R. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes processes. Lecture Notes-Monographs Series, 1990.

E. Alòs, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab, vol.29, issue.2, pp.766-801, 2001.

V. Bally, An elementary introduction to Malliavin calculus, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00071868

A. Benassi, S. Jaffard, and D. Roux, Elliptic gaussian random processes, Revista Matem??tica Iberoamericana, vol.13, issue.1, pp.19-90, 1997.
DOI : 10.4171/RMI/217

C. Bender, An It?? formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Processes and their Applications, pp.81-106, 2003.
DOI : 10.1016/S0304-4149(02)00212-0

C. Bender, An S -transform approach to integration with respect to a fractional Brownian motion, Bernoulli, vol.9, issue.6, pp.955-983, 2003.
DOI : 10.3150/bj/1072215197

F. Biagini, A. Sulem, B. Øksendal, and N. Wallner, An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion, Proc. Royal Society, special issue on stochastic analysis and applications, pp.347-372, 2004.
DOI : 10.1098/rspa.2003.1246

P. Billingsley, Convergence of probability measures Wiley Series in Probability and Statistics: Probability and Statistics, 1999.

B. Boufoussi, M. Dozzi, and R. Marty, Local time and Tanaka formula for a Volterra-type multifractional Gaussian process, Bernoulli, vol.16, issue.4, pp.1294-1311, 2010.
DOI : 10.3150/10-BEJ261

URL : https://hal.archives-ouvertes.fr/hal-00389740

S. Corlay, J. Lebovits, and J. L. Véhel, MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS, Mathematical Finance, vol.26, issue.2, 2012.
DOI : 10.1111/mafi.12024

URL : https://hal.archives-ouvertes.fr/hal-00653150

R. J. Elliott and J. Van-der-hoek, A General Fractional White Noise Theory And Applications To Finance, Mathematical Finance, vol.7, issue.2, pp.301-330, 2003.
DOI : 10.1023/A:1008634027843

T. Hida and M. Hitsuda, Gaussian processes, volume 120 of Translations of Mathematical Monographs, 1993.

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, 1957.
DOI : 10.1090/coll/031

C. Houdré and J. Villa, An example of infinite dimensional quasi-helix, Stochastic models, pp.195-201, 2002.
DOI : 10.1090/conm/336/06034

S. Janson, Gaussian Hilbert Spaces, volume 129 of Cambridge Tracts in Mathematics, 1997.

H. Kuo, White Noise Distribution Theory, 1996.

J. Lebovits and J. L. Véhel, White noise-based stochastic calculus with respect to multifractional Brownian motion, Stochastics An International Journal of Probability and Stochastic Processes, vol.55, issue.1, 2011.
DOI : 10.1007/s004400050171

URL : https://hal.archives-ouvertes.fr/inria-00580196

D. Nualart, A white noise approach to fractional Brownian motion In Stochastic analysis: classical and quantum, World Sci. Publ, pp.112-126, 2005.

D. Nualart, The Malliavin Calculus and Related Topics, 2006.
DOI : 10.1007/978-1-4757-2437-0

R. Peltier and J. L. Véhel, Multifractional Brownian motion: definition and preliminary results, p.2645, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00074045

D. Pollard, Convergence of Stochastic Processes, 1984.
DOI : 10.1007/978-1-4612-5254-2

D. Revuz and M. Yor, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, 1993.

G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance, 1994.

S. Stoev and M. Taqqu, How rich is the class of multifractional Brownian motions? Stochastic Processes and their Applications, pp.200-221, 2006.

M. Zähle, Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields, pp.333-374, 1998.