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Abstract: In this paper, we present a new method for non-linear pairwise registration of point
sets. In this method, we consider the points of the �rst set as the draws of a Gaussian mixture
model whose centres are the points of the second set displaced by a deformation. Next we perform
maximum a posteriori estimation of the parameters (which include the unknown transformation) of
this model using the expectation-maximisation algorithm. Compared to other methods using the
same �EM-ICP� paradigm/framework, we propose three key modi�cations leading to an e�cient
algorithm allowing for fast registration of large point sets: 1) symmetrisation of the point-to-point
correspondences; 2) speci�cation of priors on these correspondences using di�erential geometry; 3)
e�cient encoding of deformations using the RKHS theory and the Fourier analysis. The resulting
algorithm is e�cient and is able to register large data sets. We evaluate the added value of the
modi�cations and compare our method to the state-of-the-art CPD algorithm on synthetic data.

Key-words: point sets, surface, non-linear registration, alignment, ICP, EM-ICP



Un nouvel algorithme EM-ICP e�cace pour le
recalage non-linéaire de nuages de points

tridimensionnels

Résumé : Dans cet article, nous présentons une nouvelle méthode pour
le recalage non-linéaire de deux nuages de points. Dans cette méthode, nous
considérons les points du premier nuage comme la réalisation d'un mélange
de gaussiennes dont les centres sont les points du second ensemble déplacés
par une déformation. Ensuite, nous estimons cette déformation, sur laquelle
nous �xons un a priori, selon le principe du maximum a posteriori en utilisant
l'algorithme �expectation-maximisation�. Par rapport aux autres méthodes qui
utilisent un paradigme similaire, nous proposons de: 1) symétriser le processus
de correspondance entre les points des deux nuages, 2) spéci�er des a priori
sur les correspondances en utilisant des outils de la géométrie di�érentielle et
3) caractériser la déformation à estimer en utilisant la théorie des espaces de
Hilbert à noyaux reproduisants et l'analyse de Fourier. L'algorithme résultant
est relativement e�cace et permet de recaler des nuages de points de grandes
tailles. En�n, nous évaluons l'impact de ces modi�cations puis nous comparons
notre méthode à une méthode de l'état de l'art.

Mots-clés : nuages de points, surface, recalage non-linéaire, alignement, ICP,
EM-ICP



A new e�cient EM-ICP algorithm for non-linear registration of 3D point sets 3

Contents

1 Introduction 4

2 Previous works 5
2.1 The four classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Point sets as modal matrices . . . . . . . . . . . . . . . . 6
2.1.2 Point sets as level set functions . . . . . . . . . . . . . . . 6
2.1.3 Point sets as Schwartz distributions . . . . . . . . . . . . 7
2.1.4 Point sets as mixture models . . . . . . . . . . . . . . . . 7

2.2 Deformation models . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Non-linear registration as a statistical inference problem 8
3.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Robustifying the estimator and reducing the computational burden 11
3.3 Energetic interpretation . . . . . . . . . . . . . . . . . . . . . . . 12

4 Symmetrising the matching process 12
4.1 Minimisation with respect to T . . . . . . . . . . . . . . . . . . . 13

5 Adding priors 15
5.1 Designing� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Designing� using labels . . . . . . . . . . . . . . . . . . . 15
5.1.2 Designing� using descriptors . . . . . . . . . . . . . . . . 16

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Solving the M-step 17
6.1 Approximation problems in RKHS . . . . . . . . . . . . . . . . . 18
6.2 Choosing a kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Why using frequencies? . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 E�cient choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 M-step in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6 Note on vectorial kernels . . . . . . . . . . . . . . . . . . . . . . . 21

7 Related algorithms 22
7.1 The TPS-RPM algorithm . . . . . . . . . . . . . . . . . . . . . . 22
7.2 The CPD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Our method (Reg4) . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Validation & Results 23
8.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.1.1 Ground truth data . . . . . . . . . . . . . . . . . . . . . . 23
8.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Conclusions and perspectives 27
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

RR n ° 7853



4 Combès & Prima

1 Introduction

Non-linear registration (or alignment) is the process of estimating and applying a
geometrical transformation to a �rst dataset to superpose it on a second dataset,
so as to make the homologous objects/structures (or parts/subsets thereof) in
both sets coincide. The need for automated registration methods is common
to many �elds such as computer vision, medical image analysis, biometrics,etc.
Some applications include the analysis of movements in videos, the assessment of
tumour growth in longitudinal brain MRI datasets, the recognition and indexing
of shapes,etc.

In practice, a registration method implicitly assumes the choice of (i) a way
to represent the structures to register (e.g. grey level images, surfaces, point
sets, etc.), (ii) a model to explicit the nature of the expected deformations (or
movements) and (iii) a metric to specify what registration/alignment means.

As for the �rst point (i), a particularly convenient way to focus on speci�c
objects/structures is to �rst isolate them from the rest of the image/video by
segmentation and then use their outline surface to represent them. Structured
(meshes) or unstructured point sets are the most generic way for such a purpose,
and this is what we are interested in here. In this context, numerous methods
have been proposed in the literature for non-linear registration of point sets. It
turns out that before specifying choices for points (ii) and (iii) above, most of
these methods (often implicitly) resort to intermediate mathematical represen-
tations of the two point sets to register.

Our �rst contribution is to explicit these intermediate representations in
Section 2 and to provide a comprehensive taxonomy of existing methods, in
which we identify four broad classes depending on whether the point sets are
considered as modal matrices (Section 2.1.1), level set functions (Section 2.1.2),
Schwartz distributions (Section 2.1.3) or mixtures of probability density func-
tions (pdfs) (Section 2.1.4). Within each of these classes, we also identify the
models for non-linear deformations (ii) (Section 2.2).

Among these four classes and the methods therein, an especially attractive
approach is to consider the two point sets as, respectively, a Gaussian and a
Dirac mixture model, and to use the Kullback-Leibler divergence as a similarity
metric between the two mixtures. In this case, it can be shown that registering
the two datasets consists of a maximum a posteriori (MAP) problem (or equiv-
alently, to a penalised likelihood problem), where the points of the �rst set can
be seen as the draws of a Gaussian mixture model (GMM) whose centres are the
points of the second dataset. Considering the variance of the Gaussian mixture
model as �xed and known, the only unknown parameter to be estimated is the
non-linear transformation, and this can be done e�ciently using the expectation-
maximisation (EM) algorithm. The estimation of the transformation then boils
down to a simple iterative estimation of fuzzy point-to-point correspondences
(called matching later on) between the two sets (E-step) (encoded in what is of-
ten termed the match matrix) and of the non-linear transformation (M-step) in
turn. Apart from its simplicity, such a scheme also allows one to partly alleviate
the complicated problem of de�ning binary point-to-point correspondences be-
tween the point sets (as, in practice, they do no exist) by indirectly introducing
probabilities of correspondence. It also allows one to deal with outlying data in
an e�cient way.

Our second contribution (Section 3), in addition to showing that using
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two speci�c mixture models and one speci�c similarity metric allows one to
see the registration problem as one of classical statistical inference, is (i) to
show that when using the classi�cation likelihood rather than the likelihood, the
expectation-classi�cation-maximisation (ECM) rather than the EM algorithm,
and rigid-body transformations, the resulting registration algorithm is simply
the ICP [5], while (ii) when using the likelihood, the EM algorithm and rigid-
body (resp. TPS) transformations, the resulting registration algorithm is simply
the EM-ICP [19] (resp. TPS-RPM [9]). Some other deformation models have
been recently tested by other authors in the same framework (termedEM-
ICP later on for the sake of simplicity), most notably the coherent point drift
(CPD) [33] and articulated deformations [23].

As previously mentioned, this EM-ICP framework is very attractive and
e�ective. However, to the best of our knowledge, only few e�orts have been
done to study its intrinsic limitations. First, one observes that the derivation
of the MAP principle leads to an asymmetric formulation (note: which is also
seen from the Kullback-Leibler divergence). In particular, in this framework,
the match matrix arises as a row stochastic matrix (leading to many-to-one
correspondences). This asymmetric formulation makes the algorithm unable to
achieve a good point-to-point matching in speci�c cases and makes the choice
of source and target sets critical. Second, the overall iterative scheme exhibits a
monotonic convergence that leads to a local maximum of the MAP criterion and
thus can provide a bad estimate of the deformation when a bad initialisation is
provided. Finally, both the E-step and the M-step are very time and memory
consuming when dealing with large datasets.

Our third contribution is to propose e�cient solutions for each of these
three problems. In Section 4, we propose to tackle problems due to the above-
mentioned asymmetry of the MAP formulation. For this purpose, we notice
that the derived EM algorithm can be seen as an iterative alternated minimisa-
tion (over the match matrix and the unknown transformation) of an (energetic)
criterion and we propose to modify it to make it symmetric. For this purpose,
we introduce a second, column stochastic, match matrix within this criterion.
This modi�cation only changes the E-step and improves the estimation of cor-
respondences. In Section 5, we show how to specify priors on the two match
matrices with only minor changes to the optimisation algorithm. These priors
based on local and global shape descriptors allow one to signi�cantly improve
the capture range of the algorithm. In Section 6, we devise an e�cient solution
for the M-step that stands on the Reproducing Kernel Hilbert Space (RKHS)
theory and on the Fourier analysis. It consists in building e�cient regularisers
leading to a closed-form solution based on sparse linear algebra.

In Section 7, we discuss the merits of our algorithm with respect to close
works: the TPS-RPM [9] and the CPD [34] algorithms. Finally, in Section 8,
we evaluate the added value of our improvements and compare our method with
the state-of-the-art CDP algorithm.

2 Previous works

Throughout Section 2, we focus on registration methods having no strong pri-
ors on the structures to register (e.g. topological [55, 43, 57, 36], tessellation
constraints [36]) or on the expected deformations (e.g. articulated motion [31],
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6 Combès & Prima

isometric deformations [24]).
In Section 2.1, we propose a comprehensive four-class taxonomy of point set

representations underlying most non-linear registration methods of the litera-
ture. The choice of a transformation model is largely independent of the point
set representation, and we brie�y outline some of the most often used models
in Section 2.2.

Let X = f x1; : : : ; xN g and Y = f y1; : : : ; yM g be two point sets. Let T be
a non-linear deformation. The goal of the following methods is to �nd T that
best superposesT(X ) on Y (in a sense to be later de�ned).

2.1 The four classes

2.1.1 Point sets as modal matrices

The �rst authors to propose the use of the spectral theory to align two point
sets were Shapiro and Brady [42] and Scott and Longuet-Higgins [41]. The two
methods are slightly di�erent. For a sake of simplicity, we focus on the method
proposed by Shapiro and Brady (and on its extensions).

The principle consists in building a modal matrix for each point set and then
in using these matrices to establish correspondences between points ofX and
Y . The modal matrix of a point set X is computed by (i) building a card(X ) �
card(X ) symmetric proximity matrix Gjk = exp( �jj x j � xk jj=(2� 2)) (� measures
the variance associated to the error in inter-point distances), (ii) performing a
SVD decomposition ofG = V DV T where D contains the (positive) eigenvalues
of G in a decreasing order. The matrixV is the modal matrix. Note that G (thus
V ) is invariant under rigid-body transformations. Each row of V is associated
with one of the points of X whereas each column measures how the points ofX
are distributed among the di�erent eigenmodes ofG. Once one has computed
the modal matricesVX and VY of X and Y , the strategy consists in considering
these measures as a almost invariant under the expected transformations shape
descriptor. As a result, the estimation of the point-to-point correspondences is
performed by comparing rows of both modal matrices. This can be done either
by applying a �best one rule� [42] or by building correspondence probabilities [8,
46] (when both point sets do not have the same number of points, the larger
modal matrix is truncated). This basic matching procedure can be embedded
in an iterative scheme involving the estimation of a deformation given known
correspondences and the estimation of correspondences between points (given
updated positions of the point set X ) [8, 46].

2.1.2 Point sets as level set functions

Lüthi and colleagues [28, 12] proposed to represent each point set to register as
the zeroth level of a signed distance 3D functionI , i.e. for X :

I X (x) =

8
<

:

dist(x; X ) if x 2 outside(X )
0 if x 2 X

� dist(x; X ) if x 2 inside (X )
(1)

Note that to consider such a representation, one must assumeX and Y to
be structured as (closed) meshes.

Inria
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The two 3D functions I X and I Y are then discretised on 3D grids (leading to
3D grey-level images) andT is computed as the deformation best superposing
these grids. In other words, the original problem is tackled as a 3D grey-level
image registration problem.

In essence, any iconic registration algorithm can then be used [29]. Albrecht
and colleagues proposed to use the demons algorithm [47] and modify it in order
to incorporate the mean curvature images ofI X and I Y (in addition to their
intensity values) to guide the registration.

2.1.3 Point sets as Schwartz distributions

The framework of di�eomorphic matching of distributions was developed by
Glaunes and colleagues [18]. The authors proposed to consider the point set
X (and similarly for Y ) as a weighted sum of Diracs (a Dirac being a dis-
crete Schwartz distribution) localised at the points of X : � X =

P
k � (xk ).

They showed that the action of a di�eomorphic deformation T generated from
the integration of a time-dependent smooth velocity �eld is simply T � X =P

k � (T(xk )) = � T (X ) . In order to compare two distributions (typically � T (X )

and � Y ), the authors noticed that all di�erences of distributions are contained
in the dual I � of an Hilbert spaceI containing continuous bounded functions on
IR 3. As a result, the quantity jj � T (X ) � � Y jj I � is used as a measure of distance
betweenT(X ) and Y . By designing I as a reproducing kernel Hilbert space [2],
this distance jj : � :jj I � can be easily evaluated and di�erentiated with respect
to T. The transformation T can then be estimated using a gradient-descent
minimisation. This work was later extended to other types of distributions [49].

2.1.4 Point sets as mixture models

To our knowledge, Wells [53] and Moss and Hancock [32] were the �rsts to
propose to use a probabilistic formulation of the point set registration problem.
Indeed, considering the point set registration as the problem of estimating an
optimal parameter T linking data corrupted by noise and outliers, the use of
pdfs to model each point set appears natural. Numerous methods, directly or
indirectly, rely on such a modelling.

One de�nesf T and g as mixture models having(T(xk )) k and (yj ) j as centres:

f T (z) = 1 =N
X

k

pf (T(xk ) � z)

and
g(z) = 1 =M

X

j

pg(yj � z)

pf and pg being two pdfs. Then the registration problem is considered as
a problem of minimisation of divergence betweenf T and g with respect to T.
Note that, in a similar way, Wang and collegues proposed to use the cumulative
distribution functions or the cumulative residual entropy associated to the pdfs
f T and g rather than the pdfs themselves, arguing that the former are less
sensitive to outlying points than the latter [51, 52]. The three types of functions
yield to a similar interpretation of the divergence measures, and below we focus
on the methods using pdfs for the sake of simplicity. In this context, pdfs
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8 Combès & Prima

are usually considered as isotropic Gaussians or Diracs, and several divergence
measures have been investigated. In particular:

� Wang and colleagues [15] proposed to modelf T and g as GMMs and to
use the Jensen-Shannon (JS) divergence (also termed total divergence to the
average).

� The intrinsic inability of the minimum Jensen-Shannon divergence estima-
tor to cope with outliers has stimulated the use of a divergence leading to more
robust estimators for T. In particular, Jian and colleagues [25] proposed to use
the L 2 distance between two GMMs. The minimum L 2 distance estimator is
known to be robust and can be shown to belong to the class of M-estimators [3].
Several works have followed this track [37, 50]. Note that when modellingT as
a isometric transformation, minimising the L 2 distance between the two GMMs
is equivalent to maximise their correlation [38, 48].

� Interestingly, minimising the Kullback-Leibler divergence between a mix-
ture of Gaussians f T and a mixture of Diracs g is equivalent to solving the
MAP problem where the points of Y are considered as the draws of a mix-
ture of Gaussians centred at the points ofT(X ). As will be seen in Section 3,
this MAP problem can be solved using the EM algorithm. In addition to its
simplicity, this algorithm has the advantage over gradient-based optimisation
algorithms (such as the conjugate-gradient algorithm) not to need additional
parameters speci�c to the optimisation strategy and to achieve a monotonic
convergence to a (at least) local maximum of the posterior distribution. Several
algorithms (e.g. [9, 33]) emerged from this paradigm and are commonly consid-
ered as state-of-the-art methods. This is the track we follow in this paper, and
which is extensively outlined in Section 3.

2.2 Deformation models

For each class of methods (and each method), a given implementation is char-
acterised by the choice of a deformation modelT that mainly stands on a
parametrisation for T and of a regulariserR on T. Common choices consist
in considering T as a displacement �eld with R as the scalar thin plate spline
(TPS) [6], the coherent point drift (CPD) [56] regulariser or as a smooth velocity
�eld with R as a scalar TPS [7], as a scalar CPD [18] or as a scalar Laplacian [26]
regulariser. Each of these deformation models exhibit di�erent regularisation
properties and ease of implementation.

3 Non-linear registration as a statistical infer-
ence problem

As noted earlier, (i) modelling the two points sets as a Dirac and a Gaussian
mixture model and (ii) using the Kullback-Leibler divergence is equivalent to
(i) seeing the points of the �rst set as the draws of a Gaussian mixture model
whose centres are the points of the second set and (ii) using the MAP/penalised
likelihood principle. In Section 3.1, we make one step back and we start for even
simpler hypotheses on the sets to register to show how incremental modi�ca-
tions to these hypotheses and adequate optimisation tools of classical statistical
inference lead to respectively, the ICP, the EM-ICP and the TPS-RPM/CPD
algorithms. In Section 3.2, we build on this statistical framework to outline a

Inria



A new e�cient EM-ICP algorithm for non-linear registration of 3D point sets 9

generic non-linear registration algorithm which exhibits increased speed and ro-
bustness towards outliers, while keeping good convergence properties. Finally,
in Section 3.3, we notice that this algorithm actually consists of the alternated
minimisation of an energetic criterion, in which each term can be simply inter-
preted. Some critical limits of this algorithm will be exposed and tackled in
Sections 4, 5 and 6.

3.1 General formulation

If one considers the surfaceY as a noised version ofT(X ), with a simple model of
isotropic Gaussian noise on dataT(X ), a simple way to formulate this viewpoint
is to assume that each sampleyj has been drawn independently from any one
of N = card( X ) possible 3-variate normal distributions with centres (means)
T(xk ) and covariance matrices� 2I (with � > 0 unknown, but �xed).

This way, the registration problem becomes one of statistical inference, whose
challenge is (i) to �nd the label of each point yj , i.e. the one out of card(X )
possible distributions from which yj has been drawn, and (ii) to estimate the
parameters of thesecard(X ) distributions. The connection between registra-
tion and statistical inference becomes clear when one realises that (i) actually
amounts to match each point yj in Y with a point xk in X , while (ii) simply
consists in computingT given these matches. This viewpoint is extremely fruit-
ful, as it allows one to refer to classical optimisation techniques and especially
the maximum likelihood principle and the EM algorithm to solve the registra-
tion problem. Three di�erent paradigms have been especially followed in this
context [30]. Let us introduce some notations �rst:

8k 2 1:::N ,  k (:; T) = N (T(xk ); � 2I )
8j 2 1:::M , 8k 2 1::: card(X ); zjk = 1 i� yj comes from k (:; T)

In the Classi�cation Maximum Likelihood (CML) approach , T is con-
sidered as a �xed unknown parameter and one tries to �nd the indicator variables
zjk and the transformation T so as to maximise the criterionCL [40]:

CL =
Y

y j 2 Y

Y

x k 2 X

[ k (yj ; T)]zjk (2)

The maximisation is typically performed by the Classi�cation EM (CEM) algo-
rithm [16], which can be shown to �nd an at least local maximum of the criterion
CL and proceeds as follows, in an iterative way, starting from an initial value
~T:

EC-step: for each j , ~zjk = 1 i� k maximises k (yj ; ~T)
M-step: ~T = arg min T

P
j;k ~zjk jj yj � T(xk )jj2

In other words, the Expectation-Classi�cation (EC) step consists in match-
ing each point yj of Y with the closest point in ~T(X ), while the Maximisation
(M) step consists in computing the transformation best superposing these pairs
of matched points. When T is modeled as a rigid-body transformation, this
algorithm is nothing else than the popular Iterative Closest Point (ICP) algo-
rithm [5]. Note that this algorithm does not depend on � .

RR n ° 7853



10 Combès & Prima

In the Maximisation Likelihood (ML) approach , the indicator values
zjk are no longer considered as unknown quantities to estimate, but rather
as hidden/unobservable variables. This is actually a drastic and fundamental
change of viewpoint, as the focus is no longer on assigning eachyj to one of
the distributions  k but rather on estimating the parameters of the Gaussian
mixture made of these distributions. If we involve priors � jk on the indicator
variables (8j; k , 0 < � jk < 1, and 8j ,

P
k � jk = 1 ), the likelihood then simply

writes [11]:

L =
Y

y j 2 Y

X

x k 2 X

� jk  k (yj ; T) (3)

In essence, the prior� jk conveys the probability that the point yj comes
from the distribution  k without knowing anything else. The likelihood L can
be maximised by using the popular EM algorithm, which converges to an at least
local maximum of L [13]. If we consider the priors� jk as known beforehand
and if we introduce the notation A jk as the posterior probability of the hidden
indicator variable zjk to be equal to 1, the EM algorithm writes:

E-step: ~A jk =
� jk exp [�jj y j � ~T (x k ) jj 2 =(2 � 2 )]

P
i � ji exp [�jj y j � ~T (x i ) jj 2 =(2 � 2 )]

M-step: ~T = arg min T
P

j;k
~A jk jj yj � T(xk )jj2

A = ( A jk ) is termed the match matrix and is a row stochastic matrix. The
parameter � (which is not to be estimated in this framework) acts as a scale
parameter. The problem of estimating � (or even a di�erent � k for each of the
pdfs  k (:; T)) is not investigated in this work. It can be given an initial value
and decreased throughout the iterations for improved performances. WhenT is
modeled as a rigid-body transformation and priors� jk are chosen to be uniform,
this algorithm is nothing else than the EM-ICP algorithm [19].

In the Maximum A Posteriori (MAP) approach , instead of simply con-
sidering T as a �xed unknown parameter of the pdfs k (:; T), one can consider
it as a random variable on which priors (acting as regularisers onT) can be
easily speci�ed. Then, the ML estimation can be easily turned into a MAP
problem with only slight modi�cations to the optimisation scheme, as shown
by Green [20]. If p(T) is a prior of the form p(T) / exp(� �R (T)) (i.e a Gibbs
prior) then the optimal deformation can be found using the MAP principle (also
termed penalised ML):

pL =
Y

y j 2 Y

X

x k 2 X

� jk  k (yj ; T)p(T) (4)

The EM algorithm then writes:

Algo Reg1: NL-EM-ICP

E-step: ~A jk =
� jk exp [�jj y j � ~T (x k ) jj 2 =(2 � 2 )]

P
i � ji exp [�jj y j � ~T (x i ) jj 2 =(2 � 2 )]

M-step: ~T = arg min T
P

j;k
~A jk jj yj � T(xk )jj2 + �R (T)

We call Reg1 the resulting algorithm. In the following, this algorithm will
be improved gradually and will yield to 3 other algorithms that we will call
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A new e�cient EM-ICP algorithm for non-linear registration of 3D point sets 11

Reg2, Reg3 and Reg4. The performances of these algorithms will be compared
in Section 8.

On can see that, in essence, the parameter� weighs the relative in�uence of
the regularity term R(T) and the �distance� term

P
j;k A jk jj yj � T(xk )jj2. Note

that one can consider a similar adaptation for the CML approach.

Interpretation:
Intuitively, the ML approach is a fuzzyversion of the CML. It appears clearly

from the iterative formulas of both algorithms that the classi�cation likelihood is
an �all-or-nothing� version of the likelihood, leading to a �bumpier� and harder-
to-maximise criterion, something that is well known by those who are familiar
with the ICP algorithm. Note that the ML formulation followed by the EM
algorithm leads to the same iterative formulas that would have resulted from the
addition of a barrier function on the indicator variables in the ICP criterion [9].

3.2 Robustifying the estimator and reducing the compu-
tational burden

In practice, Reg1 su�ers from outliers i.e. points of X having no satisfactory
correspondence inY . To alleviate this problem, one can consider k (:; T) as
a truncated Gaussian pdf with cut-o� distance � > 0. This modi�cation has
bene�cial e�ects on the properties of the algorithm. Indeed, it allows one :
(i) to reduce drastically the computational burden of the E-step (by the use
of a kd-tree [4]), (ii) to reduce the impact of points of Y having no correct
correspondence inX in the estimation of the optimal T (i.e. to improve the
robustness of the criterion) and iii) to increase the convergence speed of the
overall algorithm. The following algorithm can be shown to converge to an at
least local maximum of the new (truncated) criterion:

Algo Reg2: Robust NL-EM-ICP

E-step: initialise A = ( A jk ) as the null matrix
for each xk 2 X ;

S = f yj 2 Y such that jjyj � ~T(xk )jj2 < � g
(using a kd-tree)

for each yj 2 S; A jk = exp( � (jjyj � ~T(xk )jj2=(2� 2))
for each yj =2 S; A jk is left equal to 0.

for each yj 2 Y ;
if

P
i A ji 6= 0

~pj = 1
for each xk 2 X , ~A jk = A jk =

P
i A ji

else
~pj = 0

M-step: ~T = arg min T
P

j;k ~pj ~A jk jj yj � T(xk )jj2 + �R (T)

This introduces a set(pj ) of binary variables such that 8j , pj is null if point
yj is considered as an outlier (thus has no correspondence) and is equal to one
else.
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12 Combès & Prima

3.3 Energetic interpretation

It can be shown that Reg2 is an iterative alternated minimisation (over A and
T) of the following criterion:

E1(Y; T(X ); A) =
X

j;k

A jk � � (jjyj � T(xk )jj2) (5)

+ 2 � 2
X

j;k

A jk log(A jk ) + 2 � 2�R (T)

with 8j ,
P

k A jk = 1 and where � � : r 7�! r if r < � and � else (� corre-
sponds to the cut-o� distance of the truncated pdf of Section 3.2). To simplify
the notation, we introduce �

0
= 2 � 2� . Note that the � � function could be

advantageously replaced by a smoother di�erentiable function (e.g. a Leclerc
function [17]). However, we prefer to stay as close as possible to our probabilis-
tic formulation in order to keep the probabilistic interpretation of the di�erent
parameters (particularly of the match matrix A).

It can be given an energetic interpretation of E1 whose 3 terms represent
respectively:

ˆ a data-attachment term (where the quadratic cost function is replaced by
a robust cost function),

ˆ a barrier function allowing to control the fuzziness of A (the higher � 2,
the greater the fuzziness); in practice, this term convexi�es the criterion;
barrier functions are widely used in the context of combinatorial optimi-
sation,

ˆ a regularisation term.

4 Symmetrising the matching process

A particularly undesirable property of E1 is the asymmetric constraint 8j ,P
k A jk = 1 (i.e. A is row stochastic). In practice, on the basis of the MAP

principle, for a given match matrix A, the correspondence inX of a point yj

is given by xc where c = arg max k A jk . This leads to many-to-one correspon-
dences between points ofX and Y . In particular, there is no direct constraint
to enforce a point of X to have a correspondence inY . This makes the algo-
rithm unable to achieve a proper matching in some speci�c con�gurations. It
is particularly enlightening to consider the case when surfaces are far from each
other (example on Fig. 1).

To alleviate this problem, Rangarajan and colleagues [35] proposed to impose
the matrix A to be doubly stochastic (i.e. 8k,

P
j A jk = 1 and 8j ,

P
k A jk = 1 )

instead of simply row stochastic. With this new constraint on A, the E-step has
no longer a simple solution. As a consequence, they approximate the optimal
solution for A by performing a Sinkhorn normalisation [45] on the original (i.e.
row-normalised) match matrix A at the end of the E-step. However, this empir-
ical method is not applicable to matrices having null entries and thus cannot be
applied when using a truncated Gaussian pdf (as in Section 3.2). In practice,
this limits its application to small point sets.
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A j 1; 8j

y1

y2 y3

y4
y5

x1x2 x3

x4 x5

A1k ; 8k

y1

y2 y3

y4 y5

x1x2 x3

x4 x5

Figure 1: E�ect of the asymmetric normalisation constraint on A. The
"correct� matches are (x l ; yl ) l =1 ::: 5. One considersT as the identity. From left
to right and top to bottom: (i) two point sets X and Y , (ii) distances involved in
the computation of A11 when registeringY on X . (iii) distances involved in the
computation of A11 when registeringX on Y . As an example, if one considers
� = 1 , then in case (ii) A11 = 0 :01 and points x1 and y1 have only little chance
to be matched at the end of the overall process whereas in case (iii)A11 = 0 :45.

As an alternative, we propose to modify the criterion E1 (Eq. 5) by intro-
ducing a new match matrix B in this criterion, B being column stochastic. This
leads to the following criterion:

E2(Y; T(X ); A; B ) = (6)
X

j;k

A jk � � (jjyj � T(xk )jj2) + 2 � 2
X

j;k

A jk log(A jk )

+
X

j;k

B jk � � (jjyj � T(xk )jj2) + 2 � 2
X

j;k

B jk log(B jk )

+ �
0
R(T);

with 8j ,
P

k A jk = 1 and 8k,
P

j B jk = 1 . Notice that if one considers the

matrix C = ( (A jk + B jk )
card( X )+card( Y ) ), one can show that8j; k C jk � 0 and

P
j;k Cjk =

1.

4.1 Minimisation with respect to T

While the minimisation of E2(Y; T(X ); A; B ) with respect to A and B when T
is �xed (E-step) is straightforward and of low complexity (using the strategy
proposed in Section 3.2), its minimisation with respect toT (M-step) generally
consists in solving a numerical system of size proportional tocard(Y ) � card(X ).
When dealing with large point sets X and Y , this can have severe e�ects on

RR n ° 7853



14 Combès & Prima

the computational and memory usage. In this section, we propose to reduce the
complexity of this minimisation from card(Y ) � card(X ) to card(X ).

For this purpose, we now consider thatT is represented as the initial position
plus a displacement �eld: T(xk ) = xk + t(xk ) and R is a regulariser ont. Then,
the M-step consists of:

M-step:
~t = arg min t

P
j;k (~pj ~A jk + ~qk ~B jk )jjyj � xk � t(xk )jj2 + �

0
R(t)

where, analogously to(pj ), (qk ) are the binary variables associated to the
matrix B .

The derivative of EM =
P

j;k (~pj ~A jk + ~qk ~B jk )jjyj � xk � t(xk )jj2 + �
0
R(t)

with respect to t(xk ) is:

@EM

@t(xk )
= � 2

0

@
X

j

~pj ~A jk yj +
X

j

~qk ~B jk yj

1

A

+2

0

@(
X

j

~pj ~A jk +
X

j

~qk ~B jk )(xk + t(xk ))

1

A + �
0 @L(t(xk ))

@t(xk )

Calling ~B :k =
P

j ~qk ~B jk and ~A :k =
P

j ~pj ~A jk , this gives:

@EM

@t(xk )
= � 2

X

j

(~pj ~A jk + ~qk ~B jk )yj + 2( ~A :k + ~B :k )(xk + t(xk ))

+ �
0 @L(t(xk ))

@t(xk )

which is the derivative with respect to t(xk ) of:

X

k

( ~A :k + ~B :k )

�
�
�
�
�

�
�
�
�
�

P
j (~pj ~A jk + ~qk ~B jk )yj

~A :k + ~B :k
� xk � t(xk )

�
�
�
�
�

�
�
�
�
�

2

+ �
0
R(t) (7)

Thus, it is equivalent to minimise the expressions 6 and 7 with respect tot.
However, the �rst minimisation consists in solving a system of sizeO(card(X ) �
card(Y )) whereas the second consists in solving a system of sizeO(card(X )) .
Then the overall algorithm to minimise E2 can be expressed as:

Algo Reg3: Symmetric robust EM-ICP

E-step:
compute ~A; ~B ; (~pj ); (~qk ) (using kd-trees)
8xk 2 X ,

compute ~A :k + ~B :k ,
compute ~yk =

P
j (~pj ~A jk + ~qk ~B jk )yj =( ~A :k + ~B :k )

M-step: solve the approximation problem:
arg minT

P
k ( ~A :k + ~B :k )jj ~yk � xk � t(xk )jj2 + �

0
L(t)
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A new e�cient EM-ICP algorithm for non-linear registration of 3D point sets 15

5 Adding priors

The computation of the match matrices A and B is essentially based on the
spatial distance between the pointsxk + t(xk ) and yj . This is unsatisfactory for
two reasons. First, this distance is highly conditioned by the previous estimation
of t, which in turn depends on the previous estimation ofA jk and B jk and so
on. This chicken-and-egg problem limits the capture range of the algorithm,
which is likely to converge to a bad solution if no good initial deformation t is
given. Second, in many applications it is di�cult to design a physical model R
capturing the expected deformation between two structures. Thus, the global
maximiser of E2 is likely not to be realistic.

Some e�orts have been made to include richer information in the matching
process in addition to the classical spatial distance between points, (e.g. the
similarity of the normals at points xk and yj ). Such approaches assume that one
can compute how the normals evolve when the surface is deformed. This gener-
ally results in adding non-linear terms to the M-step and leads to an intractable
minimisation strategy ( e.g. [14]).

On the other hand, a more generic and simple method consists in specifying
an a priori probability � jk between the points xk and yj to be matched, that
we suppose to be independent of 1) the spatial proximity between the points of
the two point sets and 2) the unknown deformation t. By specifying relevant
priors � jk s, we introduce additional information on matches allowing to compute
reliable posteriors even for a bad initial estimate of the deformation.

5.1 Designing �

In practice, we choose to design� = ( � jk ) such that � jk / exp(� �c (yj ; xk ))
where c : Y � X ! IR + conveys the cost of matching pointsyj and xk ,
independently of t. The parameter � > 0 weighs the in�uence of � jk over
jjyj � xk � t(xk )jj during the E-step.

The equivalent criterion is:

E3(Y; T(X ); A; B ) = (8)
X

j;k

(A jk + B jk )� � (jjyj � xk � t(xk )jj2 + �c (yj ; xk ))

+ 2 � 2
X

j;k

A jk log(A jk ) + 2 � 2
X

j;k

B jk log(B jk ) + �
0
R(t)

with 8j ,
P

k A jk = 1 and 8k,
P

j B jk = 1 .
Depending on the information to encode (discrete labels or continuous de-

scriptors), we propose two approaches to buildc.

5.1.1 Designing � using labels

The cost function c can be computed via the comparison between labels of points
(e.g cortical sulci/gyri for brain registration). We de�ne: c(yj ; xk ) = 0 if points
yj and xk have compatible labels andc(yj ; xk ) = penalty > 0 else. In particular,
this view allows to use pairs of landmarks in the registration process. One could
also use crest lines extracted from both point sets [22] as they constitute salient
features. Each point is given a label depending on whether it belongs to a crest
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16 Combès & Prima

line or not. Then, we de�ne ccrest (yj ; xk ) = 0 if yj and xk have the same label
and ccrest (yj ; xk ) = penalty else.

5.1.2 Designing � using descriptors

The cost function c can be computed via the comparison between continuous
values (or vectors)d(:) describing the point set around the considered points. To
account for potential inaccuracies ond(:), we de�ne the measure as:cd(yj ; xk ) =
0 if jjd(yj ) � d(xk )jj < � and cd(yj ; xk ) = penalty > 0 else.

Then we choosed(:) among the local/global shape descriptions designed in
the literature. In our context, one expects the descriptors to be:

ˆ invariant to a certain class of transformations

ˆ robust to noise

ˆ robust to small distortions

Among them, we choose to use:

ˆ The shape indexd(x) = sh(x) [27] that describes the local shape irrespec-
tive of the scale and that is invariant to similarities. To achieve robustness
to noise and small distortions, we compute it by �t a quadratic surface in
the neighbourhood of the considered point. The �tting is performed by (i)
computing a unit normal at point x, (ii) de�ning a local coordinate sys-
tem (where z-axis lies along the unit normal) and (iii) �tting a quadratic
surface of the type au2 + buv + cv2 in the least-squares sense using the
neighbors ofx. The shape index can then be expressed as a function ofa,
b and c: sh(x) = � 2=� arctan

�
2(a+ c)+2 b2

2ja� cj

�
.

ˆ The curvednessd(x) = cu(x) [27] that speci�es the amount of curvature
and that is invariant to rigid-body transformations. We compute it using
the same techniques that we used for shape index:
cu(x) =

p
(a + b+ c)2 + ( a � b)2.

ˆ The (normalised) total geodesic distanced(x) = tgd(x) [1] that is in-
variant to non-elastic deformations. This distance is de�ned astgd(x) =
P

j
dg (x;x j )

max j
P

k dg (x j ;x k ) , where dg(x j ; xk ) is the geodesic distance betweenx j

and xk . It is computed e�ciently using a graph representation of the
(tessellated) point set and the Dijkstra's algorithm.

5.2 Implementation

In practice, adding non uniform priors � only changes the way the matricesA
and B are computed (E-step). We propose the following e�cient algorithm for
this purpose:
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Figure 2: Mapping of descriptor values on two di�erent brain ventri-
cles: From left to right: curvedness, shape index and total geodesic distance
on two lateral ventricles. Homologous anatomical structures yield qualitatively
the same descriptor values.

Algo Reg4: Symmetric robust EM-ICP with priors

E-step:
initialise A and B to the null matrix
for eachxk 2 X ;

S = f yj 2 Y such that jjyj � xk � ~t(xk )jj2 < � g
(using a kd-tree)

for eachyj 2 S;
if jj yj � xk � ~t(xk )jj2=(2� 2) + �c (yj ; xk ) � �
A jk = exp( � (jjyj � ~T(xk )jj2=(2� 2) + �c (yj ; xk )))

for eachyj =2 S; A jk is left equal to 0.
B = A
normalise A in rows and B in columns
and compute (~pj ) and (~qk ) (see Section 3)
for eachxk 2 X , compute ~A :k + ~B :k and ~yk (see Section 4.1)

compute ~yk =
P

j (~pj ~A jk + ~qk ~B jk )yj =( ~A :k + ~B :k )
M-step: solve the approximation problem:
arg mint

P
k ( ~A :k + ~B :k )jj ~yk � xk � t(xk )jj2 + �

0
R(t)

6 Solving the M-step

Solving the M-step is highly conditioned by the choice of the regulariserR.
Several regularisers have been proposed in the literature and the most commonly
used is probably the Thin Plate Spline (TPS) regulariser. It has the main
advantages to exhibit a closed-form solution for the approximation problem and
to be justi�ed by a physical interpretation. However, this choice also implies
computational and memory usage that limit its application to point sets of small
size. In this section, we focus on building a tractable (in terms of minimisation
strategy) and powerful (in terms of reliability of the model) regulariser R.

To alleviate complicated notations, we restate the M-step (Reg2 and Reg3)
in the following general form:

~t = arg min
t

X

k

Ck jj ~yk � xk � t(xk )jj2 + �
0
R(t); (9)

where Ck = ~A :;k + ~B :;k .

RR n ° 7853



18 Combès & Prima

In this section, we devise a new solution for the M-step based on the Re-
producing Kernel Hilbert Space (RKHS) theory and the Fourier analysis. More
speci�cally, we designR(t) as a function of the frequencies oft (allowing to tune
it e�ciently) and propose a closed-form solution for the M-step that can be im-
plemented very e�ciently using sparse linear algebra. Moreover, the properties
of the regulariserR depend on the choice of a kernel that can be easily modi�ed
to �t the applications.

6.1 Approximation problems in RKHS

We consider that t belongs to a space of admissible solutionsH that we span us-
ing a positive de�nite kernel (pdk) k on 
 � IR 3 (i.e 8(q0; : : : ; qN ) 2 
 N ; 8(� 0; : : : ; � N ) 2
IR + ;

P
i;j � i � j k(qi ; qj ) � 0):

H = f f jf (:) =
1X

i =0

k(qi ; :)wi ; wi 2 IR 3; qi 2 
; jj f jjH < 1g C

where SC denotes the completion of the setS and where 
 � IR 3. This
space is endowed with the inner product: < f; h > H =

P 1
i;j =0 wT

i k(qi ; qj )wj .
Under these conditions, the spaceH is a Hilbert space with reproducing kernel
k (or more compactly a RKHS) [2]. Then we assume thatt 2 H and de�ne our
regulariser R(t) as jj t jjH :

~t = arg min
f 2H

X

k

Ck jj ~yk � xk � f (xk )jj2 + �
0
jj f jjH : (10)

One of the key advantage of RKHS is that one can show [39] that the values
taken by the solution ~t can be expressed as~t(x) =

P N
i =1 k(x i ; x)wi . As a

consequence, one can rewrite problem 10 as:

( ~w) = arg min
(w )

X

k=1 ;::;N

Ck jj ~yk � xk �
X

i =1 ;::;N

k(xk ; x i )wi jj2

+ �
0 X

i;j =1 ;::;N

wT
i k(x j ; x i )wj :

Pragmatically, we replaced the estimation of a function~t belonging to a space
of functions de�ned all over the space by the estimation of3 � card(X ) scalar
values.

Vanishing the derivatives gives a linear system whose solution can be ex-
pressed in a closed-form as:

W = ( D(C)K + �
0
I ) � 1D(C)[Y � X ];

whereX = [ x1; :::; xN ]T , Y = [~y1; :::; ~yN ]T , W = [ w1; :::; wN ]T , K = ( k(x i ; x j ) i;j )
is the N � N matrix associated to kernelk and expressing the geometrical con-
�guration of the point set X and D(C) is the M � M diagonal matrix formed
by the Ck values. Now, the challenge is to choose a kernel corresponding to a
relevant regulariser.
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6.2 Choosing a kernel

In order to design a suitable kernelk, one can use an interesting relationship
with Fourier-based regularisers. Let8f square-integrable,

R(f = ( f 1; f 2; f 3)T ) = R(f 1) + R(f 2) + R(f 3)

where for i = 1 ; 2; 3,

R(f i ) =
1

(2� )3

Z 1

�1
jf �

i (! )j2� � (jj ! jj=b) � 1d!;

where � is the Fourier transform operator, � : IR ! IR is an integrable
function and b is a real positive rescaling factor. Intuitively, the function R
integrates the spectral densities off i over the frequencies! weighted by a factor
� � (jj ! jj=b) � 1 (itself depending on ! ).

Let F = f f : IR 3 ! IR 3jR(f ) < 1g . Interestingly, one can state that if the
function (qi ; qj ) 7! � (jjqi � qj jj ) is a pdk then F is a RKHS whose reproducing
kernel is given by k(qi ; qj ) = b � � (b � jj qi � qj jj ) and such that 8f 2 F ,
jj f jjF = R(f ) [54, 44]. This dual view is convenient as it allows one to design a
wide variety of e�cient regularisers directly into the Fourier domain.

In order to design an e�cient regulariser, one must choose� � � 1 as a high-
pass �lter. This way, high frequencies of the deformation will be drastically pe-
nalised whereas low frequencies will only be penalised a little. Thus, a natural
choice consists in choosing� �

[0;1 ] as a monotonically decreasing function. The
most important element that characterises its in�uence on the regularisation is
the way it decreases, which indicates the amount of penalisation with respect to
frequencies. Particularly, the frequencies for which� � (jj ! jj=b) is null are forbid-
den. The two parameters�

0
and b allow to handle the regularisation properties:

�
0

is a quantitative parameter (it indicates the amount of smoothness) whereas
b is more qualitative (in a way, it de�nes what the term "smoothness" means).
More precisely, b can be seen as a parameter contracting (resp. dilating) the
kernel function � � (:) and thus decreasing (resp. increasing) the range of admis-
sible frequencies. Figure 3 shows the in�uence ofb and �

0
when approximating

a noisy 2D �eld when choosing� as the Wu kernel [54].

Figure 3: E�ect of parameters �
0

and b on the approximation of a
noisy �eld.

6.3 Why using frequencies?

DesigningR as a function penalisingt in terms of its spatial frequencies can be
of great interest. Roughly speaking, high frequencies oft concern details and
local changes of the deformation �eld whereas its low frequencies concern the
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global aspects of the deformation. For a given kernelk, the larger the b value,
the more drastic the high frequences penalisation. Thus, tuning the parameter
b allows to introduce a multiscale approach by �rst trying to capture a global
deformation and then, if needed, local deviations from this global deformation.
This view allows one to adapt our algorithm to di�erent applications needing
either a �ne registration ( e.g. automatic labeling of substructures) or a more
global registration (e.g. statistical shape analysis) of two structures. Figure 4
illustrates the in�uence of di�erent kernels and di�erent scale parameters b on
the regularisers. Figure 5 illustrates that modifying �

0
allows one to characterise

di�erent scales of deformations linking two structures.

Figure 4: Di�erent positive de�nite kernels � and their associated
functions � � (jj :jj=b) � 1. From left to right and top to bottom: i) 2D plot of
three kernels (b=1), ii) 2D plot of the values of � � (jj :jj ) � 1 for the three above-
mentioned kernels, iii) 2D plot of � (jj :jj � b) for the Wu kernel with di�erent b
values, iv) 2D plot of � � (jj ! jj=b) � 1 for the Wu kernel with di�erent b values.

6.4 E�cient choices

Although we proposed a closed-form solution for the approximation problem, it
consists in solving aM � M system of equations. This can be problematic in
terms of memory usage and of computational time whenM increases. Suppose
that we choose a compactly supported pdk (i.e. there exists r > 0 such that,
8x; y such that jjy � xjj > r ; k(x; y) = 0 ), then i) D (P)K + �

0
I is a sparse matrix

that can be computed using akd-tree and ii) computing W consists in solving a
sparse system. Some compactly supported pdk corresponding to low-pass �lters
have been proposed in the literature (such as Wendland, Wu or Buhmann pdks).
Moreover, techniques to generate a wide variety of them have been proposed [54].
Alternatively one can use a highly decreasing function and approximate it by
zeroying all its values over a given threshold. We experimentally found the
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Figure 5: In�uence of b on the registration. We register the source ventri-
cle (a) on the target ventricle (e) by increasingb throughout the iterations of the
overall EM-ICP algorithm (without modifying the other parameters). Interme-
diate registration results for a given b are represented between the source and
the target (b), (c) and (d). For a small b, the source is only globally transformed
towards the target and small patterns (dark blue circles) are left unchanged (as
the penalisation does not allow such a deformation). Whenb increases, the
small discriminative patterns tend to �t the target (green circles). Light blue
circles indicate intermediate con�gurations of the patterns.

compact support pdk of Wu (� 2;3) as the one providing the best results and
we will use it in the following. Note that the top-right plot in Figure 5 shows
that the Wu kernel penalises high frequencies "faster" than the exponential or
Wendland kernels (for a givenb). More experiments will be needed to evaluate
the respective characteristics of the di�erent possible kernels.

6.5 M-step in a nutshell

M-step:
for each xk 2 X

Sk = f x i 2 X such that jjxk � x i jj2 < bg
(using a kd-tree)

for each x i in Sk

K (k; i ) = b� � (b� jj xk � x i jj ) � Ck

K (k; k) = K (k; k) + �
0

preconditioning of K (using sparse algebra)
solve KW 1 = D(P)[X 1 � Y 1] (using sparse algebra)
solve KW 2 = D(P)[X 2 � Y 2] (using sparse algebra)
solve KW 3 = D(P)[X 3 � Y 3] (using sparse algebra)

where X 1, X 2 and X 3 are respectively the vectors extracted from the �rst,
second and third columns of matrix X (the same for Y and W ).

6.6 Note on vectorial kernels

By building a scalar kernel k, we consider each component of the deformation
�eld independently ( R(t) = R(t1) + R(t2) + R(t3)). In fact, the previous re-
sults stay true when designing vectorial positive de�nite kernels. In our case,
the evaluation k(:; :) would take its values in the set of the 3 by 3 matrices,
the generated space would be such thatH = f f jf (:) =

P 1
i =0 k(qi ; :)wi ; wi 2

IR 3; qi 2 
; jj f jjH < 1g C and the dot product would write < f; h > H =
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P 1
i;j =0 wT

i k(qi ; qj )wj . This way, the corresponding Fourier-based stabiliser would
write:

R(f ) =
1

(2� )3

Z

IR 3
f � (! )� � (!=b ) � 1f � (! )d!

With this formulation the cross frequencies (and indirectly cross derivatives)
can be penalised. We restrict our study to scalar kernels.

7 Related algorithms

Several recent algorithms are close to four algorithms (Reg 1,2,3,4) we proposed.
Especially, TPS-RPM [10] and CPD algorithms [33] are theoretically very close
to ours. The main di�erences consist in (i) the way the matching step (E-step) is
symmetrised, (ii) the choice of the regulariserR, (iii) the choice of the robustness
function and (iv) the resulting implementation choices.

In this section, we brie�y present these two algorithms, their advantages,
limitations and compare them to our method. More quantitative results will be
given in Section 8.

7.1 The TPS-RPM algorithm

In the TPS-RPM algorithm [10], the match matrix is imposed to be doubly
stochastic. The resulting E-step is solved heuristically by �rst computing a
row stochastic matrix and then applying a Sinkhorn normalisation on this ma-
trix. Robustness is achieved by introducing a �virtual� centroid located at the
barycentre of X that is associated to a large variance. The points ofX having
no satisfying correspondence inY will have a high probability of correspondence
with this virtual centroid. As mentioned by the authors themselves, this solu-
tion is very debatable. Indeed, it both supposes that matching a point with
the centroid of the point set does not a�ect the estimation of the transforma-
tion and that outliers are more probably located close to the barycentre of the
point set. The regulariser R amounts to solve the classical TPS regulariser
for which the M-step consists of solving 3 dense systems of equations of size
(card(X ) � card(Y ))2. This problem is heuristically reduced to 3 dense sys-
tems of equations of sizecard(X )2 (which is still computationally demanding).
The overall resulting algorithm is limited to small point sets (typically a few
hundreds).

7.2 The CPD algorithm

In the CPD algorithm [33], the match matrix is dealt asymmetrical ( i.e. simply
row stochastic). The robustness is achieved by modeling the point setT(X ) as
the weighted sum of a Gaussian mixture and of a uniform distribution (instead
of a simple Gaussian mixture). The relative weights of these two elements
allow �xing the number of expected outliers (that is generally unknown). Note
that the parameter � is estimated at the beginning of each iteration. R is the
coherent point drift (CPD) regulariser that is a particular case of the Fourier-
based regulariser introduced in Section 6.1 where the kernelk is chosen as a
Gaussian functionk(x; y) = exp( �jj x � yjj2=b). The di�erent matrices involved
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in the computations are evaluated e�ciently using the Fast Gauss transform [21]
(that does not allow one to add a cost functionc in the data-attachment term
as we did in Section 5 to add some prior information) and the solving of the
M-step is accelerated by the precomputation of a low-rank approximation of the
large matrix (called K in Section 6.1) representing the structure ofX (that is
�xed throughout the iterations of the algorithm).

In essence, one notices that for both TPS-RPM and CPD algorithms, the
implementation choices are performed using heuristics/approximations without
taking care of their real e�ects on the minimisation scheme. In particular one
can wonder how the approximations performed in the M-step change the nature
of the regularisation.

7.3 Our method (Reg4)

As opposed to TPS-RPM and CPD algorithms, we do not use any heuristic
neither in the E-step nor in the M-step and the criterion E3 is properly min-
imised (no approximation is made). The estimation of the correspondences is
dealt symmetrically and the rejection of outliers is performed using a robust
cost function parametrised by a single cut-o� distance parameter. The E-step
is implemented e�ciently using kd-trees. The M-step is reformulated as an
approximation problem of size N that is solved e�ciently using sparse linear
algebra and akd-tree.

Table 1 sums-up the characteristics of the three above-mentioned algorithms.

e�ciency exact/approx robustness symmetric minimisation non-linear metrics
TPS-RPM intractable approx distance to centroid symmetric EM-like easy to incorporate

CPD very e�cient approx % of outliers asymmetric EM-like no
Reg4 e�cient exact cut-o� symmetric EM-like yes

Table 1: Summarising the characteristics of TPS-RPM, CPD and Reg4.

8 Validation & Results

In this section, we assess the di�erent improvements we proposed in this paper
and compare their performances with that of the recent CPD algorithm. Note
that, due too high memory usage and time complexity, we did not manage to
register any of our data with Reg1 and with the TPS-RPM algorithm. For
Reg4, the cost functionc is built as: c(yj ; xk ) = jsh(xk ) � sh(yj )j + jcu(xk ) �
cu(yj )j + jtgd(xk ) � tgd(yj )j (we do not use labels).

8.1 Validation

8.1.1 Ground truth data

We propose to register caudate nuclei (1000 points, Figure 6) and brain ventri-
cles (7000 points, Figure 7) and bony labyrinths (8000 points, Figure 7). Notice
that each of these structures has not the same geometrical complexity. We
generate pairs of ground truth data by deforming a given point set using:
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ˆ randomly generated one local smooth deformations of the type:t(x) =
x+ K � Gv (x � xc)nx , wherexc is the centre of the deformations (randomly
chosen on the point sets),nx is the normal vector at point x, Gv is a 3D
non-normalised Gaussian function of variancev2 and K is the deformation
strength.

ˆ a randomly generated non-linear transformations using the widely used
TPS and CPD deformations,

ˆ random removal of given quantities of adjacent points (that we �x to
0:1 � N ).

Figures 6 and 7 illustrate the generation of pairs of ground truth data. Then,
we register the original and deformed point sets and compute the overall residual
distance between the known correspondences between the two point sets:

endP t(Y; T(X )) =
1

card(X )

X

k2 [1;:::; card( X )]

jj yk � xk � t(xk )jj2

and the overall Barron error between the transformation �elds:

barron(t1; t2) =
1

card(X )

X

k2 [1;:::; card( X )]

arccos(
(t1(xk ))T

jj t1(xk )jj
t2(xk )

jj t2(xk )jj
)

Figure 6: Illustration of the generation of the ground truth data. From
left to right: i) original data, ii) we generate a random local deformation (the
resulting distances between the corresponding points is mapped), iii) we gen-
erate a random global deformation (TPS) (the resulting distances between the
corresponding points is mapped) and iv) superimposition of the original (red)
and deformed (green) data.

8.1.2 Results

To investigate the added value of di�erent improvements we proposed in this
article, we consider the average scores obtained by the algorithms Reg2 (Section
3.2), Reg3 (Section 4) and Reg4 (Section 5) over the registration of 100 pairs
of ground truth data for each of the three data sets. Moreover, we perform the
same experiments using the CPD algorithm. Table 2 indicates the mean and
maximal end-point and Barron errors obtained for each of these 4 algorithms
and for the di�erent datasets. Table 3 indicates the mean run-time for each
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Figure 7: Examples of pairs of ground truth data: From left to right
ventricles and osseous labyrinths

algorithm and for the di�erent datasets. In the following, we summarise these
results and give illustrating examples.

� In�uence of the symmetrisation of the correspondences (Reg2 vs Reg3):
We point out two main conclusions when comparing results from Reg2 and

Reg3. First , symmetrising the correspondences decreases the registration error
signi�cantly (in average from a factor of about 2.8 for the end-point error). In
practice, Reg2 is particularly unsuited when the correspondences between the
source and the target are ambiguous (as shown previously in Figure 1) whereas
it is not the case for Reg3. This is illustrated in Figures 8 and 9.Second , one
observes that for Reg2 the location of the registration errors depends on what
point set is used as the template. For Reg3, this e�ect is considerably reduced.
This is illustrated in Figure 10. Notice that there is a substantial di�erence of
run-time between Reg2 and Reg3 which is mainly due toN � M nearest points
searchings in each E-step for Reg3 instead ofN for Reg2.

Figure 8: E�ect of the symmetrisation : From left to right : i) initial align-
ment of two caudate nuclei, ii) alignment obtained using Reg2 and iii) alignment
obtained using Reg3. The asymmetric formulation leads to registration errors
close to the extrema of the head and of the tail.

� In�uence of the priors (Reg3 vs Reg4):
In average, Reg3 gives results that are quite close than Reg2. However,

one can notices that it decreases the value of the worse result importantly: by
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Figure 9: E�ect of the symmetrisation: From left to right : i) initial align-
ment of two brain ventricles, ii) alignment obtained using Reg2 and iii) align-
ment obtained using Reg3. The asymmetric formulation leads to registration
errors close to the horns.

forcing correspondences (independently of the initial estimate ofT) it leads the
registration even for a bad initial alignment. In particular, one observes that
the adding of priors does not improve the results when the initial alignment is
of good qualities.

� Comparison with a state-of-the-art method (Reg2, Reg3 and Reg4 Vs
CPD):

We compare the results obtained with our methods with the one obtained
with the CPD algorithm. We point out two main conclusions. First , CPD
exhibits better results than Reg2. This observation is very interesting as it
indicates that CPD, that does not deal with the correspondence symmetrically,
manages to tackle this major �aw another way. This could be due to the fact that
CPD estimates a variance parameter instead of �xing it empirically. Second ,
we observe that the end-point error and the Barron error are higher for CPD
than for Reg4 and Reg3. We notice that this e�ect is much larger for the
Barron error, which can be due to the approximation performed during the M-
step of the CPD algorithm. Figures 11 and 12 give illustrative examples of the
registration error obtained with Reg4 and CPD.

caudate ventricle ear
mean/max end-pt mean/max Barron mean/max end-pt mean/max Barron mean/max end-pt mean/max Barron

Reg2 0.49/2.43 13.65/32.90 0.78/3.29 28.21/37.76 0.23/0.48 5.89/8.11
Reg3 0.22/1.14 3.60/18.69 0.20/0.67 1.78/9.65 0.09/0.17 3.22/6.14
Reg4 0.21/0.89 3.65/12.75 0.20/0.51 1.81/6.73 0.09/0.14 3.27/5.04
CPD 0.35/1.39 6.88/28.22 0.40/0.91 5.00/12.92 0.12/0.20 4.05/7.31

Table 2: Statistics on registration errors for di�erent methods and di�erent
datasets

caudate ventricle ear
Reg2 26s 11min 9min
Reg3 40s 16min 11min
Reg4 47s 18min 14min
CPD 35s 13min 6min

Table 3: Mean execution time for di�erent methods and di�erent datasets on
a standard personal computer.
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Figure 10: E�ect of the symmetrisation : From left to right and top
to bottom: i) two misaligned pairs of lateral ventricles A and B; ii) residual
point to point error when registering A to B and iii) B to A with Reg2; iv)
residual end-point errors when registering A to B and v) B to A with Reg3.
The asymmetric formulation leads to registration errors close to the horns. The
location of these errors depends on what surface is used as the template (second
row). When symmetrising the correspondence, the order-dependent registration
error is reduced and the overall registration quality is visually and quantitatively
improved (third row).

9 Conclusions and perspectives

9.1 Conclusions

After brie�y presenting a comprehensive classi�cation of point sets non-linear
registration methods, we proposed to study the limits of the EM-ICP algorithm.
For this purpose, we �rst formulated the algorithm in a self-contained manner
in which we underlined its relationship with other classical algorithms. Then,
starting from an energetic formulation of the EM-ICP algorithm, we proposed
a new algorithm for the non-linear registration of large point sets. More speci�-
cally, we considered three drawbacks of the original algorithm and we proposed
e�cient and original solutions to handle them. In particular, we reduced the
asymmetry of the matching process, we proposed to add alignment-invariant
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