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ABSTRACT

The Boltzmann model for the random generation of “decomposable” combinatorial
structures is a set of techniques that allows for efficient random sampling algorithms
for a large class of families of discrete objects. The usual requirement of sampling
uniformly from the set of objects of a given size is somehow relaxed, though unifor-
mity among objects of each size is still ensured. Generatingfunctions, rather than the
enumeration sequences they are based on, are the crucial ingredient.

We give a brief description of the general theory, as well as anumber of newer
developments.

1 INTRODUCTION

1.1 Random Generation of Combinatorial Structures: a
Quick Overview

Random generation is often used as a tool for exploration (“what do large objects of
this type look like?”), or to provide large datasets for software and algorithm testing.

Usually, one defines a combinatorial class as a finite or countable family C of
discrete “objects”, equipped with a “size” function fromC to the natural numbers,
such that for each natural numbern, the subsetCn of all objects with sizen is finite.
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1 INTRODUCTION 2

A uniformrandom generator for the classC is then a randomized algorithm that takes
as input an integern, and outputs an element randomly selected uniformly fromCn.
The efficiency of the generator is typically measured in terms of its expected time and
space complexities, expressed as a function of the sizen.

Random generation methods tend to fall into one of a small number of classes.
Ad hocmethods rely on precise combinatorial properties of the considered class; a
fine example is provided by Rémy’s algorithm [14] for the random generation of plane
binary trees.Markov chainmethods rely on the simulation of a Markov chain whose
states are the objects one wants to sample from, and that converges to the uniform (or
another suitably chosen) distribution; careful analysis of the convergence speed makes
it possible to run the chain for a fixed number of steps and obtain an almost-uniform
generator, or more sophisticated techniques such as Coupling from the Past [13] can be
used for exact sampling from the stationary distribution.

Decompositionmethods apply for classes where objects are, informally, “made up”
of smaller objects, be they from the same or another class that is itself decomposable.
A prime example is that ofplane binary trees, that is, rooted trees where each internal
node has exactly two children, one of which is distinguishedas theleft child while the
other is theright child. In this case, a plane binary tree is either made up of a single
root-leaf, or of a root and left and right subtrees, both of which can be any plane binary
trees.

The first systematic example of a decomposition method for random generation is
the so-calledrecursive method[11], where decompositions are used to obtain recur-
rences satisfied by the counting sequences. These counting sequences are then used,
together with the decomposition rules themselves, to guidethe random generation al-
gorithm. In the above example of plane binary trees, the counting sequence (the well-
known Catalan numbers) is used to determine the probabilitypn,k that a uniform ran-
dom tree withn internal nodes has a left subtree withk internal nodes, and to sample
K from this distribution; then the random generator is recursively called with sizesK
andn−1−K to obtain the left and right subtrees (which are independentconditioned
on their respective sizes); the resulting tree is then uniform.

1.2 The Boltzmann Method

TheBoltzmann method, as introduced in [7, 8], is another decomposition-based method
that can be applied to roughly the same combinatorial classes as the recursive method.
We will give a precise description of the method in the next section. For this introduc-
tion, we will simply describe the crucial ingredients.

Where the recursive method uses counting sequences for the random generation
algorithms, and generating functions are mostly a tool to compute the counting se-
quences, the Boltzmann method uses the generating functions, viewed as analytic func-
tions of a real variable (and, in practice, the values of the generating functions) in the
random generation algorithms – thus reducing the need for precomputation to a small
number of real constants. The idea is to “relax” the requirement for a uniform sam-
pler (which outputs a uniform random structure among those of the target sizen) into
allowing structures of all sizes, while keeping uniformityamong all objects of each
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individual size. By choosing the “right” distribution on sizes, independence among
substructures is introduced, which results in very simple and efficient algorithms.

1.3 Outline of the Paper

Sections2-4 make up the bulk of what can be termed the “Boltzmann method”.Sec-
tion 2 gives a general description of the Boltzmann method. Section 3 lists a number
of constructions which can be used to define specifications ofcombinatorial classes for
which Boltzmann samplers can be automatically compiled from the specification. Sec-
tion 4 sums up various results on the complexities of the random sampling algorithms.
Section5 describes how Boltzmann samplers can be used to get closer tothe classical
model of uniform, fixed-size random generation.

Section6 deals with the question of how one can effectively obtain thereal con-
stants used in Boltzmann samplers, and Section7 describes results that draw on the
principles of the method without exactly fitting in it.

The list of references does not attempt to give a complete list of articles using the
ideas exposed here. The interested reader will find more examples in the bibliography
of [2], even though it is not limited to references about the Boltzmann method.

All proofs and most technical details have been purposefully omitted; the algo-
rithms in Section3 have been included mostly to demonstrate their simplicity.We
have made the choice of not detailing any of the many examplesthat could be given;
the interested reader will find many such examples, including pictures of large random
structures, in the original papers.

2 THE BOLTZMANN METHOD: GENERAL
DESCRIPTION

The Boltzmann method can be used in two flavors, theordinary (or unlabelled) and
exponential(labelled) variants.

Throughout the paper, we use the wordstructure(or C -structure) to indicate an el-
ement of a combinatorial classC . No particular assumption is ever made on the nature
of such structures, though classical examples tend to come from discrete mathematics
or theoretical computer science: words over some finite alphabet, sequences, various
flavors of trees, etc.

2.1 Combinatorial Classes and Products

Let C be some combinatorial class. The size of an objectc∈ C will be noted|c|. For
any integern, let cn denote the number of objects inC with sizen. The ordinary (resp.
exponential)generating functionfor C is

C(z) = ∑
n

cnzn, resp.C̃(z) = ∑
n

cn
zn

n!
;

it is always assumed that the considered generating function has positive radius of

convergenceρ , i.e. thatlimc1/n
n < ∞ (resp.,lim(cn/n!)1/n < ∞).
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For 0< x< ρ , the (normal, resp. exponential)Boltzmann distribution overC for
parameter xis the probability distribution defined, for anyc∈ C , by

Px(c) =
x|c|

C(x)
, resp.Px(c) =

x|c|

n!C̃(x)
.

These distributions give positive probability to all objects in the class, with the
property that two objects with the same size have the same probability. They are,
of course, not the only probability distributions with thisproperty; their interest lies
mostly in their relationship with two common constructionsin the combinatorial world:
the normal and labelled products.

Given two classesA andB, their normal product is just their Cartesian product
C = A ×B, with size defined additively by|(a,b)|= |a|+ |b| for (a,b) ∈A ×B.

To define the labelled product, one has to assume that structures are made up of
both an unlabelled structurec and a “labelling”, a permutation on a set whose is that of
c. Think of a structurec as being formed of|c| basic “atoms”, each of which receives
a distinct label from[[1, |c|]] = {i ∈ Z : 1≤ i ≤ |c|}. By a slight abuse of notation, we
identify these atoms with the integers 1 to|c|, so that the labellings are just permutations
σ ∈S|c|. For each unlabelled structurec, the set of admissible permutations may be a
strict subset ofS|c|.

Then, the labelled product of two labelled structures(a,σa) and(b,σb) is defined
as(a,b), with admissible labelings obtained by taking all partitions of [[1, |a|+ |b|]]
into two partsA andB of respective sizes|a| and |b|, and, for each partition, taking
the one permutationσ ∈ S|a|+|b| where all entries inA are in the same respective
order as that ofσa, and all entries inB are in the same respective order as that ofσb

(that is, if (x,y) ∈ A2, thenσa(x) < σb(y) iff σ(x) < σ(y), and similarly forB). As
a result,(a,σa) and(b,σb) have

(|a|+|b|
|a|
)

different structures in their labelled product.
The labelled product of two classes is defined as the set of alllabelled products of
structures in the two original classes, with size again defined additively.

The first important property is as follows: if two unlabelled(resp., labelled) classes
A andB have generating functionsA(z) andB(z) (resp., exponential generating func-
tionsÃ(z) andB̃(z)), then their normal (resp. labelled) product has generating function
C(z) = A(z)B(z) (resp.,C̃(z) = Ã(z)B̃(z)).

An immediate, and most useful, consequence, valid under both models, is this:if
C =A ×B, then taking the product of two independentA -structure andB-structure,
each following the Boltzmann distribution with parameter x, results in aC -structure
under the Boltzmann distribution with parameter x.For labelled structures, it is implied
that one selects a uniform random set to define the permutation in the product.

This “independence under substructures” property, in turn, has interesting practi-
cal consequences, in that it makes it possible to describe, for a number of classical
combinatorial constructions, systematic ways to produce efficient algorithms to sam-
ple from the Boltzmann distribution for classes that are entirely described (possibly in
a recursive way) with them. This is the topic of Section3.
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2.2 The Boltzmann Method

By aBoltzmann samplerfor a combinatorial classC , we mean a randomized algorithm
ΓC that takes as input a real parameterx and outputs a randomC -structure under
the Boltzmann distribution with parameterx. Our overall goal is to create efficient
Boltzmann samplers for as many combinatorial classes as possible.

Given a description of a combinatorial classC from which we would like to obtain
“large random structures” (of sizen, ideally), the Boltzmann method can be summa-
rized as follows:

1. Find out if our class can be specified (up to a reasonably simple size-preserving
bijection) from the constructions in Section3. If not, try to extend the expressive
power of the method by adding new constructions. If this doesnot work, maybe
the Boltzmann method is not the best choice after all.

2. Use the techniques of the Purple Book [10] to locate the “dominant” singularities
(those of smallest modulus, which govern the asymptotics ofthe counting coeffi-
cients; since the generating functions have nonnegative coefficients, at least one
such singularity lies on the positive real axis) of the generating functions in our
specification, and possibly an estimate of the value we should give parameterx
to give expected sizen to C -structures under the Boltzmann distribution.

3. Compute approximations (to roughlyΘ(logn) digits) of the values atx of all
involved generating functions, possibly using the combinatorial oracle of Sec-
tion 6.

4. Use the patterns in Section3, together with our specification, to write a Boltz-
mann sampling program.

5. Optionally, add a rejection scheme to obtain samples withsize in[(1− ε)n,(1+
ε)n], or even of exact sizen (more costly).

Alternatively, step 2 can be replaced by experimentation using the other steps.

2.3 Choosing the Parameter and Tuning for Size

As said above, the Boltzmann model uses a real parameter thatmay be chosen arbi-
trarily inside the radius of convergence of the generating function for the class under
consideration. This parameterx governs the distribution of sizes of the random struc-
tures. In typical applications, one would like to obtainlarge structures, that is, there is
an ideal valuen for sizes. We now briefly turn to the question of picking an appropriate
value ofx for a targetn.

For a givenx, the probability that a Boltzmann-distributedA -structure will have
sizen is given by

pn = pn(x) =
anxn

A(x)
;

multiplying byn, and summing over all values ofn, we obtain theexpectedsize

N = NA (x) =
xA′(x)
A(x)

,
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whereA′ is just the derivative of the generating functionA (which can be formally
defined asA′(x) =∑n nanxn−1; this corresponds to the usual derivative inside the radius
of convergence ofA).

Except in degenerate cases,NA is a strictly increasing and convex function on the
interval [0,ρ), and the equationN(x) = n has at most one solution; if, as is often the
case,A′(x) goes to infinity asx goes toρ , the equation has a unique solutionxn for
each integern. Settingx to this valuexn in the Boltzmann samplers from the previous
section results in a sampling algorithm that produces structures of expected sizen.
Interestingly enough, the same equation also describes thevalue ofx that maximizes
the probabilitypn that the output structure will have sizen.

When the generating function is known exactly, one can solvefor the exact value
of xn. In many situations of interest, the generating function isknown only through an
equation that it satisfies (this is typically the case when the class is defined recursively,
as described in the next section). In this case, it is often possible to use the techniques
of analytic combinatorics [10] to derive precise asymptotic information about the gen-
erating function and obtain a precise estimate ofxn.

In some cases, an attractive alternative is to use the singularity x = ρ ; although it
often implies an infinite expected size, a simple adaptationof the sampling algorithms
makes this a very viable choice. This will be described in more detail in Section5.

3 BASIC CONSTRUCTIONS AND BOLTZMANN
SAMPLERS

In this section, we describe a number of constructions that can be used to describe
more complex classes from simpler ones, and, for each construction, the corresponding
combination algorithm that allows one to build a Boltzmann sampler for the new class
using Boltzmann samplers for the classes involved in the description. The constructions
described here allow one to describe combinatorial classesthat are close to those of the
theory of combinatorial species [1].

When nothing is specified, these constructions apply to bothlabelled and unla-
belled structures; in the labelled case, it is silently assumed that one performs a label
redistribution as in the case of the labelled product.

The initial constructions were described in [8]; later additions are credited individ-
ually.

In all cases, the construction is translated into an expression for the generating
function of the new class in terms of the previous one; this inturns gives a simple
construction for the sampling algorithm, where “substructures” are independent. Many
algorithms can be expressed in the form “Draw integerk from discrete distribution
µ(x), then letγ receive the concatenation ofk independent calls to generatorΓA (x)”;
we abbreviate this as

γ← [Γµ(x) =⇒ ΓA (x)] .

We also use samplers for a few standard distributions: Bernoulli with success prob-
ability x (Bern(x)), geometric (with supportN) with parameterx (Geom(x)), and Pois-
son with ratex (Poiss(x)). A subscript condition on these samplers means a condition-
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ing on the output, which can be achieved by rejecting outputsuntil the condition is
met.

3.1 Finite Sets

Finite (typically small) sets do not require an elaborate theory to produce sampling
algorithms, and are included to serve as elementary bricks for more complex construc-
tions.

One typically defines an “empty structure” classE , containing a single structure of
size zero that we denote as1, and an “atom” classZ , containing a single structureZ
of size 1. Occasionally, one may use a number of different atom “types”, which will
then be writtenZa,Zb, and so on.

3.2 Disjoint Union

The most basic construction is that ofdisjoint union: if A andB are disjoint classes,
then their unionC =A ∪B (with size inherited from the original class) is a new class,
whose generating function is simplyC(z) = A(z)+B(z).

Algorithm Γ[A ∪B]
if Bern(A(x)/(A(x)+B(x))) then

ReturnΓA (x)
else

ReturnΓB(x)
end if

3.3 Product

The product construction, being of fundamental importance, has been described in the
previous section.

Algorithm Γ[A ×B]
Return(ΓA (x),ΓB(x))

3.4 Sequence

If A is a class with no structures of size 0,C = Seq(A ) is the set of sequences
(A1, . . . ,Ak), for arbitraryk≥ 0, with Ai ∈A , and size defined additively by

|(A1, . . . ,Ak)|= |A1|+ · · ·+ |Ak|.
The generating function forC is thepseudo-inverseof that ofA ,

C(z) =
1

1−A(z)
,

and the corresponding Boltzmann sampler forC is as follows:
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Algorithm ΓSeq(A )
γ← [Geom(A(x)) =⇒ ΓA (x)]
Returnγ

3.5 Cycle (labelled)

If A is a class with no structures of size 0,C = Cycle(A ) is the set ofcyclesof A -
structures, that is, sequences defined up to a circular permutation of the component
A -structures.

Working with labelled structures means that each sequence of k structures has ex-
actly k−1 other structures that correspond to the same cycle. Consequently, the gen-
erating function is

C̃(z) = ∑
k≥1

Ãk(z)
k

=− log(1− Ã(z)),

and the corresponding Boltzmann sampler uses the “logarithmic” distributionµx(k) =
xk

k| log(1−x)| (k≥ 1), provided by sampler Loga():

Algorithm ΓCycle(A )
γ←

[

Loga(Ã(x)) =⇒ ΓA (x)
]

Returnγ

3.6 Set

If A is a labelled class with no structures of size 0,C = Set(A ) is the class ofsets
of A -structures, that is, (possibly empty) sequences up to an arbitrary permutation of
component structures.

The corresponding generating function is

C̃(z) = ∑
k≥0

Ãk(z)
k!

= exp(Ã(z)),

and the distribution for the number of components is thePoissondistribution:

Algorithm Γ[Set(A )]
γ←

[

Poiss(Ã(x)) =⇒ ΓA (x)
]

Returnγ

A set construction for unlabelled structures was introduced in [9]. It is based on the
multiset construction described next, and requires more elaborate manipulations.

3.7 Multiset (unlabelled)

Boltzmann samplers for the Multiset construction were introduced in [9].
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If A is an unlabelled class with no structures of size 0,C = MSet(A ) is the class
of all multisetsof A -structures - sets with possible repetitions.

The corresponding generating function is

C(z) = exp

(

∑
k≥1

1
k

A(zk)

)

.

The Boltzmann sampler uses a MaxIndex(A,x) subroutine, which samples from the
discrete distribution defined by

PA,x(K ≤ k) =
1

C(x) ∏
j≤k

exp

(

1
j
A(x j)

)

.

The Boltzmann sampler itself is then as follows:

Algorithm ΓMSet(A )
γ← /0
k←MaxIndex(A,x)
for j from 1 tok−1 do

γ← γ ∪
[

Poiss(A(x j)/ j) =⇒ j copies ofΓA (x j)
]

end for
γ← γ ∪

[

Poiss≥1(A(xk)/k) =⇒ k copies ofΓA (xk)
]

.
Returnγ

(It should be noted thatk in the above algorithm isnot the maximum number of
repetitions of a structure in the output, but only a lower bound: all calls to the sampler
ΓA are independent, so that a structure may be output more than once and obtain larger
multiplicity.)

Note that, in contrast to the previous constructions, the valueC(z) is expressed not
in terms of the valueA(z), but of the values ofA for a whole geometric sequence of
values.

3.8 Recursive Constructions

All of the above constructions can be usedrecursively, i.e. a classC can be defined
using one of these constructions on a class that is itself (ultimately) defined in terms of
C itself. Some care must be taken to avoid circular definitions: recursive specifications
define structures from smaller structures, possibly of the same type, but not from them-
selves. Thus, one can define a classP by P =Z ×Seq(P) (this defines plane trees:
a plane tree is composed of a root having an ordered sequence (possibly empty) of
children, each the root of a plane tree), but a specification such asP = A ×P would
be invalid if classA contains structures of size 0 (it would then attempt to create an
infinite number ofP-structures of size 0).

Subject to this “well-foundedness” condition, all the previous constructions can
be used recursively - and indeed, in most applications of interest recursivity is used.
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Whenever it is the case, the Boltzmann samplers derived fromthe previous subsec-
tions become recursive algorithms, for which termination can only be guaranteed with
probability 1 (and in finite expected time; see Section4).

An effective characterization of this “well-foundedness”condition is given in [12],
for specifications that outright forbid structures of size 0.

3.9 Ordered Structures and Differential Operators (labelled)

The constructions described in this subsection appear in [15, 5].
The derivativeα ′ of a labelled combinatorial structureα is obtained by replacing

the atom inα having the largest label with a “hole” - this hole holds the place of an
atom, but does not contribute to size and does not get a label.Thus, the derivative
of a structure of sizen has sizen− 1. The derivative of a combinatorial classA is,
of course, the classC = A ′ = {α ′ : α ∈ A } of all derivatives ofA -structures. The
corresponding (exponential) generating functions are related by

C̃(z) = Ã′(z),

Ã(z) = a0+

∫ z

0
C̃(z)dz,

wherea0 is the number ofA -structures of size 0.
Derivative classes can be used in recursive constructions,under suitable “well-

foundedness” conditions (see [2, 5] for details), to define a class as the solution to
a symbolic differential equation. In very rough terms, thiscorresponds to imposing
order conditions on labels. A simple example is provided by the classT of decreasing
(labelled) binary trees, that is, labelled binary plane trees where each node (atom)is
required to have a larger label than each of its children: theequation reads

T
′ = ε ∪T ×T

T0 = /0.

and should be understood as this: the largest label in a decreasing binary tree has to
be at the root, so its derivative will either be a unique object of size zero or equivalent
(after relabelling) to a pair of binary trees, each of which has to be decreasing.

Bodini et al.[5] describe a generic Boltzmann sampler for a class defined by afirst-
order differential operatorA ′ =F (Z ,A ), provided one has a Boltzmann sampler for
the classF (Z ,A ) (that is,F is defined in terms of other classical constructions, and
the whole sampler will necessarily be recursive). Like the sampler for multisets, it
requires a change of the parameter - here, a random change - for each recursive call.

Given the generating functionA and a parameter 0< x0 < ρA, one defines a proba-
bility density on the interval[0,1] by

hx0,A(u) =
x0A′(ux0)

A(x0)−A(0)
;

if U is a random variable following this distribution,Ux0 can be interpreted as the
result of picking a random point (according to Lebesgue measure) in the domain 0<
y< A(x),0< x< x0, and keeping the abscissax.

With this definition, the Boltzmann sampler is as follows:
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Algorithm ΓA from ΓA ′, A ′ = F (Z ,A )
if Bern(A(0)/A(x)) then

Return a uniform object fromA0

else
DrawU ∈ [0,1] following densityhx,A

f ← ΓF [Z ,A ](Ux)
Return object(Z, f ) with atomZ having the largest label

end if

3.10 Multivariate Models

So far, we have only considered generating functions with a single variable, which
“counts” for the size of the structures; that is, each structureγ in the class contributes a
single termz|γ| or z|γ|/γ! to the generating function.

Given a combinatorial classC , one can define an arbitrary number of statisticssi :
C →N (1≤ i≤ k), and the corresponding multivariate generating functionC(z,u1, . . . ,uk)
(first as a multivariate formal power series, then as an analytic function) by changing

the contribution of each structurec∈ C to z|c|∏1≤i≤k usi(c)
i (for the rest of this subsec-

tion, we assume unlabelled structures), and consequently,a Boltzmann distribution for
any tuple(x,u1, . . . ,uk) of positive real variables lying inside the convergence domain
of the generating function.

When the considered statistics are transmitted additivelyunder the constructions
described in this section (say, if there are several types of“atoms”, and statisticsi

counts the number of atoms of typei), the Boltzmann samplers can be adapted to this
generalized model.

This area has not been explored as extensively as others, probably because a general
theory would involve additional technical details. Bodiniand Ponty [4] use it to sample
from context-free languages with a nonuniform distribution where the frequency of
letters is artificially skewed, with an application to “Tetris tesselations” (perfect tilings
of a rectangular region with pentominoes) where each piece has the same frequency.

4 ALGORITHM COMPLEXITIES

Each of the individual algorithms in Section3 has low overhead complexity, but they
tend to make possibly unbounded numbers of calls to other algorithms. The general
theorem below is a compilation of results from [8] and other papers that extend the
expressive power of “specifiable” classes.

Theorem 1 LetC denote a (labelled or unlabelled) class that can be entirelyspecified,
in a possibly recursive way, with the constructions of Section 3, and let 0< x< ρ be
any positive real lying inside the convergence domain for the generating function of
C . Then, assuming an oracle that provides values of the relevant generating functions
at real values, the algorithmΓC compiled from the specification by the patterns of
Section3 terminates with probability 1 and in finite expected time, outputs a random
C -structure under the Boltzmann distribution with parameter x, and uses a number of
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real arithmetic operations that islinear in the size of the output.

5 APPROXIMATE AND EXACT SIZE SAMPLERS

The user of random generation algorithm is often used toexactrandom samplers (al-
gorithms that taken as input, and output a uniform random element of the subclass
Cn), or perhapsapproximate-sizesamplers (algorithms that take two integersn< N as
input, and output a random element with size in[n,N] with equal probability for any
two elements with the same size). Both types can be obtained by adding a rejection
mechanism to Boltzmann samplers, at overall costs that depend on the distribution of
sizes under the Boltzmann model.

We denoteµ1(x) for the expected size,µ2(x) for the expected squared size, and
σ(x) for the standard deviation on size, all as functions of parameterx; analytically,

µ1(x) =
xC′(x)
C(x)

µ2(x) =
xC′(x)+ x2C′′(x)

C(x)

σ(x) =
√

µ2(x)− µ2
1(x)

5.1 Approximate Size Samplers

Assume we are given a target sizen, some toleranceε > 0, and the valuexn of the pa-
rameter that ensures that the expected size of structures isn. We obtain an approximate
size sampler with acceptable sizes inI = I(n,ε) = ((1− ε)n,(1+ ε)n) by repeatedly
using the Boltzmann samplerΓC (xn), until a structure whose size lies inI appears.

Since the cost of each call to the Boltzmann sampler is linearin the size of the
output by Theorem 1, the expected cost of this approximate size sampler is asymptotic
to n times the expected number of calls to the Boltzmann sampler.

In favorable situations, described as “lumpy” distributions in [8] and characterized
by σ(x)/µ1(x)→ 0 asx→ ρ−, this expected number of calls goes to 1 asn (the
target size) goes to infinity – the probability that the first call will yield a structure
whose size is inI is asymptotically 1. More precise information on the distribution
of sizes produced by such an approximate-size sampler can beobtained through the
asymptotics of the generating function. Typically, for “lumpy” distributions, this size
is concentrated around the expected size, and shorter intervals of lengtho(n) could be
used without altering the theoretical results.

In less favorable situations, this success probability goes to a finite positive constant
asn goes to infinity, so that the expected cost of the approximatesize sampler is still
asymptotically linear. In many cases, a size tolerance of, say, 5% around the target size,
at the cost of a constant number of rejections, is quite acceptable.

In some even less favorable situations, it may be necessary to change the class
by using “pointing” (a combinatorial operation close to derivation, corresponding to
distinguishing a single atom in the structure) a finite number of times before one gets
to the situation described above.
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5.2 Exact Size Samplers

Settingε = 1/n in the approximate size samplers of the previous subsection, results
in exact size samplers. It should be noted, however, that in most cases, the success
probability (the probability, with parameterxn, of obtaining a structure of size exactly
n) is only of orderΘ(1/n), which results in an expected complexityΘ(n2) for the exact
size sampler.

5.3 Singular Samplers

Whenever the generating function is finite at its dominant singularity ρ , one can de-
fine a Boltzmann distribution forx= ρ , and the Boltzmann samplers can be used with
parameterρ . This is typically (though not universally) true with recursive specifi-
cations, and the most frequent case is for the generating function to have a “square
root-type” singularity,i.e. C(z) has a singular expansion of the formC(z) = C(ρ)+
a(1− z/ρ)1/2+o((1− z/ρ)1/2) aszapproachesρ .

In such cases, the expected size for the singular Boltzmann model is infinite. While
this offers the best chances of success for the approximate size samplers, it also im-
plies that the expected cost of the same approximate size sampler is infinite, which is
unacceptable.

However, on closer examination, this infinite expectation only comes from those
(rare: the probability isΘ(1/

√
n)) runs of the sampler where the output size is much

larger than the targetn. A simple modification of the Boltzmann samplers can thus
avoid this higher cost, by keeping track of the number of atoms generated so far and
aborting the Boltzmann sampler as soon as the total becomes larger thann; with this
modification, expected costs for a square root singularity becomeΘ(n) for approximate
size with finiteε, andΘ(n3/2) for exact size.

6 GENERATING FUNCTION EVALUATION AND
PRECISION

One of the key points of the Boltzmann method, when compared to the recursive
method, is that enumeration sequences are replaced bygenerating function evalua-
tions. In many of the constructions of Section3, each involved generating function
needs to be evaluated for the same value of its variable; in a few of them, some have to
be evaluated for a deterministic or random sequence of values.

In some cases, the generating functions have closed forms and this evaluation does
not lead to special complications, but recursive specifications lead to generating func-
tions that are determined by equations, and the question of determining a good approx-
imation of the required values becomes more troublesome.

Pivoteau, Salvy and Soria [12] provide an efficient solution to this problem, at
least for the basic constructions of sums, products, sequences, cycles and sets. The
natural idea of iterating the equations provides only slow convergence; the preferred
method is based on Newton iteration, which ensures quadratic convergence (asymptot-
ically, distance to the exact solution is squared by each iteration). For a given value
of the variable, the generating function equations typically have several real solutions,
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only one of which corresponds to the generating function that is the “true” solution;
an important result in the above-mentioned paper is that, thanks to the existence of a
combinatorial equivalent to the Newton iteration, convergence to the “true” value is
ensured.

Also, note that, when applying Newton iteration for generating function evalua-
tion, convergence is significantly faster the furtherx is from the dominant singularity
ρ . While this is good for constructions such as multisets or ordered structures that
require the use of sequences of values (for sequences of values of the variable that
quickly decrease to zero), it is conversely bad news for classical applications that re-
quire very large structures, since this means taking valuesof x that are very close to
ρ . Nevertheless, the experimental results reported in [12], even for very complex spec-
ifications, remain within reasonable bounds (the computation time for the oracles of
specifications implying 500 equations, for values of the parameter leading to expected
structure sizes in the tens of thousands, are of the order of aminute).

Another question that arises naturally is that of the influence of approximations on
the final distribution of random samples. Even assuming a “perfect” source of ran-
domness for the simulations, a small error in a generating function value that is used
repeatedly by a sampling algorithm might result in a significantly biased distribution
of the final samples.

To give an example, suppose a specification involves a disjoint unionC = A ∪B,
and each ofA andB is defined recursively usingC - this is not an artificial assump-
tion. Assume that, for the valuex of the parameter,A(x) is slightly overestimated, and
B(x) is slightly underestimated. In this case, each time the sampler for C is used, it
will have a tendency to switch toA more often than it ideally should; this will result
in a distribution that is biased in favor ofC -structures that often useA -structures as
components.

One possible solution [6] to estimate, and possibly correct, this bias, is to design
Boltzmann samplers that not only output a random structure,but also, for each real-
valued constantA≃A(x) used in the sampling, a “safety interval”[A−,A+], with A− <
A < A+, with a precise meaning of “if the sampler had been run with any value in
[A−,A+] instead ofA, the result of the whole computation would have been the same”.
This is done by studying the small number of discrete distributions one really needs to
sample from.

From such “safety interval” samplers, one can derive both a practical and a theo-
retical result:

• An estimate of the quality of approximation one should have on each involved
constant, such that the whole Boltzmann sampler is very unlikely to output any
safety interval that doesnot contain the true value of the corresponding generat-
ing function. Not surprisingly,Θ(logn) bits are enough when the expected size
is n.

• A (still hypothetical) construction for atruly exactBoltzmann sampler, if one
assumes stronger oracles than those provided by [12]. If one assumes oracles
that give both an upper an a lower bound for each involved constant, and that the
oracles can be called repetitively to decrease the difference between these bounds
(say, by a factor of 2 with every iteration), then the “safetyinterval” approximate
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Boltzmann samplers can be modified into exact Boltzmann samplers which will
call the oracles a small (logarithmic) number of times on average.

7 NOT-QUITE BOLTZMANN SAMPLERS

Boltzmann samplers share two important and useful properties for the user interested
in practical random sampling of large structures: (1) they output structures of random
size, with the guarantee thatany two structures of the same size have the same proba-
bility of being obtained, and (2) they are“stable” under the constructionsof Section3.

While property (1) is the essential one for direct practicalapplications, making it
possible to use, say, rejection to transform Boltzmann samplers into exact- or approximate-
size samplers, property (2) is the one responsible for the wide applicability of the
method. Nevertheless, sometimes property (1) alone can be obtained while keeping
algorithms of low complexity, typically by using a “nonstandard” final construction
using Boltzmann samplers as subroutines.

A good example of this is theHadamard productof two combinatorial class. If
A andB are two arbitrary (unlabelled) combinatorial classes, their Hadamard prod-
uct C = A ⊙B is the subset ofA ×B that only contains pairsc = (a,b) with the
same size (with|c| defined to be|a|= |b| instead of the sum for the classical product).
The corresponding generating function is none other than the Hadamard product of
generating functions,

C(z) = A⊙B(z) = ∑
n

anbnzn,

with radius of convergence at least the product of radii ofA(z) andB(z).
A real Boltzmann sampler forC can be written easily: one simply checks that, if

x= xAxB with xA < ρA andxB < ρB, the algorithm

repeat
α ← ΓA (xA)
β ← ΓB(xB)

until |α|= |β |
Return(α,β )

terminates with probability 1 and in finite expected time, and outputs aC structure
under the Boltzmann distribution with parameterx. It is, however, inefficient: each
iteration has success probabilityC(x)/(A(xA)B(xB)), which can be very small whenx
is close to the dominant singularity.

Bodini et al. [3] use the classical Birthday paradox to devise a more efficient algo-
rithm that preserves property (1), though not the whole Boltzmann distribution: simply
alternate (either deterministically or randomly) betweenΓA (xA) andΓB(xB), retain-
ing only the first obtained structure of each class and size, until a pair with the same
size can be formed.

8 CONCLUSION

Boltzmann samplers are an attractive class of random generation algorithms for classes
of combinatorial structures that lend themselves to combinatorial decompositions, al-
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lowing for fast (linear-time, or quasi-linear-time) generation of structures with size in
the millions for simple classes, and well into the tens of thousands for complex classes.
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