N
N

N

HAL

open science

A Lightweight Framework for Authoring XML
Multimedia Content on the Web

Christine Vanoirbeek, Vincent Quint, Stéphane Sire, Cécile Roisin

» To cite this version:

Christine Vanoirbeek, Vincent Quint, Stéphane Sire, Cécile Roisin. A Lightweight Framework for
Authoring XML Multimedia Content on the Web. [Research Report] RR-7848, INRIA. 2011, pp.23.

hal-00653965

HAL Id: hal-00653965
https://inria.hal.science/hal-00653965
Submitted on 20 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00653965
https://hal.archives-ouvertes.fr

A Lightweight
Framework for

Authoring
XML Multimedia

Content on the Web

Christine Vanoirbeek, Vincent Quint, Stéphane Sire, Cécile Roisin

RESEARCH
REPORT

N° 7848

ISSN 0249-6399 ISRN INRIA/RR--7848--FR+ENG

informatics g#” mathematics

LR —

A Lightweight Framework for Authoring
XML Multimedia Content on the Web

Christine Vanoirbee Vincent Quinlﬂ Stéphane Sire*,
Cécile Roisin]

Project-Team WAM

Research Report n° 7848 — December 2011 — [23]pages

Abstract: This report addresses the issue of authoring XML multimedia content on the web. It focuses
on methods that apply to different kinds of contents, including structured documents, factual data, and
multimedia objects. It argues in favor of a template-based approach that significantly enhances the ability
for multiple applications to use the produced content. It presents AXEL, an innovative multipurpose client-
side authoring framework targeted to web users with limited skills. The versatility of the tool is illustrated
through a series of use cases that demonstrate the flexibility of the approach for creating various kinds of
content.

Key-words: Authoring paradigms, Authoring for the web, End user authoring

* Ecole Polytechnique Fédeerale de Lausanne
T INRIA
¥ University of Grenoble and INRIA

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Un environnement pour I’édition
de contenu multimédia XML sur le web

Résumé : Ce rapport traite de la création de contenus multimédia sur le web. Il se
concentre sur les méthodes qui s’appliquent a différents types de contenus, comme les
documents structurés, les données factuelles et les objets multimédia. Il défend une
approche fondée sur les templates, qui augmente significativement la capacité pour
différentes applications d’utiliser les contenus produits. Il présente AXEL, un envi-
ronnement innovant c6té client destiné aux utilisateurs web sans compétences partic-
ulieres. La souplesse de I’outil est illustrée par un ensemble de cas d’utilisation qui
montrent 1’intérét de 1’approche pour créer différents types de contenus.

Mots-clés : Paradigmes d’édition, Edition pour le web, Edition en ligne

AXEL 3

1 Introduction

Since its inception, the web has turned into an universal repository of rich content —i.e.
content including text, images, graphics, sounds and videos — that is easily accessible to
end users simply by using a web browser. Initially conceived as a distributed hypertext
system allowing users to follow links and to jump from page to page, the web has
progressively provided incentives for building complex back-end frameworks exposing
attractive web based interfaces to end users. These user interfaces have grown to the
point where some applications are running within the browser for the most part, thus
becoming web applications.

While a significant part of the web is fed from several sources of information, hu-
man users (authors) are also entering content through various kinds of tools. Web
authoring was originally perceived as the capability to develop a web site for deliv-
ering content to end users on the basis of a very simple language, HTML. Authoring
rapidly evolved towards the production of pages referring to files in a variety of pro-
prietary formats such as those usually available on a desktop computer. This clearly
demonstrates the need for more complex contents, not limited to text, images and links.
This need made the HTML standard evolve to integrate more sophisticated elements of
information, such as tables or embedded components.

Whereas tables have been added soon, directly to the HTML language, multimedia
objects were (and still are) handled through various mechanisms. Initially, this was
achieved by embedding applets and was then extended to a more general solution for
including external objects. Simultaneously, the W3C SMIL specification [2] was de-
veloped to give end users the opportunity to specify spatial and temporal constraints
in multimedia documents. Unfortunately, the SMIL language has not been widely
adopted by web sites, and multimedia content on the web still mostly relies on the use
of proprietary formats and script languages.

In addition to SMIL, W3C played an important role, through its standardization
process, in transferring research results from the hypertext and document engineering
domains to web technologies; among them, three features are important:

* The first one is a clear separation of the content from the appearance of a docu-
ment. This resulted in core technologies (HTML and CSS) for delivering content
on the web, that have become the basis for the web platform. During their evolu-
tion these languages have integrated new features that were no longer restricted
to computer screens or printers, but took into consideration various modalities,
including audio and video. This evolution had an important impact on further
research on adaptation of multimedia content for various devices, environments,
and users.

* The second advance is the XML language, that incidentally led to a re-writing
of the hypertext language for the web: XHTML. It encouraged the use of well-
formed documents and opened the way to a set of languages and technologies
for dealing with contents represented as hierarchical structures (XSLT for trans-
forming XML data, DOM and SAX for processing content, XPath and XQuery
for accessing content, etc.)

* The third point is the capability to formally define generic content models for
document classes. This was originally addressed by DTDs for document pub-
lishing purpose. Several other languages were then created (XML Schema, RE-
LAX NG, Schematron, etc.) to provide additional features, such as typing, that

RR n° 7848

4 Vanoirbeek, Quint, Sire, Roisin

significantly enhanced the processing potential offered to applications. The ben-
efits of dealing with structured content that may be validated against a model
also clearly extend the ability to deal with reusable pieces of information among
communities of users. Agreement on common representations of structured con-
tent, which is the essence of a schema, allows applications to address the specific
needs of each user community. As a consequence, there is a trend to develop au-
thoring solutions that offer users the possibility to generate XML content com-
pliant to a generic model (or schema).

Simultaneously, the development of web browser-oriented technologies signifi-
cantly contributed to a new evolution of the web as a medium: it is becoming a means
for end users to feed and, to a certain extent, control the content of web sites, through
web based interfaces and applications.

At the beginning, the authoring capabilities provided by a web browser were merely
limited to the use of HTML forms. The Web 2.0 perspective created a real craze to
provide users with new capabilities allowing them to enter content simply by using a
browser. The initial expression of that trend was the concept of a wiki, which allows
the members of a community to contribute in the publication of shared content — a well-
known example is Wikipedia. Wikis are now of common use, another typical example
being the wikibooks that provide valuable collective content for a pedagogical purpose.
Later on, the concept of a blog appeared, allowing an individual to produce content on
the web in a very simple and user-friendly way. Blogs are used by a variety of users
for multiple purposes, ranging from private use (such as reporting on the vacation of
the family with pictures) to professional use (such as blogs written by journalists).

From a technological point of view, the capabilities offered to end users to populate
repositories of information through web browsers have been proposed under multiple
forms (embedding proprietary applications, browser specific plug-ins, etc.). The de-
velopment of script languages running on the client (among them, the now ubiquitous
JavaScript) is the most significant change that considerably extended the potential of-
fered to end users in terms of interaction. This evolution led to the development of
so-called Rich Internet Applications (RIA) that allow web pages to adapt their content
and appearance according to user interactions, but also provide mechanisms to interact
with back-end systems.

An important feature, aroused by the XML specification, is the development of a
standard API, the DOM, to deal with data using XML trees as the primary represen-
tation of information. Coupled with a script language such as JavaScript, the DOM
opened the door to the development of very powerful client-side applications for web
authoring and for producing XML content:

* Some of these applications focus on document production. They rely on an edi-
torial process that takes advantage of well established practices for manipulating
XML structures. They are primarily based on the compliance with a generic
model that may be checked or enforced during the authoring process, and on the
possibility to render the content in multiple ways, thanks to XSLT transforma-
tions.

 Other applications are addressing the collection of XML data-oriented informa-
tion. This is primarily performed through the use of XForms, which is not yet
natively supported by browsers.

* Authoring multimedia content still remains to a large extent limited to the use
of proprietary applications. The major reasons for that are that it is complicated

Inria

AXEL 5

(i) to produce multimedia contents (especially audio and video, that often re-
quire proprietary codecs), (ii) to specify synchronization between several media
objects in a user-friendly way.

As a matter of fact, it appears that the web progressively made it possible to merge
sources of information that have been traditionally clearly separated: documents, data
and multimedia content. Despite the fact that information available on the web may be
produced in many different ways (either directly by authors or automatically generated
by various applications, including complex frameworks), it is to be observed that in-
formation is ultimately delivered in a document/hypertext way relying on hierarchical
structures. XML and related languages and technologies are currently demonstrating
the potential of this approach to bridge the gap between document, data and multimedia
content representation and manipulation.

All these evolutions of the web, its technologies and its usage have led us to devise
an editing process that allows non XML savvy web users to easily create multimedia
web content directly with their browser. The emphasis is put on the XML language to
allow the produced content to be reused, interchanged and processed in multiple ways,
thus allowing various applications to take advantage of the created content. However,
the complexity of traditional XML tools is avoided by allowing web users to work
only with their usual web client and to interact in a familiar way. The solution is
based on a lightweight framework called AXEL that was first introduced in a previous
paper [23]. In this paper we demonstrate, by using this tool for a variety of applications,
that (i) web technologies enable a unified process for authoring documents, data and
multimedia content, and (ii) that this process can be used by people with no previous
knowledge of XML.

The paper is organized as follows. The next section gives an overview of the most
common methods used for authoring XML content for the web, emphasizing three
typical forms of web content: documents, data and multimedia; it also highlights the
limitations of these methods. This overview is followed in section [3] by a short pre-
sentation of AXEL, the tool we have developed for authoring on-line all these kinds
of contents. Its main features are introduced, including the templating language, the
architecture and the user interface. This is illustrated by several applications involv-
ing different types of content. Section [] discusses the results we have obtained so
far. Finally, the conclusion summarizes the main contributions and suggests different
extensions to this work.

2 Authoring XML content for the web

As already stated, authoring paradigms for producing XML content — data, document
and multimedia — are currently mostly separated. In this section, we synthesize the ma-
jor trends in the domain, emphasizing important features such as the way to constrain
the content with a model, compliance to web standards, and usability issues in relation
with the targeted audience.

2.1 Authoring document-centric content

The typical way to edit XML documents is to use an XML editor, i.e. a stand-alone
application that runs on a personal computer and that uses a DTD or a schema to make
sure the document produced is valid (in the XML sense). The first tools of this kind

RR n° 7848

6 Vanoirbeek, Quint, Sire, Roisin

were developed for SGML, the ancestor of XML, and even before the birth of SGML,
for structured documents using different formats [19] [11]. Most features offered by
the precursors, by the SGML tools and by most XML tools date back from a pre-web
period. Some more recent editors have been developed specifically for XML, but they
are still based on the same principles: a DTD or a schema drives the editor to make sure
the user can only enter a valid structure. In the broad category of XML editors, one
can identify tools that provide an authoring environment where the focus is put on the
document itself (ArborText Epic, FrameMaker), and those that provide a development
environment (0Xygen, XMLSpy), where developers can also prepare applications re-
lated to the edited documents. The latter category can manipulate schemas, XSLT
transformations, and style sheets, for instance.

These stand-alone XML editors allow their users to take advantage of all features
of the XML language, but they require a good knowledge of both XML itself and the
document model in use, as expressed in a DTD or a schema. These editors are mostly
intended for trained technical writers, who are more concerned with complex docu-
mentation than with the web: these tools are essentially web agnostic. An interesting
exception is XOpus [27] which takes the approach of schema-driven editing, but runs
in the browser. Similarly, easyDITA [10] proposes a complete web solution for collab-
oratively authoring and sharing content, but only for DITA documents. As opposed to
the previous tools, both tools require a web environment and allows authors to work
on-line.

The presence of a schema that constrains the editor is often a difficulty for untrained
users. They feel more comfortable with HTML stand-alone editors, that are closer to
word processors, and therefore seem familiar to most authors. In addition, all these
HTML editors take the web into account, even if the most popular ones require specific
operations for publishing content on the web. The counterpart of the ease of use of
HTML editors is the lack of structure in the documents they produce. Authors are
inclined to create a rather flat structure with a lot of style, and they are in any case
limited to the kind of structure allowed by the HTML language. Some tools even
generate invalid HTML code.

There are also on-line HTML editors. Usually called Rich Text Editors, they are
used to enter content for wikis, blogs or on-line mail clients. These tools are very
simple and generate still less structured content and less valid HTML code, but any
web user is supposed to be able to use them and they are fully part of the web: they
run in the browser and the content entered by users is immediately available on the
web. However, the notion of a DTD or a schema, even the HTML DTD, has almost
disappeared.

This is a real issue, as loosing validity and conformance to a model means that the
content can not be safely processed in any other way than displaying it in a tolerant web
browser. A middle ground can be found with templates. Templates are used server-side
to generate HTML pages on the fly from data stored in a CMS or a data base. Different
kinds of templates can also be used client-side to help authors structure the information
they are entering through an editor.

Client-side templates for HTML pages are close in their purpose to the templates
proposed by word processors. They help users to provide well structured information
where it is needed, but do not force them to structure everything in a document. This
may be especially useful for entering microformats in web pages, that can then be
(re)used in different contexts and applications. Templates can also help authors to
organize HTML pages and to use the HTML markup consistently for certain types of
web pages [5] [LL3].

Inria

AXEL 7

2.2 Authoring data-centric content

Despite the fact that XML inherits from SGML, its ancestor designed for representing
structured documents, it is currently also widely used to deal with data-oriented content
within enterprise information systems. The adoption of XML by enterprises is clearly
related to the information integration problem. XML — and its family of technologies —
has become a de facto solution for sharing content between disparate information sys-
tems [17]. Considering XML content as a single authoritative source offers a number
of advantages, such as publishing rich content in a myriad of formats or re-purposing
it for exploitation by web services as well as by any standard compliant application.

From an end user perspective, the creation of XML data-oriented content, is mainly
supported by the use of XForms. This technology is extensively used in commercial
applications or services offered to end users, either for general purpose (such as reg-
istration to an event, booking flights or hotels, accessing to bank services, etc.) or
inside an organization to collect internal data (travel expenses, various announcements,
etc.) [12]]. As XForms is not currently supported natively by browsers, a number of
frameworks have been developed which use the AJAX technology to offer it to end
users.

The XForms language allows developers to specify, in a declarative way, a num-
ber of constraints regarding the pieces of information entered by end users through a
form. It offers a binding mechanism that describes data types in accordance with the
XML Schema standard data types. It also makes it possible to specify additional fea-
tures which may be compared to functional dependencies in relational databases or to
calculations in spreadsheets.

XForms, which is based on the Model View Controller approach, provides inter-
esting features to guide end users during the data entering process. In addition to the
expression of constraints on nodes (identified by XPath expressions), it offers indeed
a view layer composed of intent-based user interface controls that may be adapted to
users’ habits by styling the user interface with CSS.

However, the compatibility with standards for generic content models (schemas) is
weak for two main reasons:

» XForms is limited to expressing constraints related to data types (more precisely
XML Schema data types); it does not support the complex elements that are
defined by a schema. This is confusing because, for instance, the optionality of
an element, which is not reflected on the XML data types, is proposed by the
binding mechanism of XForms.

* As already mentioned, XForms can state computational dependencies among
data elements, a feature that is not available in schema languages used to define
generic content models. This is generally addressed by using XSLT.

As a consequence, even if most system providers promote the automatic generation
of XForms forms according to an existing schema, it is not a simple issue and it does
not prevent developers from adapting the XForms models. This is a potential source of
inconsistency. XForms also allows, through its binding mechanism, to specify if a field
is read-only. This is also an issue, because such a property is in fact dependent on the
context of use of data.

Although forms are a good means for entering structured data, other paradigms
have been proposed, inspired from other kinds of documents, such as variable-data
documents [|16]].

RR n°® 7848

8 Vanoirbeek, Quint, Sire, Roisin

2.3 Authoring web multimedia content

The area of multimedia authoring is wide, firstly because multimedia content tends
to become the main information vehicle. Consequently many formats and associated
tools exist, such as MPRO [[1] for MPEG-4, HyperProp Editor [24] and Composer [15]
for the iTV NCL language. Here, we focus on multimedia content that is published on
the web and that can be authored together with other web contents. Therefore we are
only addressing the structure-based paradigm, as defined in [3]. Note that the above
mentioned tools usually rely on a template-based authoring Ul in order to hide the in-
herent complexity of the multimedia authoring task [21] [20]. Thanks to their intrinsic
modularity and their declarative paradigm, structured languages are good candidates
for the development of such template-based features.

In several multimedia authoring systems [9] [20], templating is a means to bring
reusability and expressiveness with usability. However authoring in this context is still
an open issue because of the intrinsic complexity of temporal structures and relation-
ships that have to be handled. For instance, XTemplate 3.0 [20] proposes a wizard
to guide the user in finding the appropriate hypermedia template among a template
base. But this wizard tool misses the modular feature provided by the XTemplate 3.0
language because it is restricted to one template per document. Therefore while the
language provides powerful expressiveness and reusable component features, it is still
too complex for many users. As stated in [20], a graphical authoring tool would be
useful but difficult to develop because of the complexity of the concepts.

A natural way to publish synchronous multimedia in XML on the web is to use
the SMIL language [2]], which was designed exactly for that purpose. Several author-
ing environments were developed for producing this kind of content (e.g. GRINS [4],
LimSee?2 [8]]), but the SMIL technology is not widely deployed on the web. Only a few
players are available and no web browser provide support for the SMIL language. It is
then difficult to reach a wide audience on the web with the SMIL format. The alterna-
tive is to represent content in a widely supported, a-temporal document format such as
HTML or XHTML, and to add synchronization and user interactions by scripting. The
issue then is the programming skills that are expected from authors, and the difficulty
for web users to author content.

Another option is to use HTML pages that embed synchronous multimedia appli-
cations coded in some proprietary format (Flash or Silverlight for instance). There
are convenient authoring tools for these formats, but contents encoded in such non-
standard formats raise several issues: they are poorly integrated in the web (how to
link to a specific part of them?), they are difficult to reuse, they require special plug-ins
which are often not available for mobile devices, and they can not be synchronized
with the rest of the page where they appear.

The situation has changed recently with the raise of HTMLS5, which supports na-
tively continuous content. New features have also been introduced in the CSS3 lan-
guage. With these novel technologies, it is now easier to include sound and video in
HTML pages, without requiring any plug-in. It is also possible to introduce certain
temporal behaviors within HTMLS5 pages thanks to the new CSS3 animation and tran-
sition modules.

However, HTMLS and CSS3 are not sufficient for all multimedia applications,
but with the help of SMIL Timesheets [26], complex synchronization schemes can
be added to HTMLS pages, as well as user interaction. Some JavaScript implemen-
tations of SMIL Timesheets are already available [25] [6] [7], that allow any web
browser to play synchronized multimedia content represented in standard, declarative

Inria

AXEL 9

web languages. Programming skills are no longer necessary, and the same authoring
techniques used for HTML+CSS applications can be used to create this content. How-
ever, additional features are required for easily manipulating time structures and time
dependencies.

3 AXEL: a lightweight web authoring tool based on a
template language

In this section we present a web-based authoring environment that bridges the gap be-
tween the separate authoring paradigms discussed in section 2] It is aimed at providing
end users with the capability to produce documents, data and multimedia contents in an
uniform way. It relies on XTiger XML, a template definition language that constrains,
but in a user friendly way, the users to create reusable content. It is to be observed that
templates are reflecting the know-how of communities of users, companies or individ-
uals whose objective is to share and exploit content provided on the web by end users;
the definition of the templates themselves is addressed by this category of persons in
order to produce reusable content in a specific context. Typical use cases are illustrated
in section[3.2

Our authoring framework is implemented with AXEL (Adaptable XML Editing
Library), a client-side JavaScript library{ﬂ for authoring XML template-based content
on the web . A detailed technical description is available in [23]].

3.1 AXEL features

The AXEL library has been designed and implemented in order to fulfill two main
requirements:

* Proposing a unified approach for authoring valid XML documents mixing docu-
ment, data and multimedia contents;

* Providing non XML-savvy developers and integrators with a lightweight frame-
work for web based on-line editing of valid XML content as well as a user inter-
face that accommodates end users’ practices.

3.1.1 An unified approach

Following the observations of section[2.1] the idea behind XTiger XML is to let authors
edit a HTML document and to get rid of the complexity of XML (both its syntax and
its schemas) while editing. However, as the objective is to produce a well structured
XML document, some constraints have to be set somewhere, and an XML structure
must be created. That is the role of the XTiger XML language. It constrains the HTML
document being edited by associating with it the structure of the final XML document.
A XTiger XML template defines a document type, in the same sense as a XML schema,
but in addition it also defines the visual aspect of the document and the user interface
that are used when editing it.

A XTiger XML template is the skeleton, expressed in HTML, of a document that
has a structure close to the target XML document. In addition, a template contains

Thttps://github.com/ssire/axel

RR n° 7848

10 Vanoirbeek, Quint, Sire, Roisin

structural constraints expressed by XTiger XML elements. As opposed to the tradi-
tional XML approach, where a document and its schema (its structural constraints) are
separate resources, the HTML document being edited with AXEL and its XTiger XML
constraints are mixed in a single structure: each part of the HTML document that must
follow certain structure rules is encapsulated in a XTiger XML element that expresses
these rules.

The example below shows how the part that contains the abstract and the keywords
of this article is represented in the template (elements prefixed by xt : are XTiger
XML elements, the others are HTML elements):

<div class="abstr">
<p class="heading">Abstract</p>
<xt:repeat minOccurs="1" label="abstract">
<p>
<xt:use types="text" label="Parag">
Enter abstract
</xt:use>
</p>
</xt:repeat>
</div>
<p class="keywords">
Keywords:
<xt:repeat minOccurs="2" label="keywords">
<xt:use types="text" label="keyword">
Enter keyword
</xXt:use>,
</xt:repeat>
</p>

In a template, all HTML elements that are not within a XTiger XML element are
mandatory and can not be changed by the user. In the example above, there is always a
single division of class abst r that contains a first paragraph with the only word "Ab-
stract”". This division is always followed by a paragraph of class keyword starting
with the string "Keywords:".

HTML elements can be changed by the user only when they are in a XTiger XML
element, which indicates what changes are allowed. Here, the first xt : repeat el-
ement means that several paragraphs (at least one), and only paragraphs (HTML p
elements), can appear after the mandatory first paragraph in the abstr division.
The second xt : repeat element means that there must be at least two keyword
elements after the mandatory "Keywords:" string.

Finally, the xt : use elements indicate what kind of content can be created by the
user at a given position. In the example above, only text (types="text") can be
created in the variable parts. In this example, the content of the xt : use elements is
just a prompt that the author is supposed to replace. The xt : use element also allows
other media objects or more complex structures to be inserted at a given position, and
it can propose different options for these structures (this is explained in more details in
1230).

This defines what HTML structure can be created by the user, but the template also
contains information about the final XML structure that will be generated from the

Inria

AXEL 11

HTML structure. This is achieved by the 1abel attribute. It indicates that an XML
element must appear in the output and specifies its name. A typical XML structure
generated from the template above is:

<abstract>
<Parag>First paragraph of the abstract.</Parag>
<Parag>Second and last paragraph.</Parag>
</abstract>
<keywords>
<keyword>kwl</keyword>
<keyword>kw2</keyword>
<keyword>kw3</keyword>
</keywords>

This very short introduction to XTiger XML templates obviously does not present
all the possibilities of the language. For more details, refer to [23] or [22]. Section
provides examples that show how these templates have been exploited to edit various
types of documents in different application frameworks.

3.1.2 A lightweight editing framework

To edit a document, AXEL, the client-side template engine, loads a template in a
browser window, and transforms it into an interactive editing application. It follows
the constraints expressed by XTiger XML elements and allows the user to develop
the document by creating new elements and entering content under these constraints.
When the user creates a new item, in a xt : repeat element for instance, it clones that
part of the template. That way, the constraints that apply to each part of the document
are always available locally, thus simplifying the task of the editor. Basically, AXEL
only manipulates the DOM tree; the rendering is performed by the browser rendering
engine.

To enter some content in a xt : use element, the user has just to click and type.
The editing engine creates dynamically a HTML textarea element; text editing in
this element is then handled by the browser itself. The AXEL engine has just to copy
the entered text into the xt : use element in the DOM tree.

When the user saves the document, AXEL creates the XML structure. To do so, it
traverses the DOM tree, and for each XTiger XML element with a 1abel attribute, it
creates a XML element in the output structure. It also stores the content of xt :use
elements of type text in leaves of the generated XML structure.

The principle behind the editing engine is to take advantage of all features offered
by the browser (access to DOM tree, rendering, content editing, spell checking). Com-
bined with a simple constraint language (XTiger XML) that provides the required in-
formation exactly where it is needed, this approach makes the editing engine both light
and fast.

The user interface is directly derived from the template, in a way similar to such
editors as Citrus [14]]. User interface controls are inserted in the HTML document
everywhere the templates allow the user to create, change or delete elements. Except
for these controls, what the user sees is a HTML document formatted by the browser
as usual (see Figures [2] @] 5). The template defines the HTML elements that represent
the intended XML structure. In addition, CSS style sheets may be used to customize
the look of the document on which the user interacts.

RR n° 7848

12 Vanoirbeek, Quint, Sire, Roisin

Rendering —| XML CONTENT

TEMPLATE
DOCUMENT

-
Ena
SCription. >
n</lacatign, C*riPtion,
"‘““Euugu

U5 gg
<r{ption
<Pratyc,
2 level,

o of
""“"raanwn_mm

iption o escripy
f
KoM legaes oy, eripey,
Ption,

SkillTg

XTiger Xy XHTMLH

Generation

Figure 1: Use of template by the AXEL library

With this approach, the user interface can be anything between full WYSIWYG and
form-based, depending on the template and its associated style sheets. In any case, it
does not show any XML syntax, which makes AXEL easily usable by everyone, while
still generating well structured XML content. The whole process does not require com-
plex schemas and transformations, but still provides useful, automatically processable
XML information.

Figure [T] illustrates the overall process. An (X)HTML document embedding the
template is exploited by the AXEL library for two purposes as represented by the two
arrows: (i) providing users with an intuitive interface (rendered through the use of CSS)
to guide them while editing valid XML content and (ii) generating XML content that
may be subsequently exploited by various back-end systems.

3.2 AXEL applications

The versatility of AXEL is demonstrated through examples of different authoring ap-
plications. The examples shown in this section cover the three types of web content
introduced in section 2] They have been created and used during the last two years.
These applications emphasize AXEL’s main characteristic: while sharing a minimal
common look and feel, each editing application is customized to better fit user’s au-
thoring task for a given XML content model.

With AXEL, the process for developing an application is split into four main activ-
ities, each one performed by people with different skills, like in any web application:

1. Software developers, with skills in JavaScript, may be required to adapt or extend
the AXEL library if the application has some special requirements (for instance
new widgets or plug-ins for authoring specific content). Not all applications
require this step.

2. Web developers, with skills in XML, create XTiger XML templates that follow
the XML structure to be generated and the HTML structure to be presented to
the user.

Inria

AXEL 13

3. Web designers develop the CSS style sheets that will define the look of the
HTML pages supporting user interaction.

4. Web content producers provide the resulting application specific authoring tool.

When this work is done, all web users are able to create and edit the specific content
for the application. No specific skill is expected from them. The chosen examples illus-
trate that through various combinations of document-, data- and multimedia-oriented
contents:

1. The first example consists in writing up an article like the present one: it is
obviously mainly document-oriented, but a number of elements (such as authors,
affiliations or bibliographic references) may be considered as data-oriented.

2. The second example consists in preparing a research project proposal: even if it is
mainly document-oriented, it contains more data-oriented content (a typical case
is the description of tasks from which a Gantt chart is automatically generated).

3. The third example concerns the publication of company showcases on the web:
it contains the three categories of content: factual data about the company such
as its address, document-oriented content such as the description of activities and
services, and multimedia content such as a video clip.

4. The fourth example concerns the creation of a slide show: the content is well bal-
anced between document and multimedia elements; it also contains some data-
oriented information (such as the date and the details about the related event, or
the coordinates of the author).

3.2.1 Writing up an article

One of the first applications of AXEL was to create an authoring application for articles
such as the present one. The article template contains typical document data such as
sections, paragraphs, lists, figures and a set of meta-data such as authors, keywords
and addresses. This template is embedded inside an i frame element of a custom-
made application that adds a menu bar with the load and save buttons. It operates on a
WebDAV server to support a collaborative authoring workflow.

In this primitive application, images are manually copied to the WebDAV server
and an AXEL plug-in allows authors to insert an image by typing its path. Once the
path of an image is entered, the plug-in displays the image. Clicking the image replaces
it with a text entry field that allows the author to change path. This simple image plug-in
is of course not a production level example, however it illustrates one of the strengths of
a lightweight client-side JavaScript approach for creating editors: its ability to support
quick prototyping methods for extending the application with new features. As we will
show in another example, we have also developed a more user friendly image upload
plug-in.

This XML authoring toolchain, assembled from a document template, a single
HTML host page, a few lines of JavaScript code and a WebDAV server, produces a
document in a custom XML format. We have written XSLT transformations to trans-
form that format into DocBook and LaTeX. This allows authors to benefit from other
standard tools to then generate a PDF version of the article. Moreover, some features
that were not available in the editing application, such as cross linking references to

RR n° 7848

14 Vanoirbeek, Quint, Sire, Roisin

AXEL FK)WBl'Bd FP7 PartB Editor (Wpl) Preview Save Dump Print Home

Description of Work

Introduction

) Your paragraph.
| Parag ?}

—Task U

T.nb:|P| X

This task spans from month M to month N Q.
Description

e Your paragraph.
[_parag (4]

Partners

PARTNER (leader: no, pm: NB) ,

Figure 2: Project proposal editor application and its menu bar at the top

figures, have been implemented inside the transformation: a regexp matcher turns ev-
ery Figure N words appearing in a paragraph or a list into a link to the Ntk figure in the
article. We use a similar technique for links to bibliographic references.

3.2.2 Preparing a project proposal

A second example is a template designed to prepare and to submit European project
proposals for the seventh research framework program. More precisely, this template is
used to edit the submission document. This is indeed a hybrid example, since a specific
feature of the submission document is to contain the breakdown of the project into work
packages. In this document, each work package description is a mixture of structured
document-oriented material, such as the objectives or the content of each task, inter-
twined with the details of the scheduling and the resource allocation in person-months
for every task in every work package as shown in Figure 2]

The project proposal editor has also been integrated in a WebDAV application to
enable collaborative work. It was used to prepare three different project submissions,
and all work package leaders (an average of 8 of them for each project) have entered
the description of their work packages through the tool. The document template was
designed to generate a simple user interface that is halfway between a document and
a form, as can be seen on Figure Q We have written some XSLT transformations to
generate an XHTML version of the document very close in appearance to the MS-
Word document distributed by the European commission as a model of what to submit.
The advantage of using a custom XML model (right part of Figure 3) is that it made

Inria

AXEL 15

Month |1|2|3|4|5|6|7|8|9(10|11|12(13|14|15|16
TI1.1
T1.2 <TaskList>
<Task>
T13 <TaskNo> 1 </TaskNox
T14 | ‘ | ‘ <Name> Overall Project Management </Name>
<Slots>
T15 | ‘ ‘ <Slots
T2.1 | | | <Start> 1 </Start>
. <End> 30 </End>
T22 [1] </Slot>
</5lots>
T23 [T T T <Descriptions-
T24 <List>
T25 <ListItem> Implementation of the Grant Agreeme
- <ListItem> Ensure regular institutional exchan
T3.1 <ListItem» Ensure efficient communication flow
T32
T33

Figure 3: A Gantt chart generated from the structured data on the right that was edited
in a workpackage description

it possible to create transformations for automatically generating the other parts of the
documents, such as the Gantt chart for the whole project (as can be seen on the left
part of Figure[3), or some tables summarizing deliverables and their due date, without
requiring duplicate input.

These first two examples (scientific article and project proposal) are document-
centric, in that their aim is to produce standalone documents which have to be submit-
ted or moved somewhere. For that reason they could cope with a simple WebDAV file
storage. Many more applications become possible when using a native XML database
for storing the document. The next section presents some more data-oriented applica-
tions realized with an XML data store.

3.2.3 Authoring showcases for the web

AXEL is also a convenient tool for creating data entry user interfaces for applications
built with an XML database back-end. During the last year we have created entire
web sites stored in XML databases, using the XRX (XML REST XQuery) paradigm.
AXEL was used for data entry by the end users themselves.

A typical application is a web site presenting an association of professionals, with
records or showcases associated with each member. The data model is highly depen-
dent on the activity of the professionals, but in all cases, like the project proposal edi-
tor presented above, it combines some descriptive parts, including text, images and/or
videos, with factual data such as addresses, email, web sites, and so on.

Figure [] illustrates a showcase presenting start-up companies in a science park.
This web siteE] was developed with AXEL, based on a specific template. Each company
(currently about one hundred) is using it to enter and update their profile directly from
the browser: on the right part of the figure we can note the image upload plug-in in
action to enter the company’s logo. A similar web site has been recently developed for
a craftsmen association in Belgium. Each professional can edit his/her own showcase
directly on the web site{ﬂ The template for this web site was quickly derived from the
science park site.

2http://societes.parc-scientifique.ch/
3http://www.uniondesartisansdupatrimoine.be

RR n° 7848

16 Vanoirbeek, Quint, Sire, Roisin

Stanup

Cyberbotics Ltd.

Start-upPME

Cyberbotics Ltd.
Web : http://www.cyberbotics.com
Email : olivier.michel@eyberbotics.com
Phone : 021 693 86 24

Fax: 021693 86 24

C Y B E R NS I CREEEGYs(olThCls|
professional mobile robot simulatio PSE-C - 1st floor professional mobile robot simulation PSE‘C— 15t floor
1015 Lausanne

1015 Lausanne

Web : www.cyberbotics.com
Email : glivier michel@cyberbotics.com
Phone : 021 69386 24

Fax: 021693 86 24

[$ Responsible : Mr. - Olivier Michel

- [parcourir_J Activity domain

save ind fast prototyping software for mobile fobots Cyberbot markets Webots : a si fast prototyping software for mobile fobots.

Keywords : Webots mobile robot simuiation software

Presentation

Module "presentation” publish : iyes
Cyberboics develops the Webots software : simulation and fast prototyping of mobile robots. Webots is a tool
. for research and education used by over 800 universities and research centers woridwide. Cyberbotics
Presentation & ‘customers include big industry names such as NASA, Toyota, Honda, BAE systems, Sony, Samsung, Vorwerk,
SRI, etc. as well as the most famous unversities in the worid (MIT, Stanford, Imperial College London, Tokyo

(=Xt} Cyberbotics develops the Webots software : simulation and fast prototyping of mobie university, ETHZ,)

[Parag [#] ropots. Webots is a tool for research and education used by over 800 universities and
research centers worldwide. Gyberbotics customers include big Industry names such as Robot Simulator
NASA, Toyota, Honda, BAE systems, Sony, Samsung, Vorwerk, SRI, efc. as well as the ; =
most famous universities in the worid (MIT, Stanford, Imperial College London, Tokyo B
university, ETHZ, etc.)

: Nao-soccer simul..

‘:]?dff i Robot Simulator: Naosoccer simul..
B .

P |« 0007037 @

Figure 4: Showcase editing, editor view on the left and static view on the right.

One advantage of using AXEL over a classical rich text editor for such web sites is
that any page content is stored as XML data and is then fully reusable. To illustrate this
we have made the XML content associated with any page available by adding a . xm1
prefix to its URL.

The showcase web site gets huge benefits from using structured content. One ben-
efit is that it allows to layer the site search engine so that it uses the semantics of the
data model to adjust its results. In the company showcase example, the search engine
considers first the terms that appear in the company name, then in the company profile,
and finally in the company description. Moreover, in some contexts, such as the com-
pany name, it can use a NGRAM index instead of a full text index. Another benefit
that we are starting to exploit by using multimedia libraries, is that the whole content
is reusable, for instance to create a rotating banner. In that case the banner gets its con-
tent directly from the latest content entered within the database and does not require
duplicated input.

Some other focused examples of data-oriented templates we have realized include
a bibliographic data template, a restaurant menu card template or, a timetable template.
They have been described in a previous publication [23]].

3.2.4 Authoring and publishing multimedia presentations on the web

The availability of client-side multimedia libraries supporting web standards, such as
timesheets.jsEl opens up new possibilities to create multimedia authoring applications
with AXEL and its templates.

One of our latest developments is a document template representing a slide show
that takes advantage of SMIL Timesheets to synchronize the show and to handle user
interaction, including navigation from slide to slide. In its current version, the slide
show editor displays all the slides, in presentation order, as a scrollable document in

“http://wam.inrialpes.fr/timesheets/

Inria

AXEL 17

slide %) repeat # 10 sec

R

<xt:attribute types="text" name="Phoi Repeating COntent

b

b

<xt:repeat minOccurs="0" maxOccurs=" <xt:attribute types="text" name="Phone" option="unset"/>
<xt:use types="t_[person"/>

</xt:repeat>

<xt:repeat minOccurs="0" maxOccurs="+">
<xt:use types="t person"/>
</xt:repeat>

xt:head
-i1 - (pseudo)Label

xt:component e xt:head 18

xt:component name O i

xt:attribute values -
sattri | faul
xt:use k tyr xt:attribute values + default
opl . types
xt:repeat \ xt:use
minOccurs A

option

xt:repeat
P T minOccurs + maxOccurs
Figure 5: Editing a slide

the browser window. A menu bar at the top of the editor window contains buttons to
load and save the document, and also to play the slide show, displaying one slide at
a time. Figure [5] shows a slide while editing it (with associated widgets), and while
playing the slide show (on the right part).

Playing the slideshow is done simply by generating the full multimedia document
from the editor. Thanks to the use of web standards, this document is an XHTML
document which can be loaded inside a div element in the editor window itself. Then
the multimedia library is used to play the slideshow. During playback the div element
containing the editor is hidden and therefore every user interface controls added for
editing (widgets on the left part of Figure [5) are removed. On the playback view, the
document includes navigation buttons as specified by the template for the dynamic
behavior of the slide (shown on the right part of the figure). We are now developing a
synchronization feature between the multimedia library and the editing library to easily
go back and forth between the slide show player and the editor, while keeping the focus
on the current slide.

4 Using AXEL

4.1 Results

We have developed several applications with the AXEL library, based on different
templates, and in different collaborative settings. Each application was made of at least
one template, some JavaScript code handling a menu bar for loading and saving the
edited documents, and in some cases a backend application running on a server.

A few typical applications are presented in section [3] The article authoring appli-
cation was used by the present authors to collaboratively write articles. This paper is
currently the third one written using this system. The project proposal application has
been used up to now to prepare 3 different projects. In this application, each person in
charge of a workpackage edits his/her own document. The science park directory has
more than 200 users. However, most of the initial version of the showcase was written

RR n° 7848

18 Vanoirbeek, Quint, Sire, Roisin

by two coordinators. After this initial, centralized effort, the web site is now updated
on a daily basis by each of the member companies. Thanks to the ease of use the on-
line editor, the site remains up-to-date, which was not the case with the previous, more
conventional system.

In addition to the applications presented in section[3.2] we have developed an appli-
cation for editing a newsletter, a complete web site for a craftsmen association where
most of the content is editable, and a standalone test specification authoring tool.

» The newsletter application is used by up to 5 writers who have already produced
9 newsletters to date. In this application, the backend server displays the name
of the user who is currently editing a newsletter to prevent conflicts, since each
newsletter is a single document.

* The secretary of the craftsman association has created 42 web pages presenting
the craftsmen, 17 news and 10 meeting announcements (69 documents involv-
ing 4 different templates). We have started to develop a second web site for a
different group with similar needs.

* The test specification authoring tool has been used to edit a lengthy specification
(around 200 documents, defined by 1 template) which have been created in 30
different languages using the editor. Each document was edited by one writer.

In summary, as of December 2011, the concepts and technologies presented in this
article have lead to the creation of at least 300 documents based on 9 templates in 6
different applications and environments. Roughly 200 end users have used AXEL in
real applications. Feedback received from them highlights the ease of use provided in
particular by the intuitive and non-intrusive user interface. We believe these qualities
derive directly from the main options we have taken: template-driven editing of for-
matted documents, and online web authoring. Users have reported that they feel very
comfortable to edit web content in the context in which it will be used.

4.2 Discussion

The extensibility of our approach has been demonstrated through this wide range of
applications. Extensibility is primarily obtained thanks the architecture based on web
technologies. Plug-ins may be added to cover new needs. The AXEL library itself may
be extended. By creating new templates, new types of documents and new applications
can be addressed. As the editor generates XML documents, the whole set of XML pro-
cessors and languages may be used to process these documents further, thus extending
applications.

This last feature is based on the ability of automatically generating an XML Schema
from a XTiger XML template [18]. Although no schema is required by AXEL (tem-
plates play that role), it is often useful to have an XML schema that defines the structure
of the XML documents created with the tool. That way all the usual XML tools may
be used to process documents safely.

The architecture also provides scalability, as the largest part of processing is dis-
tributed. All the editing code is executed on the client side. This ensures high respon-
siveness for users without overloading servers, which are not involved in the interactive
part of applications.

As compared with traditional XML web applications, AXEL can be considered as
a simplified approach. An XTiger XML template mixes several aspects of documents

Inria

AXEL 19

that are usually separated in different resources (schema, document instance, trans-
formations, presentation), each one expressed in a different language (XML Schema,
XML, XSLT, HTML respectively). This separation of concerns still exists with AXEL,
but there are much less resources involved. During editing, a single XTiger XML tem-
plate plays simultaneously the role of a schema, a document instance, and its visual
presentation; and when the document is saved as XML, the transformation is again
guided by the template. Nevertheless, as explained in section different profes-
sionals, each focused on a different aspect of the document, may be involved in the
process of creating an application. Structure and presentation, for instance are clearly
identified in a template: XTiger XML elements define the structure, HTML elements
express a presentation. Mixing them in a single resource simply makes editing easier,
by allowing every structure change to be immediately reflected in the presentation.

Merging structure information with document instances has some advantages for
maintenance. If the document structure for an application has to change, a new version
of the template is created. New documents are then authored with this new template.
Note there is no ambiguity about which document uses what version of the document
structure definition, as this definition is part of the document itself. If the old doc-
uments need to be converted to become consistent with the new structure definition,
we are in the same case as usual XML applications: we have the XML form of old
documents, their XML Schema (automatically generated from the old template) and
the new XML Schema (created from the new template). An XSLT transformation may
then be developed for converting documents.

5 Conclusion and future work

The XML mark-up approach demonstrates a number of advantages when publishing
information on the web, as compared with traditional data models. XML provides a
way to go beyond conventional data representation, especially with its ability to mix
different types of contents in the same hierarchical structures, down to a very fine
granularity level if needed. XML also brings interesting opportunities for processing
and repurposing contents.

The challenge is to provide end users with web-based authoring tools to populate
the web with valid XML content mixing document, data and multimedia components.
The diversity of the applications we have realized during the last two years has made us
confident that the template approach together with the JavaScript library for client-side
authoring is powerful enough to generate a whole family of authoring tools on the web,
each one being well adapted to the information to be manipulated.

We have identified several areas of development and improvement for the future.
One of them is to extend the template definition language to cover the full spectrum of
form design. This can be achieved by developing ad hoc primitive editors for managing
usual form controls. We are planing for instance to support the XForms user interface
control vocabulary directly in XTiger XML. Another direction is to extend the template
language to include some constraints on the content itself, and not just on its structure,
such as restricting some input to specific data types. XForms bindings is a source of
inspiration in this area. Authoring multimedia content with AXEL still needs further
investigation: first to experiment new templates for popular applications such as media
annotation, and second to add to our library new user interface controls for editing time
dependent features, for instance through a timeline.

Another area of improvement is to adapt the AXEL library to support network

RR n° 7848

20

Vanoirbeek, Quint, Sire, Roisin

driven partial updates of the edited content, which is not the case currently. This would
enable collaborative authoring applications with tight coupling allowing multiple au-
thors to edit the same content at the same time. Moreover, some extensions to the
XTiger XML language would allow templates to define fine grain locks and access
control rules at a structure level in a descriptive way.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

Boughoufalah, S., Dufourd, J.C., Bouilhaguet, F.: Mpeg-pro, an authoring system
for mpeg-4 with temporal constraints and template guided editing. In: Proceed-
ings of ICME 2000, pp. 175-178. IEEE (2000)

Bulterman, D., et al.: Synchronized Multimedia Integration Language (SMIL
3.0). W3C Recommendation (2008). URL http://www.w3.0rg/TR/
smil/

Bulterman, D.C.A., Hardman, L.: Structured multimedia authoring. ACM Trans.
Multimedia Comput. Commun. Appl. 1, 89-109 (2005)

Bulterman, D.C.A., Rutledge, L., Hardman, L., Jansen, J., Mullender, K.S.:
Grins: An authoring environment for web multimedia (1999). URL http:
//homepages.cwi.nl/~dcab/PDF/edmedia99.pdf

Campoy-Flores, F., Quint, V., Vatton, I.: Templates, microformats and structured
editing. In: D. Brailsford (ed.) Proceedings of the 2006 ACM Symposium on
Document Engineering, DocEng 2006, pp. 188—197. ACM Press (2006)

Cazenave, F.: A declarative approach for HTML Timing using SMIL/Timesheets
(2011). URL http://wam.inrialpes.fr/timesheets/

Cazenave, F., Quint, V., Roisin, C.: Timesheets.js: When SMIL meets HTMLS5
and CSS3. In: Proceedings of the 11th ACM symposium on Document en-
gineering, DocEng ’11, pp. 43-52. ACM, New York, NY, USA (2011). URL
http://doi.acm.orqg/10.1145/2034691.2034700

Deltour, R., Layaida, N., Weck, D.: A cross-platform smil2.0 authoring tool.
ERCIM News 62 (2005)

Deltour, R., Roisin, C.: The LimSee3 multimedia authoring model. In: D. Brails-
ford (ed.) Proceedings of the 2006 ACM Symposium on Document Engineering,
DocEng 2006, pp. 173-175. ACM Press (2006). URL |http://doi.acm.
0org/10.1145/1166160.1166203

easyDITA: Content management, authoring and production all in one. URL
http://easydita.com/2011/

Furuta, R., Quint, V., André, J.: Interactively editing structured documents. Elec-
tronic Publishing pp. 19—44 (1988)

Hill, C., Yates, R., Jones, C., Kogan, S.L.: Beyond predictable workflows: en-
hancing productivity in artful business processes. IBM Syst. J. 45, 663-682
(2006)

Inria

http://www.w3.org/TR/smil/
http://www.w3.org/TR/smil/
http://homepages.cwi.nl/~dcab/PDF/edmedia99.pdf
http://homepages.cwi.nl/~dcab/PDF/edmedia99.pdf
http://wam.inrialpes.fr/timesheets/
http://doi.acm.org/10.1145/2034691.2034700
http://doi.acm.org/10.1145/1166160.1166203
http://doi.acm.org/10.1145/1166160.1166203
http://easydita.com/2011/

AXEL 21

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

Huynh, D.F.,, Karger, D.R., Miller, R.C.: Exhibit: lightweight structured data
publishing. In: Proceedings of the 16th international conference on World Wide
Web, pp. 737-746. ACM, New York, NY, USA (2007)

Ko, A.J., Myers, B.A.: Citrus: a language and toolkit for simplifying the creation
of structured editors for code and data. In: Proceedings of the 18th annual ACM
symposium on User interface software and technology, pp. 3—-12. ACM, New
York, NY, USA (2005)

Laiola Guimaraes, R., Monteiro de Resende Costa, R., Gomes Soares, L.: Com-
poser: Authoring tool for itv programs. In: M. Tscheligi, M. Obrist, A. Lugmayr
(eds.) Changing Television Environments, Lecture Notes in Computer Science,
vol. 5066, pp. 61-71. Springer Berlin / Heidelberg (2008)

Lumley, J., Gimson, R., Rees, O.: Configurable editing of xml-based variable-
data documents. In: Proceeding of the eighth ACM symposium on Document
engineering, DocEng *08, pp. 76-85. ACM, New York, NY, USA (2008)

Pokorny, J.: Xml in enterprise systems. Informatica 20, 417-438 (2009)

Quint, V., Roisin, C., Sire, S., Vanoirbeek, C.: From templates to schemas:
Bridging the gap between free editing and safe data processing. In: DocEng
2010: Proceedings of the Tenth ACM Symposium on Document Engineering, pp.
61-64. ACM (2010). URL http://doi.acm.org/10.1145/1860559.
1860572

Quint, V., Vatton, L.: Grif: An Interactive System for Structured Document Ma-
nipulation, pp. 200-213. Cambridge University Press (1986)

dos Santos, J., Muchaluat-Saade, D.: Xtemplate 3.0: spatio-temporal seman-
tics and structure reuse for hypermedia compositions. Multimedia Tools and
Applications pp. 1-29 (2011). URL http://dx.doi.org/10.1007/
s11042-011-0732-2

dos Santos, J.A., Muchaluat-Saade, D.C.: Xtemplate 3.0: adding semantics to hy-
permedia compositions and providing document structure reuse. In: Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 1892-1897.
ACM, New York, NY, USA (2010)

Sire, S.: XTiger XML language specification (2010). URL http://media.
epfl.ch/Templates/XTiger—XML—-spec.html

Sire, S., Vanoirbeek, C., Quint, V., Roisin, C.: Authoring XML all the time,
everywhere and by everyone. In: Proceedings of XML Prague 2010, pp. 125—
149. Institute for Theoretical Computer Science (2010)

Soares, L.E.G., Rodrigues, R.F., Muchaluat Saade, D.C.: Modeling, authoring
and formatting hypermedia documents in the hyperprop system. Multimedia Sys-
tems 8, 118-134 (2000)

Vuorimaa, P.: Timesheets JavaScript Engine (2007). URL|http://www.tml.
tkk.fi/~pv/timesheets/

Vuorimaa, P., Bulterman, D., Cesar, P.: SMIL Timesheets 1.0. W3C Recommen-
dation (2008). URL http://www.w3.0rg/TR/timesheets/

RR n°® 7848

http://doi.acm.org/10.1145/1860559.1860572
http://doi.acm.org/10.1145/1860559.1860572
http://dx.doi.org/10.1007/s11042-011-0732-2
http://dx.doi.org/10.1007/s11042-011-0732-2
http://media.epfl.ch/Templates/XTiger-XML-spec.html
http://media.epfl.ch/Templates/XTiger-XML-spec.html
http://www.tml.tkk.fi/~pv/timesheets/
http://www.tml.tkk.fi/~pv/timesheets/
http://www.w3.org/TR/timesheets/

22 Vanoirbeek, Quint, Sire, Roisin

[27] XOpus: The web based wysiwyg xml editor. URL http://xopus.com/

Inria

http://xopus.com/

AXEL 23

Contents
I Tntroduction| 3

[2__Authoring XML content for the web)
2.1 Authoring document-centriccontentf

. Authoring data-centriccontent]
|§.3 Kutﬁormg web multimedia contenﬂ

3__AXEL: alightweight web authoring tool based on a template language| 9

[BNV N0 |

B1 AXELfeatures|, 9
3.1.1 Anunified approach| 9
B12 A Tightweight editing framework] 1

3.2 AXELapplications|, 12
[3.2.1 Writingupanarticle| 13
3.2.2 Preparing a projectproposal| 14
--------------- Is

|’5.2.4T Kutﬁorlng and pu5|1551ng multimedia presentations on the we5| 16

BT _Resultsl. . .« o v v oo e e e 17
B2 DISCUSSION . « - « o e v e e e e e 18
BConclusion and future work| 19

RR n° 7848

V4

: informatics , mathematics

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Authoring XML content for the web
	Authoring document-centric content
	Authoring data-centric content
	Authoring web multimedia content

	AXEL: a lightweight web authoring tool based on a template language
	AXEL features
	An unified approach
	A lightweight editing framework

	AXEL applications
	Writing up an article
	Preparing a project proposal
	Authoring showcases for the web
	Authoring and publishing multimedia presentations on the web

	Using AXEL
	Results
	Discussion

	Conclusion and future work

