by both compilers, in order to

compare them when compiling modules of various WCET

and code size value ranges – using the benchmark WCETs

and code sizes to classify the modules into categories. The

main conclusions from these experiments are:

• In the analyzed program, even if a module is small,

there is usually some possibility of optimization but

results may vary according to the symbols that are

instantiated in a given module. Some symbols have

their code vastly improved by CompCert, whereas – in

some very exceptional cases – the WCET of a module

rises due to the overhead caused by longer function

prologues and epilogues. In fact, modules that present

very small code size are not quite a reliable source of

WCET analysis because even their address in memory

becomes a significant factor in WCET analysis.

• Sheets that are not among the fastest or slowest have

a slightly better WCET improvement than the overall

results. This shows that the optimizations work best

when there is enough code to enable their full use,

but the code is still compact enough to avoid register

spilling.

• A sheet can have a large WCET for two main reasons:

either it may have many instructions to execute or it

may contain interactions with hardware devices that are

time-consuming. In the former case, CompCert usu-

ally performs better, except when dealing with spilled

variables – the gains become less significant because

spilled variables resemble variables compiled with the

default compiler. CompCert optimizations can do little

or nothing to improve the WCET of a sheet if its

symbols spend most of their computation time doing

hardware acquisitions and emissions. In our case study,

it is more common to have interactions with hardware

than register spilling, hence the WCET gain over “long”

sheets (larger code size) is more pronounced than the

gain over “slow” ones (higher WCET).

• Even with its optimizations turned off, the default com-

piler sometimes succeeds in selecting more efficient

combinations of PowerPC instructions than CompCert.

An example is address computations for volatile mem-

ory accesses, which CompCert compiles rather naively.

We plan to improve the instruction selection phase of

CompCert to reduce these inefficiencies.

Table I summarizes the WCET analysis results.

WCET (CompCert) Size (CompCert)

All application tasks -10.6% -13.8%
Small code size sheets -2.0% -14.6%

Small WCET -10.6% -12.9%
Average WCET -12.6% -14.3%

Average code size -10.7% -13.6%
Large code size -7.7% -14.2%
Large WCET -3.8% -12.4%

Table I
CODE SIZE AND WCET COMPARISON

A. Verification considerations

Since the main reason to avoid most optimizing compilers

is the ensuing difficulty to verify traceability and compliance

of the object code, the performance evaluation was followed

by a study of possible verification strategies that could use

CompCert’s semantic preservation in order to meet the DO-

178B requirements without losing the performance gains

obtained with its optimizations. This study is currently under

way but it is already clear that the “traditional” analysis

mentioned in [6] to verify traceability between source code

and object code is still feasible with CompCert, as its

optimizations remove computational instructions but do not

change significantly the code structure (branches, etc). Also,

its semantic preservation theorem could be used as a strong

argument for traceability and compliance between source

code and object code.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an evaluation of the CompCert

compiler, based on the characteristics of Airbus flight control

software: ACG-based code, modules with different charac-

teristics. Even if we focused on its WCET analysis to assess

its performance, CompCert’s formal proofs are already seen

as a key to bring more confidence in the compilation process,

helping to make safe use of code optimizations. Moreover,

CompCert’s optimizations apply to the vast majority of the

modules that are representative of FCS.

The main ongoing work in our CompCert study is the

development of a new verification strategy that must be at

least as safe as the current one. It is a complex subject

on its own but some conclusions drawn from it (e.g. the

need for semantic preservation at symbol level) are already

being taken into account – as it is likely that we will need

semantic preservation at symbol input level, the performance

measures were taken using library symbols endowed with

CompCert’s annotations to preserve the semantics of their

inputs and outputs. An important discussion point is the DO-

178 interpretation of a tool like CompCert.

The performance evaluation shall not stop at the current

state. As the symbol library was coded bearing in mind

the current compilation strategy, an interesting work will be

recoding it in order to favor optimizing compilation, with

fewer intermediate variables and use of Small Data Areas.

It is likely that the obtained WCET will be lower and every

percent counts if one intends to improve performance.

Another direction for future work is to further improve

WCET by deploying additional optimizations in CompCert

and proving that they preserve semantics. The WCC project

of Falk et al [9] provides many examples of profitable

WCET-aware optimizations, often guided by the results of

WCET analysis. Proving directly the correctness of these

optimizations appears difficult. However, equivalent seman-

tic preservation guarantees can be achieved at lower proof

costs by verified translation validation, whereas each run

of a non-verified optimization is verified a posteriori by

a validator that is proved correct once and for all. For

example, Tristan and Leroy [10] show a verified validator

for trace scheduling (instruction scheduling over extended

basic blocks) that could probably be adapted to handle

WCC’s superblock optimizations. Rival has experimented

the translation validation approach on a wider scope in [11]

but, currently, the qualification and industrialization of such

a tool seems more complex.

REFERENCES

[1] DO-178B: Software Considerations in Airborne Systems and
Equipment Certification, Radio Technical Commission for
Aeronautics (RTCA) Std., 1982.

[2] R. B. França, D. Favre-Felix, X. Leroy, M. Pantel, and
J. Souyris, “Towards Formally Verified Optimizing Compi-
lation in Flight Control Software,” in PPES, ser. OASIcs,
vol. 18. Grenoble, France: Schloss Dagstuhl, 2011, pp. 59–
68.

[3] D. Brière and P. Traverse, “AIRBUS A320/A330/A340 Elec-
trical Flight Controls: A Family of Fault-Tolerant Systems,”
in FTCS, 1993, pp. 616–623.

[4] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu, and G. Borios,
“Computing the Worst Case Execution Time of an Avionics
Program by Abstract Interpretation,” in Proceedings of the

5th Intl Workshop on Worst-Case Execution Time (WCET)
Analysis, 2005, pp. 21–24.

[5] T. Lundqvist and P. Stenström, “Timing anomalies in dynam-
ically scheduled microprocessors,” in RTSS ’99: Proceedings
of the 20th IEEE Real-Time Systems Symposium. Washing-
ton, DC, USA: IEEE Computer Society, 1999, p. 12.

[6] Final Report for Clarification of DO-178B “Software Consid-
erations in Airborne Systems and Equipment Certification”,
Radio Technical Commission for Aeronautics (RTCA) Std.,
2001.

[7] R. Heckmann and C. Ferdinand, “Worst-case Execution Time
Prediction by Static Program Analysis,” in IPDPS 2004.
IEEE Computer Society, 2004, pp. 26–30.

[8] X. Leroy, “Formal verification of a realistic compiler,” Com-
munications of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[9] H. Falk and P. Lokuciejewski, “A compiler framework for the
reduction of worst-case execution times,” The International
Journal of Time-Critical Computing Systems (Real-Time Sys-
tems), vol. 46, no. 2, pp. 251–300, 2010.

[10] J.-B. Tristan and X. Leroy, “Formal verification of trans-
lation validators: A case study on instruction scheduling
optimizations,” in 35th symposium Principles of Programming
Languages. ACM Press, 2008, pp. 17–27.

[11] X. Rival, “Symbolic transfer functions-based approaches to
certified compilation,” in 31st Symposium Principles of Pro-
gramming Languages. ACM Press, 2004, pp. 1–13.

