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ABSTRACT

The Boltzmann model for the random generation of “decomiplesaombinatorial
structures is a set of techniques that allows for efficientdcan sampling algorithms
for a large class of families of discrete objects. The usaglirement of sampling
uniformly from the set of objects of a given size is someholaxed, though unifor-
mity among objects of each size is still ensured. Generdtingtions, rather than the
enumeration sequences they are based on, are the crucediiegt.

We give a brief description of the general theory, as well asimber of newer
developments.

1 INTRODUCTION

1.1 Random Generation of Combinatorial Structures: a
Quick Overview

Random generation is often used as a tool for exploratiomtvdo large objects of
this type look like?”), or to provide large datasets for safite and algorithm testing.
Usually, one defines a combinatorial class as a finite or aml@tfamily ¢ of
discrete “objects”, equipped with a “size” function fromi to the natural numbers,
such that for each natural numherthe subset;, of all objects with sizen is finite.
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A uniformrandom generator for the clagsis then a randomized algorithm that takes
as input an integen, and outputs an element randomly selected uniformly ffm
The efficiency of the generator is typically measured in teafits expected time and
space complexities, expressed as a function of thersize

Random generation methods tend to fall into one of a smallbasrof classes.
Ad hocmethods rely on precise combinatorial properties of thesidared class; a
fine example is provided by Rémy’s algorithd¥] for the random generation of plane
binary trees.Markov chainmethods rely on the simulation of a Markov chain whose
states are the objects one wants to sample from, and thag¢issto the uniform (or
another suitably chosen) distribution; careful analy$ithe convergence speed makes
it possible to run the chain for a fixed number of steps andiolata almost-uniform
generator, or more sophisticated techniques such as @gupdim the Pastl3] can be
used for exact sampling from the stationary distribution.

Decompositioomethods apply for classes where objects are, informallgdeup”
of smaller objects, be they from the same or another classstitaelf decomposable.
A prime example is that gblane binary treesthat is, rooted trees where each internal
node has exactly two children, one of which is distinguishgtheeft child while the
other is theright child. In this case, a plane binary tree is either made up @igles
root-leaf, or of a root and left and right subtrees, both ofolltan be any plane binary
trees.

The first systematic example of a decomposition method fodeen generation is
the so-calledecursive method11], where decompositions are used to obtain recur-
rences satisfied by the counting sequences. These courtingrsces are then used,
together with the decomposition rules themselves, to giideandom generation al-
gorithm. In the above example of plane binary trees, the wogisequence (the well-
known Catalan numbers) is used to determine the probabiliythat a uniform ran-
dom tree withn internal nodes has a left subtree witinternal nodes, and to sample
K from this distribution; then the random generator is reigetg called with sizeK
andn— 1 — K to obtain the left and right subtrees (which are independemditioned
on their respective sizes); the resulting tree is then umifo

1.2 The Boltzmann Method

TheBoltzmann methqds introduced in{, 8], is another decomposition-based method
that can be applied to roughly the same combinatorial ckas¢he recursive method.
We will give a precise description of the method in the nexktisa. For this introduc-
tion, we will simply describe the crucial ingredients.

Where the recursive method uses counting sequences foatidem generation
algorithms, and generating functions are mostly a tool tmmate the counting se-
quences, the Boltzmann method uses the generating fuacti@wed as analytic func-
tions of a real variable (and, in practice, the values of theegating functions) in the
random generation algorithms — thus reducing the need &argonputation to a small
number of real constants. The idea is to “relax” the requaenior a uniform sam-
pler (which outputs a uniform random structure among thdsbeotarget sizen) into
allowing structures of all sizes, while keeping uniformégnong all objects of each
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individual size. By choosing the “right” distribution onzsis, independence among
substructures is introduced, which results in very simpl efficient algorithms.

1.3 Outline of the Paper

Sections2-4 make up the bulk of what can be termed the “Boltzmann meth8et-
tion 2 gives a general description of the Boltzmann method. Se&igsts a number
of constructions which can be used to define specificationembinatorial classes for
which Boltzmann samplers can be automatically compilechftioe specification. Sec-
tion 4 sums up various results on the complexities of the randonplagralgorithms.
Section5 describes how Boltzmann samplers can be used to get cloder thassical
model of uniform, fixed-size random generation.

Section6 deals with the question of how one can effectively obtainrted con-
stants used in Boltzmann samplers, and Secliolescribes results that draw on the
principles of the method without exactly fitting in it.

The list of references does not attempt to give a completefliarticles using the
ideas exposed here. The interested reader will find more ghearin the bibliography
of [2], even though it is not limited to references about the Boimn method.

All proofs and most technical details have been purposefuthitted; the algo-
rithms in Section3 have been included mostly to demonstrate their simplicitye
have made the choice of not detailing any of the many exantpé&sould be given;
the interested reader will find many such examples, inclyidintures of large random
structures, in the original papers.

2 THE BOLTZMANN METHOD: GENERAL
DESCRIPTION

The Boltzmann method can be used in two flavors,dtdénary (or unlabelled) and
exponentia(labelled) variants.

Throughout the paper, we use the wetdlicture(or ¢’-structure) to indicate an el-
ement of a combinatorial clags. No particular assumption is ever made on the nature
of such structures, though classical examples tend to comnediscrete mathematics
or theoretical computer science: words over some finiteaddph) sequences, various
flavors of trees, etc.

2.1 Combinatorial Classes and Products

Let ¥ be some combinatorial class. The size of an olgeets” will be noted|c|. For
any integen, let c, denote the number of objects#iwith sizen. The ordinary (resp.
exponentialgenerating functioifior ¢ is

= z
C(2) = ) cnZ", respLC(2) =y Cns
m z !

it is always assumed that the considered generating funtigs positive radius of
convergence, i.e. thatlimcy " < e (resp.Jim(c,/nH)Y/" < w).
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For 0< x < p, the (normal, resp. exponenti@pltzmann distribution over” for
parameter Xs the probability distribution defined, for aye ¢, by

X/l X/l
Py(c) = N’ resp.Py(c) = W(x)

These distributions give positive probability to all oldein the class, with the
property that two objects with the same size have the samigapiity. They are,
of course, not the only probability distributions with thpsoperty; their interest lies
mostly in their relationship with two common constructiamthe combinatorial world:
the normal and labelled products.

Given two classes? and %, their normal product is just their Cartesian product
¢ = o x B, with size defined additively bl(a,b)| = |a| + |b| for (a,b) € & x Z.

To define the labelled product, one has to assume that stegcéme made up of
both an unlabelled structuoeand a “labelling”, a permutation on a set whose is that of
¢. Think of a structure as being formed oftc| basic “atoms”, each of which receives
a distinct label fron[1,|c|]] = {i € Z: 1 < <|c|}. By a slight abuse of notation, we
identify these atoms with the integers 1¢f so that the labellings are just permutations
0 € Y. For each unlabelled structucethe set of admissible permutations may be a
strict subset of7;.

Then, the labelled product of two labelled structuf@ss,) and (b, a,) is defined
as(a,b), with admissible labelings obtained by taking all partisoof [[1,|a] + |b|]]
into two partsA andB of respective sizefa| and|b|, and, for each partition, taking
the one permutatiow € |54 p) Where all entries inA are in the same respective
order as that oby, and all entries irB are in the same respective order as thatpf
(that is, if (x,y) € A2, thenda(x) < ap(y) iff o(x) < a(y), and similarly forB). As
a result,(a,g;) and(b, op) have(‘a“;‘b‘) different structures in their labelled product.

The labelled product of two classes is defined as the set déltadlled products of
structures in the two original classes, with size again eefadditively.

The firstimportant property is as follows: if two unlabellgdsp., labelled) classes
</ andZ have generating functioz) andB(z) (resp., exponential generating func-
tionsA(z) andB(2)), then their normal (resp. labelled) product has genegdtinction
C(2) = A(2)B(2) (resp.L(2) = A(2)B(2)).

An immediate, and most useful, consequence, valid undériotels, is thisif
¢ = of x #, then taking the product of two independeristructure andz-structure,
each following the Boltzmann distribution with parameteresults in a¢’-structure
under the Boltzmann distribution with parametePor labelled structures, it is implied
that one selects a uniform random set to define the permntatite product.

This “independence under substructures” property, in,thas interesting practi-
cal consequences, in that it makes it possible to descritvea humber of classical
combinatorial constructions, systematic ways to prodifieient algorithms to sam-
ple from the Boltzmann distribution for classes that arérelytdescribed (possibly in
a recursive way) with them. This is the topic of Sect®n
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2.2 The Boltzmann Method

By aBoltzmann samplefor a combinatorial clasg’, we mean a randomized algorithm
¢ that takes as input a real parameteand outputs a randor¥ -structure under
the Boltzmann distribution with parameter Our overall goal is to create efficient
Boltzmann samplers for as many combinatorial classes ashjpes

Given a description of a combinatorial clagssrom which we would like to obtain
“large random structures” (of sizg ideally), the Boltzmann method can be summa-
rized as follows:

1. Find out if our class can be specified (up to a reasonablplsisize-preserving
bijection) from the constructions in SectiBnlif not, try to extend the expressive
power of the method by adding new constructions. If this dagsvork, maybe
the Boltzmann method is not the best choice after all.

2. Use the techniques of the Purple BotK][to locate the “dominant” singularities
(those of smallest modulus, which govern the asymptotitise€ounting coeffi-
cients; since the generating functions have nonnegateficents, at least one
such singularity lies on the positive real axis) of the gatieg functions in our
specification, and possibly an estimate of the value we shgiuke parametex
to give expected sizeto ¢-structures under the Boltzmann distribution.

3. Compute approximations (to rough®(logn) digits) of the values ax of all
involved generating functions, possibly using the comtainal oracle of Sec-
tion 6.

4. Use the patterns in Secti@ntogether with our specification, to write a Boltz-
mann sampling program.

5. Optionally, add a rejection scheme to obtain samplessidgin[(1—&)n, (1+
€)n|, or even of exact size (more costly).

Alternatively, step 2 can be replaced by experimentatiamguthe other steps.

2.3 Choosing the Parameter and Tuning for Size

As said above, the Boltzmann model uses a real parametemtnabe chosen arbi-
trarily inside the radius of convergence of the generatimgcfion for the class under
consideration. This parametegoverns the distribution of sizes of the random struc-
tures. In typical applications, one would like to obtérge structures, that is, there is
an ideal valuen for sizes. We now briefly turn to the question of picking anrayppiate
value ofx for a targein.

For a givenx, the probability that a Boltzmann-distributed-structure will have
sizenis given by

_ _anx"
pn - pn(x) - A(X)'
multiplying by n, and summing over all values of we obtain theexpecteaize
/
N = Noy (X) XA (X)

A(X)
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whereA' is just the derivative of the generating functidn(which can be formally
defined a®\ (x) = 3, nax"~1; this corresponds to the usual derivative inside the radius
of convergence o).

Except in degenerate casés, is a strictly increasing and convex function on the
interval [0, p), and the equatiohl(x) = n has at most one solution; if, as is often the
case,A'(x) goes to infinity asx goes top, the equation has a unique solutignfor
each integen. Settingx to this valuex, in the Boltzmann samplers from the previous
section results in a sampling algorithm that produces &iras of expected size.
Interestingly enough, the same equation also describegathe ofx that maximizes
the probabilityp, that the output structure will have sine

When the generating function is known exactly, one can sfak¢he exact value
of X,. In many situations of interest, the generating functioknewn only through an
equation that it satisfies (this is typically the case whendlass is defined recursively,
as described in the next section). In this case, it is oftessipée to use the techniques
of analytic combinatoricsli0] to derive precise asymptotic information about the gen-
erating function and obtain a precise estimatgqof

In some cases, an attractive alternative is to use the siritguk = p; although it
often implies an infinite expected size, a simple adaptaifdhe sampling algorithms
makes this a very viable choice. This will be described inergetail in Sectior.

3 BASIC CONSTRUCTIONS AND BOLTZMANN
SAMPLERS

In this section, we describe a number of constructions thatlie used to describe
more complex classes from simpler ones, and, for each cmtistn, the corresponding
combination algorithm that allows one to build a Boltzmaamsler for the new class
using Boltzmann samplers for the classes involved in therg#®n. The constructions
described here allow one to describe combinatorial cladbs¢sire close to those of the
theory of combinatorial specie§][

When nothing is specified, these constructions apply to kadiblled and unla-
belled structures; in the labelled case, it is silently asstl that one performs a label
redistribution as in the case of the labelled product.

The initial constructions were described 8j;[later additions are credited individ-
ually.

In all cases, the construction is translated into an exfmedsr the generating
function of the new class in terms of the previous one; thituims gives a simple
construction for the sampling algorithm, where “substiues” are independent. Many
algorithms can be expressed in the form “Draw intelgérom discrete distribution
U (x), then lety receive the concatenation bfndependent calls to generafoes (x)”;
we abbreviate this as

y [Mu(x) = T (x)].

We also use samplers for a few standard distributions: Balivdth success prob-
ability x (Bern(x)), geometric (with suppot¥) with parametex (Geomr(x)), and Pois-
son with ratex (Poisgx)). A subscript condition on these samplers means a conéition
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ing on the output, which can be achieved by rejecting outpuot8 the condition is
met.

3.1 Finite Sets

Finite (typically small) sets do not require an elaborateotly to produce sampling
algorithms, and are included to serve as elementary bratksibre complex construc-
tions.

One typically defines an “empty structure” clagscontaining a single structure of
size zero that we denote dsand an “atom” class?’, containing a single structu#
of size 1. Occasionally, one may use a number of differemhdtgpes”, which will
then be writterZ,, Zy,, and so on.

3.2 Disjoint Union

The most basic construction is thatdi§joint union if .oz and.%Z are disjoint classes,
then their uniory” = 7' U % (with size inherited from the original class) is a new class,
whose generating function is simgB(z) = A(z) + B(2).

Algorithm I'[e7 U %]

if Bern(A(x)/(A(x) + B(x))) then
Returnll ¢/ (x)

else
Returnl" Z(x)

end if

3.3 Product

The product construction, being of fundamental importahes been described in the
previous section.

Algorithm I x 4]
Return(T <7 (x), T A(X))

3.4 Sequence

If <7 is a class with no structures of size @, = Sed.«) is the set of sequences
(Ag,...,Ay), for arbitraryk > 0, with A; € o7, and size defined additively by

[(A,- . A= [Aa] + -+ A
The generating function fof is thepseudo-inversef that of <7,
1
C(Z) - 1_A(Z)7
and the corresponding Boltzmann samplerdois as follows:
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Algorithm I'Seq <)
y < [GeomA(X)) = a7 (X)]
Returny

3.5 Cycle (labelled)

If o/ is a class with no structures of size®,= Cycle(«7) is the set oftyclesof .«7-
structures, that is, sequences defined up to a circular patiow of the component
o/ -structures.

Working with labelled structures means that each sequenkstouctures has ex-
actly k— 1 other structures that correspond to the same cycle. Coardy, the gen-
erating function is .

~ A(z) ~
)= 5y == = -log(1-A@),

k>1

and the corresponding Boltzmann sampler uses the “logaigttdistribution iy (k) =
k

m (k> 1), provided by sampler Loga

Algorithm ' Cycle(.«7)
y <+ [LogaA(x)) = T (X)]
Returny

3.6 Set

If o7 is a labelled class with no structures of sizef0= Se{.«/) is the class obets
of o7-structures, that is, (possibly empty) sequences up tokitray permutation of
component structures.

The corresponding generating function is

~ ~k ~
=5 52— expi),

k>0

and the distribution for the number of components isRbssondistribution:

Algorithm I'[Se{( )]
y + [PoisgA(x)) = [7(x)]
Returny

A set construction for unlabelled structures was introdung9]. It is based on the
multiset construction described next, and requires maiecehte manipulations.

3.7 Multiset (unlabelled)

Boltzmann samplers for the Multiset construction wereddtrced in 9.



3 BASIC CONSTRUCTIONS AND BOLTZMANN SAMPLERS 9

If <7 is an unlabelled class with no structures of siz&0= MSet /) is the class
of all multisetsof .7 -structures - sets with possible repetitions.
The corresponding generating function is

> %A(i)) .

k>1

C(z) = exp(
The Boltzmann sampler uses a MaxIn@#x) subroutine, which samples from the

discrete distribution defined by

1

e JI:Lexp(%A(xj )) .

The Boltzmann sampler itself is then as follows:

Pax(K <k)=

Algorithm FMSet(.«7)
y«< 0
k < MaxIndexA,X)
for j from 1tok—1do
y+ yU [PoisA(X')/j) = j copies ofl & (x!)]
end for
y « yU [Poiss.1(A(X) /k) = k copies ofl o7 (xX)].
Returny

(It should be noted th&t in the above algorithm isot the maximum number of
repetitions of a structure in the output, but only a lowerrmuall calls to the sampler
<7 are independent, so that a structure may be output more titaeamd obtain larger
multiplicity.)

Note that, in contrast to the previous constructions, thee@(z) is expressed not
in terms of the valué\(z), but of the values oA for a whole geometric sequence of
values.

3.8 Recursive Constructions

All of the above constructions can be ugedursively i.e. a classé¢ can be defined
using one of these constructions on a class that is its¢if(ately) defined in terms of
% itself. Some care must be taken to avoid circular definitio@sursive specifications
define structures from smaller structures, possibly of #meestype, but not from them-
selves. Thus, one can define a cla8dy & = 2 x Sed &) (this defines plane trees:
a plane tree is composed of a root having an ordered sequpassilfly empty) of
children, each the root of a plane tree), but a specificatich 8s%? = & x & would
be invalid if classeZ contains structures of size 0 (it would then attempt to ereat
infinite number ofZ7-structures of size 0).

Subject to this “well-foundedness” condition, all the goais constructions can
be used recursively - and indeed, in most applications efést recursivity is used.
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Whenever it is the case, the Boltzmann samplers derived fharprevious subsec-
tions become recursive algorithms, for which terminatian only be guaranteed with
probability 1 (and in finite expected time; see Secdpn

An effective characterization of this “well-foundednesshdition is given in 12],
for specifications that outright forbid structures of size 0

3.9 Ordered Structures and Differential Operators (labelled)

The constructions described in this subsection appedi5ir].

The derivativea’ of a labelled combinatorial structuceis obtained by replacing
the atom ina having the largest label with a “hole” - this hole holds thaqd of an
atom, but does not contribute to size and does not get a lalials, the derivative
of a structure of size has sizen— 1. The derivative of a combinatorial clasg is,
of course, the clasg” = &/’ = {a’ : a € &'} of all derivatives ofe/-structures. The
corresponding (exponential) generating functions acgted| by

Cly = A2,
A2 = ao+ /(;Zé(z)dz

whereag is the number of-structures of size 0.

Derivative classes can be used in recursive constructiom$er suitable “well-
foundedness” conditions (seg, [5] for details), to define a class as the solution to
a symbolic differential equation. In very rough terms, tbisresponds to imposing
order conditions on labels. A simple example is providedhieydlass7 of decreasing
(labelled) binary treesthat is, labelled binary plane trees where each node (am)
required to have a larger label than each of its childrenetheation reads

T = eUITxT
o = 0.

and should be understood as this: the largest label in a @gogebinary tree has to
be at the root, so its derivative will either be a unique objésize zero or equivalent
(after relabelling) to a pair of binary trees, each of whiels ko be decreasing.

Bodini et al.[5] describe a generic Boltzmann sampler for a class definedibsta
order differential operataw’ = .7 (%°,.<7), provided one has a Boltzmann sampler for
the class# (%, <) (thatis,.Z is defined in terms of other classical constructions, and
the whole sampler will necessarily be recursive). Like tampgler for multisets, it
requires a change of the parameter - here, a random changeado recursive call.

Given the generating functiohand a parameterQ xg < pa, one defines a proba-
bility density on the interval0, 1] by

_ XA (u)
R TR O]

if U is a random variable following this distributiok)xg can be interpreted as the
result of picking a random point (according to Lebesgue megsn the domain &
y < A(x),0 < X < Xo, and keeping the abscissa

With this definition, the Boltzmann sampler is as follows:
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Algorithm e fromle!, o' = F (%, o)
if Bern(A(0)/A(x)) then
Return a uniform object fromz
else
DrawU € [0,1] following densityhy a
f+ T F[Z,](UX)
Return objectZ, f) with atomZ having the largest label
end if

3.10 Multivariate Models

So far, we have only considered generating functions witingles variable, which
“counts” for the size of the structures; that is, each stmgy in the class contributes a
single termzY or 2!/ y! to the generating function.

Given a combinatorial clasg, one can define an arbitrary number of statisgjcs
% — N (1 <i<Kk), and the corresponding multivariate generating fund@ignuy, . . ., uy)
(first as a multivariate formal power series, then as an digdlynction) by changing
the contribution of each structuces ¢ to Z° Ma<i<k u? © (for the rest of this subsec-
tion, we assume unlabelled structures), and consequarilyltzmann distribution for
any tuple(x,us, ..., ux) of positive real variables lying inside the convergence diom
of the generating function.

When the considered statistics are transmitted additivetjer the constructions
described in this section (say, if there are several type&atoins”, and statistic
counts the number of atoms of typethe Boltzmann samplers can be adapted to this
generalized model.

This area has not been explored as extensively as othebslgydecause a general
theory would involve additional technical details. Bodanid Ponty 4] use it to sample
from context-free languages with a nonuniform distribatishere the frequency of
letters is artificially skewed, with an application to “Tisttesselations” (perfect tilings
of a rectangular region with pentominoes) where each piasdhe same frequency.

4 ALGORITHM COMPLEXITIES

Each of the individual algorithms in Secti@has low overhead complexity, but they
tend to make possibly unbounded numbers of calls to otherighgns. The general
theorem below is a compilation of results fro®] pnd other papers that extend the
expressive power of “specifiable” classes.

Theorem 1 Let% denote a (labelled or unlabelled) class that can be enspalygified,

in a possibly recursive way, with the constructions of Set8, and let 0< x < p be
any positive real lying inside the convergence domain ferdenerating function of
% . Then, assuming an oracle that provides values of the rei@emerating functions
at real values, the algorithing” compiled from the specification by the patterns of
Section3 terminates with probability 1 and in finite expected timetpauis a random

¢ -structure under the Boltzmann distribution with paramgte@nd uses a number of
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real arithmetic operations thatligear in the size of the output.

5 APPROXIMATE AND EXACT SIZE SAMPLERS

The user of random generation algorithm is often useekactrandom samplers (al-
gorithms that taken as input, and output a uniform random element of the subclass
%n), or perhapspproximate-sizeamplers (algorithms that take two integers N as
input, and output a random element with sizgnrN] with equal probability for any
two elements with the same size). Both types can be obtaipedithing a rejection
mechanism to Boltzmann samplers, at overall costs thatrdepe the distribution of
sizes under the Boltzmann model.

We denotey; (x) for the expected sizgyy(x) for the expected squared size, and
o(x) for the standard deviation on size, all as functions of patanx; analytically,

) = o

2011
(x) = xC’(x)g(:(()C(x)
o(x) = /() - X

5.1 Approximate Size Samplers

Assume we are given a target sizesome tolerance > 0, and the value, of the pa-
rameter that ensures that the expected size of structune$\s obtain an approximate
size sampler with acceptable sized iz 1 (n, &) = ((1— €)n, (1 + €)n) by repeatedly
using the Boltzmann samplEf# (x,), until a structure whose size lieslirappears.

Since the cost of each call to the Boltzmann sampler is limedne size of the
output by Theorem 1, the expected cost of this approximagesampler is asymptotic
to ntimes the expected number of calls to the Boltzmann sampler.

In favorable situations, described as “lumpy” distribasan [8] and characterized
by o(x)/u1(x) — 0 asx — p—, this expected number of calls goes to 1ra&he
target size) goes to infinity — the probability that the firatl avill yield a structure
whose size is il is asymptotically 1. More precise information on the disition
of sizes produced by such an approximate-size sampler cabtagmed through the
asymptotics of the generating function. Typically, forripy” distributions, this size
is concentrated around the expected size, and shortevaigesf lengtho(n) could be
used without altering the theoretical results.

In less favorable situations, this success probabilitysgoa finite positive constant
asn goes to infinity, so that the expected cost of the approxirsiate sampler is still
asymptotically linear. In many cases, a size toleranceagf, 5% around the target size,
at the cost of a constant number of rejections, is quite dabép

In some even less favorable situations, it may be necessarfiange the class
by using “pointing” (a combinatorial operation close to idation, corresponding to
distinguishing a single atom in the structure) a finite nundf¢imes before one gets
to the situation described above.
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5.2 Exact Size Samplers

Settinge = 1/n in the approximate size samplers of the previous subsectsults

in exact size samplers. It should be noted, however, thatdst mases, the success
probability (the probability, with parametay, of obtaining a structure of size exactly
n) is only of order®(1/n), which results in an expected complex@yn?) for the exact
size sampler.

5.3 Singular Samplers

Whenever the generating function is finite at its dominangsiarity p, one can de-
fine a Boltzmann distribution for = p, and the Boltzmann samplers can be used with
parametemp. This is typically (though not universally) true with resiwe specifi-
cations, and the most frequent case is for the generatingifumto have a “square
root-type” singularity,j.e. C(z) has a singular expansion of the fofiz) = C(p) +
a(1—2z/p)Y?+o((1—z/p)Y/?) aszapproachep.

In such cases, the expected size for the singular Boltzmanlehs infinite. While
this offers the best chances of success for the approxinmgesamplers, it also im-
plies that the expected cost of the same approximate sizpleaim infinite, which is
unacceptable.

However, on closer examination, this infinite expectatioly@womes from those
(rare: the probability i©(1/./n)) runs of the sampler where the output size is much
larger than the target. A simple modification of the Boltzmann samplers can thus
avoid this higher cost, by keeping track of the number of atg®nerated so far and
aborting the Boltzmann sampler as soon as the total becargey ltham; with this
modification, expected costs for a square root singulagbomed(n) for approximate
size with finiteg, and©(n®/?) for exact size.

6 GENERATING FUNCTION EVALUATION AND
PRECISION

One of the key points of the Boltzmann method, when compauetthe recursive

method, is that enumeration sequences are replacagkibgrating function evalua-
tions In many of the constructions of Secti@ each involved generating function
needs to be evaluated for the same value of its variable;ewaf them, some have to
be evaluated for a deterministic or random sequence of salue

In some cases, the generating functions have closed fordntherevaluation does
not lead to special complications, but recursive specifinatlead to generating func-
tions that are determined by equations, and the questioetefrining a good approx-
imation of the required values becomes more troublesome.

Pivoteau, Salvy and Sorid 2] provide an efficient solution to this problem, at
least for the basic constructions of sums, products, segserycles and sets. The
natural idea of iterating the equations provides only slanvergence; the preferred
method is based on Newton iteration, which ensures quadm@tivergence (asymptot-
ically, distance to the exact solution is squared by eachtitsn). For a given value
of the variable, the generating function equations typidahve several real solutions,
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only one of which corresponds to the generating function ihéhe “true” solution;
an important result in the above-mentioned paper is thahks to the existence of a
combinatorial equivalent to the Newton iteration, conesice to the “true” value is
ensured.

Also, note that, when applying Newton iteration for geneafunction evalua-
tion, convergence is significantly faster the furtkeés from the dominant singularity
p. While this is good for constructions such as multisets aleoed structures that
require the use of sequences of values (for sequences adsvaiuthe variable that
quickly decrease to zero), it is conversely bad news forsita$ applications that re-
quire very large structures, since this means taking vatfiesthat are very close to
p. Nevertheless, the experimental results reportedi2h pven for very complex spec-
ifications, remain within reasonable bounds (the companaiime for the oracles of
specifications implying 500 equations, for values of theap@ter leading to expected
structure sizes in the tens of thousands, are of the ordemifiate).

Another question that arises naturally is that of the infageof approximations on
the final distribution of random samples. Even assuming afép€ source of ran-
domness for the simulations, a small error in a generatingtfon value that is used
repeatedly by a sampling algorithm might result in a sigaifity biased distribution
of the final samples.

To give an example, suppose a specification involves a digjmiions” = <7 U %,
and each o7 and# is defined recursively using - this is not an artificial assump-
tion. Assume that, for the valueof the paramete\(x) is slightly overestimated, and
B(x) is slightly underestimated. In this case, each time the sami@r ¢ is used, it
will have a tendency to switch ta” more often than it ideally should; this will result
in a distribution that is biased in favor &f-structures that often use’-structures as
components.

One possible solutiorg] to estimate, and possibly correct, this bias, is to design
Boltzmann samplers that not only output a random structuwrealso, for each real-
valued constam ~ A(x) used in the sampling, a “safety intervédt,A*], with A~ <
A < AT, with a precise meaning of “if the sampler had been run with aalue in
[A=,A'] instead ofA, the result of the whole computation would have been the same
This is done by studying the small number of discrete distiiims one really needs to
sample from.

From such “safety interval” samplers, one can derive bothaatital and a theo-
retical result:

e An estimate of the quality of approximation one should hawesach involved
constant, such that the whole Boltzmann sampler is verkelylito output any
safety interval that doasot contain the true value of the corresponding generat-
ing function. Not surprisingly®(logn) bits are enough when the expected size
isn.

e A (still hypothetical) construction for &uly exactBoltzmann sampler, if one
assumes stronger oracles than those provided By [If one assumes oracles
that give both an upper an a lower bound for each involvedtenhsand that the
oracles can be called repetitively to decrease the difterbetween these bounds
(say, by a factor of 2 with every iteration), then the “safiatgrval” approximate
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Boltzmann samplers can be modified into exact Boltzmann Easwhich will
call the oracles a small (logarithmic) number of times orrage.

7 NOT-QUITE BOLTZMANN SAMPLERS

Boltzmann samplers share two important and useful pragsefbir the user interested
in practical random sampling of large structures: (1) thefpat structures of random
size, with the guarantee thany two structures of the same size have the same proba-
bility of being obtainedand (2) they aréstable” under the constructionsf Section3.

While property (1) is the essential one for direct practaplications, making it
possible to use, say, rejection to transform Boltzmann $ansmto exact- or approximate-
size samplers, property (2) is the one responsible for thie vapplicability of the
method. Nevertheless, sometimes property (1) alone carbtagned while keeping
algorithms of low complexity, typically by using a “nonstiard” final construction
using Boltzmann samplers as subroutines.

A good example of this is theladamard producbf two combinatorial class. If
</ and % are two arbitrary (unlabelled) combinatorial classesirtHadamard prod-
uct% = o/ © A is the subset of7 x # that only contains pairs = (a,b) with the
same size (withc| defined to bea| = |b| instead of the sum for the classical product).
The corresponding generating function is none other tharHhdamard product of
generating functions,

C(z) =A®B(2) = anbn?’,
n

with radius of convergence at least the product of radA@) andB(z).
A real Boltzmann sampler fog” can be written easily: one simply checks that, if
X = XaXg With X5 < pa andxg < pg, the algorithm
repeat
a o (xp)
B — r%(XB)
until |a| = |B]
Return(a, 3)
terminates with probability 1 and in finite expected timed autputs & structure
under the Boltzmann distribution with parameserlt is, however, inefficient: each
iteration has success probabil@yx)/(A(xa)B(xg)), which can be very small when
is close to the dominant singularity.

Bodini et al.[3] use the classical Birthday paradox to devise a more efticilgyo-
rithm that preserves property (1), though not the whole®Bo#nn distribution: simply
alternate (either deterministically or randomly) betwé€e# (xa) andl" Z(xg), retain-
ing only the first obtained structure of each class and sia#l, ai pair with the same
size can be formed.

8 CONCLUSION

Boltzmann samplers are an attractive class of random gemeedgorithms for classes
of combinatorial structures that lend themselves to coatbiial decompositions, al-
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lowing for fast (linear-time, or quasi-linear-time) geagon of structures with size in
the millions for simple classes, and well into the tens ofifends for complex classes.
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