S. Araki, F. Theis, G. Nolte, D. Lutter, A. Ozerov et al., The 2010 Signal Separation Evaluation Campaign (SiSEC2010): Biomedical Source Separation, Proc. LVA/ICA, pp.123-130, 2010.
DOI : 10.1007/978-3-642-15995-4_16

URL : https://hal.archives-ouvertes.fr/inria-00553387

Y. Chen, S. Bressler, K. Knuth, W. Truccolo, and M. Ding, Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.16, issue.2, p.26113, 2006.
DOI : 10.1063/1.2208455

M. Kaminski, M. Ding, W. Truccolo, and S. Bressler, Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance, Biological Cybernetics, vol.85, issue.2, pp.145-57, 2001.
DOI : 10.1007/s004220000235

L. Baccala and K. Sameshima, Partial directed coherence: a new concept in neural structure determination, Biological Cybernetics, vol.84, issue.6, pp.463-74, 2001.
DOI : 10.1007/PL00007990

T. Schreiber, Measuring Information Transfer, Physical Review Letters, vol.85, issue.2, pp.461-465, 2000.
DOI : 10.1103/PhysRevLett.85.461

G. Nolte, A. Ziehe, V. Nikulin, A. Schlögl, N. Krämer et al., Robustly Estimating the Flow Direction of Information in Complex Physical Systems, Physical Review Letters, vol.100, issue.23, p.234101, 2008.
DOI : 10.1103/PhysRevLett.100.234101

S. Hu, G. Dai, Q. Dai, G. Worrell, and H. Liang, Causality analysis of neural connectivity: critical examination of existing methods and advances of new methods, IEEE Transactions on Neural Networks (Regular Paper), vol.22, issue.6, pp.829-844, 2011.

L. Leistritz, W. Hesse, M. Arnold, and H. Witte, Development of interaction measures based on adaptive non-linear time series analysis of biomedical signals / Entwicklung von Interaktionsma??en auf der Grundlage adaptiver, nichtlinearer Zeitreihenanalyse von biomedizinischen Signalen, Biomedizinische Technik/Biomedical Engineering, vol.51, issue.2, pp.64-69, 2006.
DOI : 10.1515/BMT.2006.012

M. Chavez, J. Martinerie, L. Van-quyen, and M. , Statistical assessment of nonlinear causality: application to epileptic EEG signals, Journal of Neuroscience Methods, vol.124, issue.2, pp.113-128, 2003.
DOI : 10.1016/S0165-0270(02)00367-9

M. Palus, V. Komarek, Z. Hrncir, and K. Sterbova, Synchronization as adjustment of infomation rates: Detection from bivariate time series, Phys. Rev. E, vol.63, issue.046211, 2001.

D. Prichard and J. Theiler, Generalized redundancies for time series analysis, Physica D: Nonlinear Phenomena, vol.84, issue.3-4, pp.476-493, 1995.
DOI : 10.1016/0167-2789(95)00041-2

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Farmer, Testing for nonlinearity in time series: the method of surrogate data, Physica D: Nonlinear Phenomena, vol.58, issue.1-4, pp.77-94, 1992.
DOI : 10.1016/0167-2789(92)90102-S

V. A. Vakorin, O. A. Krakovska, and A. R. Mcintosh-?, Confounding effects of indirect connections on causality estimation, Journal of Neuroscience Methods, vol.184, issue.1, pp.152-160, 2009.
DOI : 10.1016/j.jneumeth.2009.07.014

R. Vicente, M. Wibral, M. Lindner, and G. Pipa, Transfer entropy???a model-free measure of effective connectivity for the neurosciences, Journal of Computational Neuroscience, vol.18, issue.2, pp.45-67, 2011.
DOI : 10.1007/s10827-010-0262-3

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente et al., Transfer entropy in magnetoencephalographic data: Quantifying information flow in cortical and cerebellar networks, Progress in Biophysics and Molecular Biology, vol.105, issue.1-2, pp.80-97, 2011.
DOI : 10.1016/j.pbiomolbio.2010.11.006

B. Hoffman, C. Grashoff, and M. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction, Nature, vol.40, issue.7356, pp.316-339, 2011.
DOI : 10.1038/nature10316

D. Lutter, T. Langmann, P. Ugocsai, C. Moehle, E. Seibold et al., Analyzing time-dependent microarray data using independent component analysis derived expression modes from human macrophages infected with F. tularensis holartica, Journal of Biomedical Informatics, vol.42, issue.4, 2009.
DOI : 10.1016/j.jbi.2009.01.002

D. Lutter, P. Ugocsai, M. Grandl, E. Orso, F. Theis et al., Analyzing M-CSF dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis, BMC Bioinformatics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2105-9-100

A. E. Teschendorff, M. Journ-'ee, P. A. Sepulchre, R. Caldas, and C. , Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis, PLoS Computational Biology, vol.57, issue.8, 2007.
DOI : 10.1371/journal.pcbi.0030161.st002

J. Quackenbush, Computational approaches to analysis of DNA microarray data, Yearb Med Inform, pp.91-103, 2006.

R. Schachtner, D. Lutter, P. Knollmüller, A. Tomé, F. Theis et al., Knowledge-based gene expression classification via matrix factorization, Bioinformatics, vol.24, issue.15, pp.1688-97, 2008.
DOI : 10.1093/bioinformatics/btn245

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638868

A. Kowarsch, F. Blöchl, S. Bohl, M. Saile, N. Gretz et al., Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation, BMC Bioinformatics, vol.11, issue.1, p.585, 2010.
DOI : 10.1186/1471-2105-11-585

C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox et al., Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis, JNCI Journal of the National Cancer Institute, vol.98, issue.4, pp.262-72, 2006.
DOI : 10.1093/jnci/djj052

R. Irizarry, B. Bolstad, C. F. Cope, L. Hobbs, B. Speed et al., Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Research, vol.31, issue.4, p.15, 2003.
DOI : 10.1093/nar/gng015