
HAL Id: hal-00657054
https://inria.hal.science/hal-00657054v2

Preprint submitted on 5 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Realizability for Second-Order Heyting
Arithmetic with EM1 and SK1

Federico Aschieri

To cite this version:
Federico Aschieri. Interactive Realizability for Second-Order Heyting Arithmetic with EM1 and SK1.
2012. �hal-00657054v2�

https://inria.hal.science/hal-00657054v2
https://hal.archives-ouvertes.fr

Interactive Realizability for Second-Order Heyting Arithmetic with EM1

and SK1

Federico Aschieri

Laboratoire PPS, équipe PI.R2
Université Paris 7, INRIA and CNRS

Abstract

We introduce a classical realizability semantics based on interactive learning for full second-order Heyting
Arithmetic with excluded middle and Skolem axioms over Σ0

1-formulas. Realizers are written in a classical
version of Girard’s System F. Since the usual computability semantics does not apply to such a system, we
introduce a constructive forcing/computability semantics: though realizers are not computable functional in
the sense of Girard, they can be forced to be computable. We apply these semantics to show how to extract
witnesses from realizable Π0

2-formulas. In particular a constructive and efficient method is introduced. It
is based on a new “(state-extending-continuation)-passing-style translation” whose properties are described
with the constructive forcing/computability semantics.

Keywords: interactive learning-based realizability, classical second-order arithmetic
2010 MSC: 03F03, 03F30, 03F55

1. Introduction

In the past years, several computational interpretations of classical logic have been put forward. Under
a first classification, they fall into two large categories: direct and indirect interpretations. Among the
indirect interpretations one finds the negative translations followed either by Dialectica interpretations ([15],
[32]) or intuitionistic realizability interpretations combined with Friedman’s translation [14]. Among the
direct interpretations, there are classical realizabilities, Coquand game semantics [13], cut-elimination and
normalization of classical proofs (under Curry-Howard correspondence of not), and the epsilon substitution
method [26] (the Kreisel no-counterexample interpretation [22] is an easy corollary of the other ones).

Such a variety is surprising and on a first sight these interpretations may appear completely different,
but it is becoming evident that some unifying concepts exist. Maybe the most general and powerful one is
the concept of learning. That is, the computational content of classical proofs can be described in terms of
learning programs, that acquire new knowledge about non-computable functions by an intelligent process of
making hypotheses and testing them in search of counterexamples. As soon as one adopts this conceptual
perspective, all the computational interpretations become clearly related and appear as technical variations
on a same theme: learning.

One one hand, indirect interpretations yield, as a result of negative translation, programs using continu-
ations. The deep reason continuations are used is that they are natural tools for implementing backtracking,
i.e. the mechanism by which learning programs make guesses, learn about their mistakes and correct them
thanks to the new acquired knowledge. In Berardi et al. [9] realizability interpretation of the negative
translation of the axiom of countable choice, continuations are used to build finite approximations of choice
functions. The Dialectica interpretation and the Friedman translation from the computational point of view
provide ways to capture counterexamples to the hypotheses made by learning programs.

On the other hand, direct interpretations exploit the fact that classical principles have a remarkably
immediate computational content when considered as learning devices. In the case of Krivine classical
realizability [25] the excluded middle A ∨ ¬A is interpreted as a program that assume ¬A as a working

Preprint submitted to Elsevier March 5, 2012

hypothesis: if at some point of the computation encounters evidence for A (i.e., a realizer of A), then it
backtracks, erases everything that depended on the hypothesis ¬A and acquires a realizer of A as new
knowledge. Coquand game semantics interprets the excluded middle basically with the same spirit, but in a
more intuitive way. The epsilon substitution method instead exploits the learning content of Skolem axioms,
which are formulas of the form

∀x∀y.A(x, y) =⇒ A(x, f(x))

The function f is intepreted as an approximation of some choice function, mapping x to a witness (if any
exists) for the formula ∃yA(x, y). Whenever an instance

A(n,m) =⇒ A(n, f(n))

of a Skolem axiom is false, one can correct the function f as to output m on input n.

1.1. Realizability Based on Interactive Learning

Given this strong evidence that learning is the key for understanding the computational content of
classical proofs, an important goal is to formulate classical realizability semantics explicitly based on learning.
Such semantics should describe: first, the nature of the knowledge that programs coming from classical proofs
acquire during computations; secondly, how this knowledge evolves during computations. As a consequence
of this approach, it should be possible to develop a much finer understanding and control of the backtracking
mechanism that interpret classical proofs; in other words: more efficient programs.

A significant step towards this goal has been taken in Aschieri and Berardi [4], where it has been
introduced a learning-based classical realizability for first-order Heyting Arithmetic HA with the excluded
middle EM1 on Σ0

1-formulas and Skolem axioms SK1 over quantifier-free formulas. It is a realizability based
on states, which describe the current knowledge of realizers. The reason why such a fragment has been
isolated and studied is that just monotonic learning is sufficient to interpret it. By monotonicity of learning,
we intend that learning programs can only increase their knowledge and once acquired, the knowledge is
correct forever. This is the most simple instance of learning, it has special properties1 and it is worth to
be studied separately. In more general settings, in fact, learning is more complex. For example, in the
case of full first-order Peano Arithmetic, learning is finitely nested, that is knowledge is stratified and the
correctness of what is learned at any level depends on what has been learned at the previous levels (see
Avigad [6], for an ordinal analysis of this kind of learning, and Aschieri [1], [3], for a type theoretic analysis).
In the case of predicative fragments of Analysis, learning is transfinitely nested (see Aschieri [2]).

The crucial contribution of Interactive realizability is that it decomposes into two conceptual steps the
extraction of programs from classical proofs. The idea is that, first, one extracts an ideal program, obtained
with free use of oracles and Skolem functions: this programs is very natural to write, it obeys the laws
of intuitionistic Heyting semantics (see e.g., Troesltra [33]) and is easy to understand. Then, classical
principles suggest how to approximate in a very efficient way the oracles and Skolem functions used in the
computation. The result is a model of intelligent programs, able to correct themselves and to learn from the
mistakes they make when trying to achieve some goal defined by the usual Heyting intuitionistic reading of
logical sentences. In hindsight, our interpretation can be seen as modern version of the epsilon substitution
method, refined and rebuilt around the Curry-Howard correspondence for classical logic.

In this work, we extend the Interactive realizability for HA + EM1 + SK1 to second-order intuitionistic
Heyting Arithmetic HAS plus EM1 and SK1. The Arithmetic HA + EM1 + SK1 is realized by adding an
oracle for the Halting problem to Gödel’s system T and by computationally interpreting EM1 as a device
which effectively learns oracle values during calculations. The resulting notion of realizability is just Kreisel
modified realizability [23] extended with learning. It is thus natural to realize the theory HAS+ EM1 + SK1

by adding to Girard’s system F an oracle for the Halting problem and try again to interpret the excluded

1In the field of proof mining, one is indeed interested in exploiting every special property of the theory one is studying.
If a constructive interpretation generalizes to a stronger theory, there is a good chance that one is losing some constructive
information about the theorems of the former theory.

2

middle as a learning device: it is indeed the approach followed in this work. Again, the resulting notion of
realizability will be a natural extension of intuitionistic realizability for HAS (for which we basically follow
the formulation of Oliva and Streicher [29], but in a Church style) with learning.

We also introduce a new technique for witness extraction from proofs of Π0
2-formulas. That is, given a

realizer t � ∀xN∃yNPxy, with P atomic predicate, we extract a non-trivial program taking as input any
number n and yielding as output a number m such that Pnm holds. With a classical meta-theory, the
problem is easy. Constructively, t can be seen as a state-extending operator; classically, it can be proved
that it is enough to extend the state a certain number of times to get a sufficient amount of information to
compute a witness. From the constructive point of view, however, the problem is non-trivial, since t is a
term of a classical version of system F and it is not possible to apply directly the computability method of
Girard to reason about t. Our new technique is a significant refinement and extension of the one in Aschieri
[3] and its correctness proof is completely intuitionistic. It is composed of two ingredients:

• First, we define a constructive forcing/computability semantics, explaining that although an interactive
realizer is not computable, it can be constructively forced to behave like a computable functional. We
call our notion of forcing Constructive forcing as opposed to Classical forcing, which has its origins
in Cohen’s work in set theory ([12]). The difference between the two versions of forcing is that
while classical forcing is a relation between conditions and formulas, constructive forcing is a relation
between conditions and proofs (actually, proof terms thanks to Curry-Howard); moreover, while in
classical forcing quantification over future conditions is unrestricted, in constructive forcing the future
that can be considered is only the future given by a continuation of the computation. The result is that
the second has an intuitionistic meta-theory while the first’s is classical. This means that constructive
forcing has a direct computational content. Despite all these differences, it is clear that constructive
forcing is an effective version of classical forcing, hence the name.

• Secondly, we define a new continuation-passing-style translation, which, in particular, manipulates
state-extending continuations. When applied to a realizer t, it produces a program that forces the
computability of t. Moreover, that program is able to backtrack efficiently at the right points of
computations and does not forget precious information when backtracking (a common defect among
computational interpretations of classical logic, such as [25, 9]).

These properties represent a first concrete evidence that realizability based on states and learning can
lead to the implementation of more efficient programs already in pure lambda calculus – not to mention
abstract machines and imperative features that may raise the bar of efficiency even higher. Constructive
forcing, moreover, is quite a general technique and it can be iterated in order to work for all reasonable
systems of predicative Analysis, as clearly showed in [2].

1.2. Plan of the Paper

In section §2 we introduce the term calculus in which realizers will be written, namely an extension of
Girard’s system F plus a constant symbol for a Skolem function Φ.

In section §3, we introduce our notion of realizability based on interactive-learning for HAS+EM1+SK1.
In section §4, we present our techniques of witness extraction.
In section §5, we briefly compare Interactive realizability with other related computational interpreta-

tions.
In section §Appendix A, we show how to realize also the ex-falso-quodlibet axiom.

2. The Term Calculus FClass

In this section we introduce the typed lambda calculi that we shall use to define interactive realizability:
system F and FClass. F is a completely standard extension of Girard’s system F (see Girard [20]) with
some syntactic sugar: numerals, booleans, primitive recursion at all types, if-then-else, pairs, finite partial
functions over N and simple primitive recursive operations over them. Equivalently, F may be seen as an

3

extension of Gödel’s system T (we refer to the exposition in Girard [20]) with polymorphism. FClass is
obtained from F by adding on top of it a Skolem function symbol Φ : N → (N → N) of the same Turing
degree of an oracle for the Halting problem. The symbol is totally inert from the computational point of
view and so realizers will always be computed with respect to some approximation of the Skolem function
represented by Φ.

2.1. Updates

In order to define F , we have first to define the concept of update, which is nothing but a finite partial
function over N. We use the appellative “update”, because realizers of atomic formulas will return finite
partial functions as new pieces of information that they have learned about the Skolem function Φ; updates
represent new associations input-output that are intended to correct (and in this sense, update) wrong oracle
values used in computations.

Definition 1 (Updates and Consistent Union). We define:

1. A binary predicate of T is any closed normal term P : N2 → Bool of Gödel’s system T.

2. We assume P0,P1,P2, . . . is an arbitrary enumeration of all binary predicates of T.

3. An update set U , shortly an update, is a finite set of triples of natural numbers representing a finite
partial function from N2 to N. We say that U is sound if for every (i, n,m) ∈ U , we have Pinm = True.

4. Two triples (a, n,m) and (a′, n′,m′) of numbers are consistent if a = a′ and n = n′ implies m = m′.

5. Two updates U1, U2 are consistent if U1 ∪ U2 is an update.

6. U is the set of all updates.

7. The consistent union U1 U U2 of U1, U2 ∈ U is U1 ∪ U2 minus all triples of U2 which are inconsistent
with some triple of U1.

We think of a triple (a, n,m) of a sound update as the code of a witness for ∃y.Pa(n, y). The fact that every
update is a partial function allows in each update at most one witness for each formula ∃y.Pa(n, y).

U1 U U2 is an non-commutative operation: whenever a triple of U1 and a triple of U2 are inconsistent,
we arbitrarily keep the triple of U1 and we reject the triple of U2, therefore for some U1, U2 we have
U1 U U2 6= U2 U U1. U is a “learning strategy”, a way of selecting a consistent subset of U1 ∪ U2.

It is immediate to show that U is an associative operation on the set of updates, with neutral element ∅,
with upper bound U1 ∪ U2, and returning a non-empty udpate whenever U1 ∪ U2 is non-empty.

Lemma 1. Assume i ∈ N and U1, . . . , Ui ∈ U.

1. U1 U . . .U Ui ⊆ U1 ∪ . . . ∪ Ui

2. U1 U . . .U Ui = ∅ implies U1 = . . . = Ui = ∅.

In fact, the whole realizability semantics is a Monad [10]. In [10], it is proved that a fragment of
our realizability semantics is parametric with respect to the definition we choose for U . Any associative
operation U , with neutral element ∅ and satisfying the two properties of Lemma 1, defines a different but
sound realizability semantics, corresponding to a different “learning strategy”.

4

2.2. The System F

System F is formally described in figure 1. A numeral is a term of the form S(S(. . . 0)). Terms of the
form if T t1 t2 t3 will be written in the more legible form if t1 then t2 else t3, whenever T can be inferred
from the context. For every update U ∈ U, there is in F a constant U : U, where U is a new base type
representing U. We write ∅ for ∅. In F , there are four operations involving updates (see figure 1):

1. The first operation is denoted by the constant is : U → N
2 → Bool. is takes as arguments an update

constant U and two numerals a, n; it returns True if (a, n,m) ∈ U for some m ∈ N (that is, if the pair
(a, n) is in the domain of the partial map U); it returns False otherwise.

2. The second operation is denoted by the constant get : U → N
2 → N. get takes as arguments an update

constant U and two numerals a, n; it returns m if (a, n,m) ∈ U for some m ∈ N (that is, if (a, n)
belongs to the domain of the partial function U); it returns 0 otherwise.

3. The third operation is denoted by the constant mkupd : N3 → U. mkupd takes as arguments three
numerals a, n,m and transforms them into (the constant coding in T) the update {(a, n,m)}.

4. The forth operation is denoted by the constant ⋒ : U2 → U. ⋒ takes as arguments two update constants
and returns the update constant denoting their consistent union.

We observe that the constants is, get,mkupd are just syntactic sugar and may be avoided by coding
finite partial functions into natural numbers. We assume having in Gödel’s T some terms ⇒Bool: Bool →
Bool → Bool,¬Bool : Bool → Bool,∨Bool : Bool → Bool → Bool . . ., implementing boolean connectives. If
t1, . . . , tn, t ∈ T have type Bool and are made from free variables all of type Bool, using boolean connectives,
we say that t is a tautological consequence of t1, . . . , tn in T (a tautology if n = 0) if all boolean assignments
making t1, . . . , tn equal to True in T also make t equal to True in T.

As usual when working with polymorphic lambda calculus, one can define sum types A+B and existential
types ∃XA. We shall need A + B in order to define functionals which return either object of type A or of
type B, without knowing in advance of which type. This situation occurs when one needs to define a realizer
a disjunction A ∨ B, which has either to return a realizer of A or a realizer of B. Similarly, we shall need
∃XA in order to define functionals which return a pair of a type B and an object of type A[B/X], without
knowing in advance the type B. This situation occurs when one needs to define a realizer of a formula ∃XA,
which has either to return a type B and a realizer of A[B/X], for some B.

Definition 2 (Sum Types, Existential Types). 1. For all types A,B of system F , we define a type

A+B := ∀X.(A → X) → (B → X) → X

where X is a variable not occurring free in A,B.

2. For every term u : A of system F , we define a term

ι0,A,B(u) := ΛXλfA→XλgB→Xfu

of type A+B.

3. For every term u : B of system F , we define a term

ι1,A,B(u) := ΛXλfA→XλgB→Xgu

of type A+B.

5

Types
A,B ::= X | N | Bool | U | A → B | A×B | ∀XA

Constants
c ::= R | if | 0 | S | True | False |mkupd | is | get | ⋒ | U (for every U ∈ U)

Terms
t, u ::= c | xA | tu | λxAu | tA | ΛXu | 〈t, u〉 | πiu

Typing Rules for Variables and Constants

xA : A

0 : N

S : N → N

True : Bool

False : Bool

U : U (for every U ∈ U)

⋒ : U → U → U

is : U → N → N → Bool

get : U → N → N → N

mkupd : N → N → N → U

if : ∀X. Bool → X → X → X

R : ∀X. X → (N → (X → X)) → N → X

Typing Rules for Composed Terms

t : A → B u : A
tu : B

u : B

λxAu : A → B

u : ∀XA

uB : A[B/X]

u : A
X /∈ FreeV arTypes(u)

ΛXu : ∀XA

u : A t : B

〈u, t〉 : A×B

u : A0 ×A1
i ∈ {0, 1}

πiu : Ai

Reduction Rules All the usual reduction rules for system F (see Girard [20]) plus the rules for recursion, if-then-else and
projections

RTuv0 7→ u RTuvS(t) 7→ vt(RTuvt)

ifT True u v 7→ u ifT False u v 7→ v πi〈u0, u1〉 7→ ui, i = 0, 1

plus the following ones, assuming a, n,m be numerals:

isU an 7→

{

True if ∃m. (a, n,m) ∈ U

False otherwise

getU an 7→

{

m if ∃m. (a, n,m) ∈ U

0 otherwise

U1 ⋒ U2 7→ U1 U U2

mkupd a nm 7→ U,with U = {(a, n,m)}

Figure 1: System F

4. For all types A of F , we define a type

∃XA := ∀Y.(∀X.A → Y) → Y

where Y is a variable not occurring free in A.

6

5. For every type B and term u of type A[B/X], we define a term

〈B, u〉 := ΛY λx∀X.A→Y xBu

of type ∃XA.

System F is obtained from system T adding polymorphism and new operations on atomic types. The
following definition formalizes what has been done and it useful for defining arbitrary extensions of F
with arbitrary functions over natural numbers; we shall need such extensions for adjoining non-computable
functions to F .

Definition 3 (Functional set of rules). Let C be any set of constants, each one of some type A1 →
. . . → An → A, for some A1, . . . , An, A ∈ {Bool, N, U}. We say that R is a functional set of reduction rules
for C if R consists, for all c ∈ C and all a1 : A1, . . . , an : An closed normal terms of F , of exactly one rule
ca1 . . . an 7→ a, for some closed normal term a : A of F .

Any extension of F with constants and even non-computable functional sets of rules, is strongly normal-
izing and has the uniqueness-of-normal-form property.

Theorem 2. Assume that R is a functional set of reduction rules for C (def. 3). Then F +C +R enjoys
strong normalization and weak-Church-Rosser (uniqueness of normal forms) for all closed terms of atomic
types.

Proof. For strong normalization, see Berger [11] or just use standard reducibility arguments, as in Girard
[20]. Weak Church-Rosser is also standard.

The following normal form theorem also holds.

Lemma 3 (Normal Form Property for F + C +R). Assume that R is a functional set of reduction
rules for C. Assume A is either an atomic type or a product type. Then any closed normal term t ∈ F of
type A is: a numeral n : N, or a boolean True, False : Bool, or an update constant U : U, or a constant of
type A, or a pair 〈u, v〉 : B × C.

Proof. By induction over t. For some sequence ~v of closed types and terms, either t is (λx.u)~v, or t is
(ΛX.u)~v or t is 〈u,w〉~v, or t is x~v for some variable x, or t is c~v for some constant c.
If t = (λx.u)~v, then t has an arrow type if ~v = ∅, while t is not normal if ~v 6= ∅.
If t = (ΛX.u)~v, then t has universal type if ~v = ∅, while t is not normal if ~v 6= ∅.
If t = 〈u,w〉~v, then ~v = ∅ and we are done.
If t = x(~v) then t is not closed.
The only case left is t = c~v : A. If t = 0 we are done, if t = S(u) we apply the induction hypothesis to u, if
t = True, False : Bool or t = u : U or t is a constant of C we are done. Otherwise either t = (RUs1s2n)~t or
t = (ifUba1a2)~t or t = πi(z)~w, or t = isunm : N, or t = getunm : N, or t = ⋒(u1, u2) : U, or t = mkupdnm l
or t = c~v, with c ∈ C and v1 : A1, . . . , vk : Ak, and Ai atomic for every i . The proper subterms n,m, l : N,
b : Bool, z : A×B, u, u1, u2 : U, v1 : A1, . . . vk : Ak of t have atomic or product type and are closed normal.
By induction hypothesis they are, respectively, numerals, booleans, pairs, constants. In all cases, t is not
normal.

2.3. The System FClass

We now define a classical extension of F , that we call FClass, with a constant symbol Φ : N2 → N denoting
a non-computable map of the same Turing degree of an oracle for the Halting problem. We shall use the
elements of FClass to represent non-computable realizers.

Definition 4 (Systems FClass and TClass). Define FClass = F + Φ and TClass = T+ Φ, where Φ : N2 → N is
a new constant symbol and T is Gödel’s system.

7

For every numeral a, Φa – which we shall denote with Φa – represents a Skolem function for the formula
∃yN Paxy, taking as argument a number x and returning some y such that Paxy if any exists, and an arbitrary
value otherwise. There is no set of computable reduction rules for the constant Φ, and therefore no set of
computable reduction rules for FClass.

Each (in general, non-computable) term t ∈ FClass is associated to a set {t[s] |s ∈ F , s : N2 → N} ⊆ F of
computable terms we call its “approximations”, one for each term s : N2 → N of F , which is thought as a
computable approximation of the oracle Φ.

Definition 5 (Approximation at state s). We define:

1. A state is a closed term of type N
2 → N of F . We define S := N

2 → N.

2. Assume t ∈ FClass and s is a state. The “approximation of t at state s” is the term t[s] of F obtained
from t by replacing each constant Φ with s.

We interpret any t[s] ∈ F as a learning process evaluated with respect to the information taken from an
approximation s of Φ. Here we consider an approximation of Φ to be an arbitrary term s : N2 → N; s may
be correctly in agreement with Φ on some arguments, but wrong on other ones. Consequently, we are going
to consider the set of (a, n) such that Pansa(n) = True as the real “domain” of s (again, with sa(n) we shall
sometimes denote san). We are also going to define a term ⊕, which takes as argument a term f : N2 → N

and an update U , and changes the values of f according to U . This is one of the fundamental operations of
our computational model: realizers will compute updates to correct wrong values of oracle approximations
with new good values that they have previously learned and stored in the updates. Last, using Φ, we are
going to define for every numeral a the oracle Xa, which takes as argument a numeral n and returns the
truth value of ∃yN Pany.

Definition 6 (Domain, Updates of Functions, Oracle Xa). We define:

1. If s is a state, we denote with dom(s) the set of pairs of numerals (a, n) such that Pansa(n) = True.
If U is an update constant, we denote with dom(U) the set of pairs of numerals (a, n) such that
(a, n,m) ∈ U and Panm = True.

2. If s is a state and U is an update constant, we define

U � s ⇐⇒ dom(U) ⊆ dom(s)

3. We define a term ⊕ : (N2 → N) → U → (N2 → N) as follows:

⊕ := λf N
2→NλuUλxNλyN if (isu x y) then (getu x y) else fxy

We will write t1 ⊕ t2 in place of ⊕t1t2.

4. Given any numeral i, we define a term ⊕i : (N
2 → N) → U → (N2 → N) as follows:

⊕i := λf N
2→NλuUλxNλyN if (i = x ∧Bool isu x y ∧Bool Pi y (getu x y)) then (getu x y) else fxy

We will write t1 ⊕i t2 in place of ⊕it1t2.

5. For every numeral a, we define a term Xa : N → Bool as follows:

Xa := λxN Pax(Φax)

We introduce now a notion of convergence for families of terms {t[si]}i∈N ⊆ F , defined by some t ∈ FClass

and indexed over a set {si}i∈N of states. Informally, “t convergent” means that the normal form of t[s]

8

eventually stops changing when the approximation si of Φ gets better and better. If s, r are states, we
formalize what it means that r is at least as good an approximation as s by defining:

s ≤ r ⇐⇒ ∀a, n. sa(n) 6= ra(n) =⇒ (a, n) /∈ dom(s) ∧ (a, n) ∈ dom(r)

Intuitively, if s ≤ r, then r can be obtained by changing some of the values of s that make s a wrong
approximation of Φ. We say that a sequence {si}i∈N of states is a weakly increasing chain of states (is w.i.
for short), if si ≤ si+1 for all i ∈ N.

Definition 7 (Convergence). Assume that {si}i∈N is a w.i. sequence of states, and u, v ∈ FClass.

1. u converges in {si}i∈N if ∃i ∈ N.∀j ≥ i. u[sj] = u[si] in F .

2. u converges if u converges in every w.i. sequence sequence of closed type-N → N terms of F .

We remark that if u is convergent, we do not ask that u is convergent to the same value on all w.i.
chain of oracle approximations. The value attained by u may depend on the information contained in the
particular chain from which u gets the knowledge.

Theorem 4 (Convergence Theorem). Assume t ∈ FClass is a closed term of atomic type A (A ∈ {Bool, N, U}).
Then t is convergent.

Proof. (Classical). For every S : N2 → N, we define some (in general, not computable) functional set of
reduction rules R(S) for Φ and for FClass.

R(S) := {Φan 7→ m | S(a, n) = m}

If s is a state, we define

R(s) := {Φan 7→ m | sa(n) = m, with a, n,m numerals}

By theorem 2, for any S and s, FClass +R(S) and FClass +R(s) are strongly normalizing and weak-CR for
all closed terms of atomic type.
Claim. If s is a state, the normal form of t in FClass +R(s) is equal to the normal form of t[s] in F .
Proof of the Claim. By induction over the size of the reduction tree of t. If t is normal, then by lemma 3 it
is a numeral, a boolean or a constant. Hence, t 6= Φ (for Φ : N2 → N), and we are done, since t = t[s]. If t
is not normal, then it reduces in one step reduction to some t′. If we show that t[s] reduces t′[s] in F , we
obtain the claim by induction hypothesis. The only non self-evident case is when a redex not already in t is
contracted in t[s]. Such redex must be of the form Φan, with n numeral, and t′ results from t by replacing
the redex with m, where m is a numeral and sa(n) = m. But then t′[s] can as well be obtained from t[s] by
normalizing the redex sa(n) of t[s].

Assume now w is the (unique, by weak-CR) normal form of t in FClass +R(s). By the Claim, w is the
normal form of t[s] in F . For the rest of the proof, let {si}i∈N be a w.i. chain of states. Define

Sω(a, n) :=

{
m if ∃i. (a, n) ∈ dom(si) ∧ si(a, n) = m

s0(a, n) otherwise

Sω is a well defined function, because (a, n) ∈ dom(si), (a, n) ∈ dom(sj) implies si(a, n) = sj(a, n), since
{si}i∈N ∈ w.i. By strong normalization, t has a finite reduction in normal form in FClass +R(Sω). Therefore
in this reduction are used only finitely many reduction rules from R(Sω). Moreover, if Φan 7→ m is any of
such rules, then either there exists i such that (a, n) ∈ dom(si) and si(a, n) = m, and so for every j ≥ i,
si(a, n) = sj(a, n) (for {si}i∈N ∈ w.i.); or it does not, and so for every j, sj(a, n) = s0(a, j) (again, {si}i∈N ∈
w.i.). Therefore, all the reduction rules used to obtain the normal form a of t in FClass+R(Sω) are already in
R(sn), for some numeral n, and thus w is the normal form of t also in FClass +R(sn), and in FClass +R(sm)
for all m ≥ n. Thus, the normal form in F of all t[sm] with m ≥ n are the same, as we wished to show.

9

Remark 1. The idea of the proof of theorem 4 corresponds exactly to the intuition that during any com-
putation, the oracle Φ is consulted a finite number of times and hence asked for a finite number of values.
When the approximation sn of Φ is great enough, we can substitute Φ with sn and we obtain the same
oracle values and hence the same results.

3. An Interactive Learning-Based Notion of Realizability for HAS + EM1 + SK1

In this section we introduce a learning-based notion of realizability for HAS+EM1 + SK1, Second Order
Heyting Arithmetic plus Excluded Middle on Σ0

1-formulas

EM1 := ∀xN. ∃yNPaxy ∨ ∀yN¬Paxy

and Skolem axioms
SK1 := ∀xN∀yN. Paxy → PaxΦa(x)

then we prove our main Theorem, the Adequacy Theorem: “if a closed arithmetical formula is provable in
HAS+ EM1 + SK1, then it is realizable”.

We first define the formal system HAS+EM1+SK1. We represent atomic predicates of HAS+EM1+SK1

with (in general, non-computable) closed terms of TClass of type Bool. Terms of HAS + EM1 + SK1 may
include the function symbol Φ, denoting the Skolem function for ∃yNPaxy.

Remark 2. Our realizability can be formulated already for the standard language of Arithmetic: we add
non computable functions to the language for greater generality and to interpret Skolem axioms in addition
to EM1. Of course, HAS already proves the comprehension axiom and thus HAS+EM1 proves the existence
of a Skolem function for ∃yNPaxy, which is the formula

A := ∃X. fun(X) ∧ ∀xN∀yN. Paxy → (∃zN(x, z) ∈ X ∧ Paxz)

with
fun(X) ≡ ∀xN∃yN. (x, y) ∈ X ∧ ∀zN. (x, z) ∈ X → y = z

Indeed, as a witness for X one may take the formula

S(n,m) := ∀xN. ∃yNPaxy → (∃zN. (n, z) ∈ X ∧ z ≤ y) ∧ ∀yN¬Paxy → (x, 0) ∈ X

Then using EM1 one may prove A[S/X] and thus ∃XA.
However, such an approach is fairly inefficient, because it requires to define a particular Skolem function,

and it usually ends by defining a map always returning the minimum witness, as in the example, or by
imposing some arbitrary criterion on the possible witnesses.

Instead, our approach of adding SK1 is far more direct and efficient: our realizer of SK1 will not waste
resources by always constructing a minimum witness, but it will keep the first one it finds. The addition
of non-computable functions to the language of Arithmetic requires in fact a non-trivial modification of the
realizability semantics (for example, there is no formulation of Krivine classical realizability [25] realizing
the formula SK1 as it is written).

3.1. Language of HAS+ EM1 + SK1

We now define the language of the arithmetical theory HAS+ EM1 + SK1.

Definition 8 (Language of HAS+ EM1 + SK1). The language LClass of HAS + EM1 + SK1 is defined as
follows.

1. The terms of LClass are all t ∈ TClass, such that t : N and FreeV ar(t) ⊆ {xN1, . . . , x
N

n} for some x1, . . . , xn.

10

2. The atomic formulas of LClass are all Q ∈ TClass and Xt such that Q : Bool, FreeV ar(Q) ⊆ {xN1, . . . , x
N

n}
for some x1, . . . , xn and X is a predicate variable.

3. The formulas of LClass are built from atomic formulas of LClass by the connectives ∨,∧,→ ∀, ∃ as usual,
with quantifiers possibly ranging over second-order predicate variables.

4. As usual, if A and B are formulas of LClass and X is a set variable, we denote with A[λzB(z)/X] the
formula obtained from A by replacing all its atomic subformulas of the form Xt with B[t/z] (without
capturing free variables of B).

We denote with ⊥ the atomic formula False. We shall write natural number variables in lower case
characters xN, yN, zN, αN and predicate variables in upper case characters X,Y, Z. We shall often omit the
types of natural number variables, writing for instance ∀x.A in place of ∀xNA. If P is an atomic formula
of LClass in the free variables x1, . . . , xn and t1, . . . , tn are terms of LClass, with P (t1, . . . , tn) we shall denote
the atomic formula P [t1/x1, . . . , tn/xn].

We defined ⇒Bool: Bool, Bool → Bool as a term implementing implication, therefore, to be accurate,
formulas of the form Pa(t, u) ⇒Bool Pa(t,Φat) are not an implication between two atomic formulas, but they
are equal to the single atomic formula Q, where

Q := ⇒Bool (Patu)(Pat(Φat))

Any atomic formula A of LClass is a boolean term of TClass, therefore for any state s we may form the
“approximation” A[s] : Bool, A[s] ∈ F of A. In A[s] we replace the Skolem function Φ we have in A by its
approximation s.

Our definition of realizability provides a formal semantics for HAS + EM1 + SK1, and therefore also for
the more usual language of Arithmetic HAS+ EM1, in which all terms represent recursive maps.

From now onwards, for every pair of terms t1, t2 of system F , we shall write t1 = t2 if they are the same
term modulo the equality rules corresponding to the reduction rules of system F (equivalently, if they have
the same normal form).

3.2. s-Saturated Sets

We now turn to the definition of a fundamental concept: the notion of s-saturated set of type A. The
concept arises naturally if one tries, as a first thought, to define realizability for second-order formulas ∀XA
in terms of realizability of all formulas A[λzB(z)/X]. Of course, such definition would not be a well-founded
one with respect to the logical structure of formulas. In the case of second-order Heyting Arithmetic, one
usually takes an extensional approach to solve this issue (see [29], for example). Since the computational
meaning of a formula is determined by the set of its realizers, one replaces the quantification over formulas
with quantification over saturated sets of lambda terms, i.e. arbitrary sets of terms closed under intensional
equality. Then, one may define realizability for ∀XA in terms of realizability of A[F/X], for every function
F from natural numbers to saturated set of terms. The idea is that F represents an abstract proposition
over natural numbers.

Interactive realizability, however, is relativized to states, i.e. to terms s : N2 → N. Consequently, also
intensional equality of terms of FClass and hence saturation are relativized to states. The idea is that each
world/state s determines a notion of equality between terms of FClass, because during computations one
replaces Φ with its approximation s. That is, two terms t, u of FClass are intensionally equal in the state s
if t[s] = u[s] in F .

Definition 9 (s-Saturated Sets). Let s be any state.

1. A s-saturated set of type A (A closed) is any set S of closed type-A terms of FClass such that if t ∈ S
and t[s] = u[s] in F , then u ∈ S.

11

2. For every type A, we denote with SatA(s) the set of all s-saturated set of type A.

3. Let L+
Class

the language resulting from LClass by adding a constant symbol
�

F for every function F : N →
SatA(s).

3.3. Interactive Realizability

For every formula A of L+
Class, we are now going to define what type |A| a realizer of A must have.

Definition 10 (Types for realizers). For each formula A of L+
Class

we define a type |A| of FClass by induc-
tion on A:

1. |P | = U,

2. |Xt| = X,

3. |
�

Ft| = C if F : N → SatC(s),

4. |A ∧B| = |A| × |B|,

5. |A ∨B| = Bool× (|A| + |B|),

6. |A → B| = |A| → |B|,

7. |∀xA| = N → |A|,

8. |∀XA| = ∀X |A|,

9. |∃xA| = N× |A|,

10. |∃XA| = ∃X |A|

We now define the realizability relation t � C, where t ∈ FClass, C ∈ L+
Class

and t : |C|.

Definition 11 (Interactive Realizability). Assume s is a state, t is a closed term of FClass, C ∈ L+
Class

is
a closed formula, and t : |C|. We define first the relation t �s C by induction and by cases according to the
form of C:

1. t �s Q if and only if:

• t[s] = U implies that U is sound and dom(U) ∩ dom(s) = ∅

• t[s] = ∅ implies Q[s] = True

2. t �s

�

Fu if and only if for some numeral n, u[s] = n and t ∈ F (n)

3. t �s A ∧B if and only if π0t �s A and π1t �s B

4. t �s A ∨B if and only if either π0t[s] = True, π1t[s] = ι0,|A|,|B|(u) and u �s A, or π0t[s] = False,
π1t[s] = ι1,|A|,|B|(v) and v �s B

5. t �s A → B if and only if for all u, if u �s A, then tu �s B

12

6. t �s ∀xA if and only if for all numerals n, tn �s A[n/x]

7. t �s ∃xA if and only for some numeral n, π0t[s] = n and π1t �s A[n/x]

8. t �s ∀XA if and only if for every type B and F : N → SatB(s), tB �s A[
�

F/X]

9. t �s ∃XA if and only if t = 〈B, u〉 and u �s A[
�

F/X], for some F : N → SatB(s)

We define t � A if and only if for all states s, t �s A.

The ideas behind the definition of�s are the following. A realizer is a term t of FClass, possibly containing
the non-computable Skolem function Φ; if such function was computable, t would be an intuitionistic realizer.
Since in general t is not computable, we calculate its approximation t[s] at state s. t is an intelligent, self-
correcting program, representing a proof/construction depending on the state s. The realizer interacts with
the environment, which may provide a counter-proof, a counterexample invalidating the current construction
of the realizer. But the realizer is always able to turn such a negative outcome into a positive information,
which consists in some new piece of knowledge learned about the Skolem function Φ.

There are two important concepts that are useful to understand the interaction of a realizer with the
environment: a realizer receives as input tests and produces as output predictions.

• Predictions.

– A realizer t of A ∨B uses s to predict which one between A and B is realizable: if π0t[s] = True

then A is realizable, and if π0t[s] = False then B is realizable.

– A realizer u of ∃xA uses s to compute π0u[s] = n and to predict that n is a witness for ∃xA (i.e.
that A[n/x] is realizable).

– A realizer of ∃XA predicts the existence of a witness F : N → SatB(s) for ∃XA (i.e. that A[
�

F/X]
is realizable).

• Tests.

– A realizer t of a universal formula ∀xNA or ∀XA takes a natural number n or a saturated set F as

a challenge coming from the environment to provide a construction of A[n/x] or A[
�

F/X], whose
correctness will be tested at the end of computation.

– A realizer of A → B takes a realizer of A as a challenge coming from the environment to provide
a construction of B, whose correctness will be tested at the end of the computation.

– A realizer of A ∧B may be challenged to construct A as well as B, and again the correctness of
the construction will be tested at the end of computation.

– A realizer of an atomic formula Q comes after a series of predictions and challenges that have
been provided to test the construction of a complex formula; the realizer performs a final test and
computes the formula Q in the state s as an experiment. Since predictions of realizers need not be
always correct, it is possible that a realized atomic formula is actually false; we may have t �s Q
and Q[s] = False in F . If Q, though predicted to be true, is instead false, then a counterexample
has been encountered; this means that the approximation s of Φ is still inadequate. In this case,
t[s] 6= ∅ by definition of t �s Q, and the atomic realizer t takes s and extends it to a larger state
s′, union of s and t[s]. That is to say: the construction of a realizer is wrong in a particular state,
the realizer must learn from its mistakes. The point is that after every learning, the actual state
grows, and if we ask to the same realizer new predictions, we will obtain “better” answers.

Indeed, we can say more about this last point. Suppose for instance that t � A ∨ B and let {si}i∈N

be a w.i. sequence of states. Then, since t : Bool × |A| + |B|, then π0t : Bool is a closed term of FClass,

13

converging in {si}i∈N to a boolean by theorem 4; thus the sequence of predictions {π0t[si]}i∈N eventually
stabilizes, and hence a witness is eventually learned in the limit.

In the atomic case, in order to have t �s Q, we stipulate as second requirement that if t[s] = ∅, then
Q[s] = True in F . Together with the first requirement, that is to say: if t[s] contains no new information
about Φ for correcting wrong values of s, then t must ensure the truth of Q with respect to s. Hence search
for truth will be for us computation of a zero – a s such that t[s] = ∅ – driven by the excluded-middle
instances and the Skolem axioms used by proofs, rather than exhaustive search for counterexamples.

The next proposition tells that realizability at state s respects the notion of equality of FClass terms,
when the latter is relativized to state s. That is, if two terms are equal at the state s, then they realize the
same formulas at the state s. Hence, the extensional notion of s-saturated set comprehends the intensional
notion of realizability of a formula at state s.

Proposition 1 (Saturation). The following hold:

1. {t | t �s A} ∈ Sat|A|(s)

2. If u[s] = v[s], then {t | t �s B[u/x]} = {t | t �s B[v/x]}

Proof. By straightforward induction on A.

The next proposition tells that, in the context of realizability, quantification over maps from N to s-
saturated sets definable through realizability is the same as quantification over definable sets of natural
numbers. It is crucial in order to prove that t �s ∀XA implies t �s A[λxB(x)/X] for every formula B(x)
in the only free variable x.

Proposition 2 (Comprehension). Let B(x) be a formula of L+
Class

in the only free natural number variable
x. Define B : N → Sat|B|(s) as

B := n 7→ {t | t �s B(n)}

Then for every t

t �s A[
�

B/X] ⇐⇒ t �s A[λxB(x)/X]

Proof. By induction on A.

1. A = P (~u), with P predicate of TClass. Then, A[
�

B/X] = A[λxB(x)/X] and trivially

t �s A[
�

B/X] ⇐⇒ t �s A[λxB(x)/X]

2. A = Y u, with Y predicate variable. Then, if Y 6= X , the thesis is trivial, since we would have

A[
�

B/X] = Y u = A[λxB(x)/X]

So let us suppose Y = X and that for some numeral n, u[s] = n. Then

A[
�

B/X] =
�

Bu

A[λxB(x)/X] = B(u)

and so

t �s A[
�

B/X] ⇐⇒ t �s

�

Bu

⇐⇒ t ∈ B(n) = {v | v �s B(n)}

⇐⇒ t �s B(n)

prop. 1
⇐⇒ t �s B(u) = A[λxB(x)/X]

14

3. The other cases are straightforward.

Example 1. The most remarkable feature of our Realizability Semantics is the existence of a realizer for
EM1. Assume that Pa is a predicate of T and define

Ea := λαN〈Xaα, if Xaα then ι0,A,B(〈Φaα, ∅〉) else ι1,A,B(λn
N if Paαn then mkupd aαn else ∅)〉

with A = N× U and B = N → U.
Indeed Ea realizes its associated instance of EM1.

Proposition 3 (Realizer Ea of EM1).

Ea � ∀x. ∃y Pa(x, y) ∨ ∀y¬BoolPa(x, y)

Proof. As in Aschieri and Berardi [4].

Ea works as follows. It uses the oracle Xa to make predictions about which one between ∃y Pa(m, y)
and ∀y¬BoolPa(m, y) is true. Xa, in turn, relies on the approximation s of Φ to make its own prediction.
If Xam[s] = False, given any n, ¬BoolPa(m,n) is predicted to be true; if it is not the case, we have a
counterexample and mkupd amn returns {(a,m, n)}, that is, it requires to correct the state s as to output
n on input (a,m). On the contrary, if Xam[s] = True, there is unquestionable evidence that ∃y Pa(m, y)
holds; namely, Pamsa(m) = True by definition 6 of X; then Φam[s] = s(m) is computed and returned.
This is the basic mechanism by which learning is implemented: every state extension is linked with an
assumption about an instance of EM1 which has been used and turned out to be wrong (this is the only way
to come across a counterexample); in next computations, the actual state will be bigger, the realizer will
not do the same error, and hence will be “wiser”.

3.4. Curry-Howard Correspondence for HAS+ EM1 + SK1

In figure 2, we define a standard natural deduction system for HAS+ EM1 + SK1 (see [31], for example)
together with a term assignment in the spirit of Curry-Howard correspondence for classical logic.

We replace purely universal axioms (i.e., Π0
1 axioms) with Post rules, which are inferences of the form

Γ ⊢ A1 Γ ⊢ A2 · · · Γ ⊢ An

Γ ⊢ A

where A1, . . . , An, A are first-order atomic formulas of LClass (i.e., without set variables) such that for every
substitution σ = [n1/x

N

1, . . . , nk/x
N

k s/Φ] of numerals n1, . . . , nk and states s, A1σ = . . . = Anσ = True

implies Aσ = True. Let now eq : N2 → Bool a term of Gödel’s system T representing equality between
natural numbers. Among the Post rules, we have the Peano axioms

Γ ⊢ eq S(x)S(y)
Γ ⊢ eq x y

Γ ⊢ eq 0 S(x)
Γ ⊢ ⊥

and axioms of equality

Γ ⊢ eq xx
Γ ⊢ eqx y Γ ⊢ eq y z

Γ ⊢ eq x z
Γ ⊢ A(x) Γ ⊢ eqx y

Γ ⊢ A(y)

and for every A1, A2 such that A1 = A2 is an equation of Gödel’s system T (equivalently, A1, A2 have the
same normal form in T), we have the rule

Γ ⊢ A1

Γ ⊢ A2

We add also have a Post rule
Γ ⊢ A1 Γ ⊢ A2 · · · Γ ⊢ An

Γ ⊢ A

15

for every classical propositional tautology A1 → . . . → An → A, where for i = 1, . . . , n, Ai, A are atomic
formulas obtained as combination of other atomic formulas by the Gödel’s system T boolean connectives.
As title of example, we have the rules

Γ ⊢ ⊥
Γ ⊢ P

Γ ⊢ B
Γ ⊢ A ⇒Bool B

Γ ⊢ A ∧Bool B
Γ ⊢ A

Finally, we have a Post rule of case reasoning for booleans. For any atomic formula P and any formula A[P]
we have:

Γ ⊢ A[True] Γ ⊢ A[False]
Γ ⊢ A[P]

The connectives ∨Bool and ∨ have the same meaning but they are syntactically different: for every atomic
formula P , we consider P∨Bool¬BoolP an atomic formula and P∨¬BoolP a compound formula. P∨Bool¬BoolP
is an axiom, while may derive HAω ⊢ P ∨ ¬BoolP by case reasoning.

The term decorating the conclusion of a Post rule is of the form u1 ⋒ · · · ⋒ un. In this case, we have
n different realizers, whose learning capabilities are put together through a sort of union. By Lemma 1, if
u1 ⋒ · · · ⋒ un[s] = ∅, then u1[s] = . . . = un[s] = ∅, i.e. all ui “have nothing to learn”. In that case, each ui

must guarantee Ai to be true, and therefore the conclusion of the Post rule is true, because true premises
A1, . . . , An spell a true conclusion A.

We observe that the full ex-falso-quodlibet axiom is not in our system, since there are no rules neither
axioms to derive ⊥ → Xt. In fact, we have the ex-falso-quodlibet restricted to first-order formulas. In
section Appendix A, we shall address this (not very significant) issue.

We now prove our main result of this section: every theorem of HAS+EM1+SK1 is realizable. As usual
in adequacy proofs for realizability, we prove a stronger version of the theorem, suitable to be proved by
induction on proofs.

Theorem 5 (Adequacy Theorem). Suppose that Γ ⊢ w : A in the system HAS + EM1 + SK1, with
Γ = x1 : A1, . . . , xn : An, and that the free variables of the formulas occurring in Γ and A are among
α1 : N, . . . , αk : N, X1, . . . , Xm. Fix any state s, numerals n1, . . . , nk and F1 ∈ N → SatB1(s), . . . , Fm ∈ N →

SatBm(s). For every formula C, let C := C[n1/α1 · · ·nk/αk

�

F1/X1 · · ·
�

Fm/Xm]. If t1, . . . , tn are terms such
that

t1 �s A1, . . . , tn �s An

then
w[B1/X1 · · ·Bm/Xm][t1/x

|A1|
1 · · · tn/x

|An|
n n1/α1 · · ·nk/αk] �s A

Proof. Notation: for any term v, we denote

v[B1/X1 · · ·Bm/Xm][t1/x
|A1|
1 · · · tn/x

|An|
n n1/α1 · · ·nk/αk]

with v. We have

|C| = |C[
�

F1/X1 · · ·
�

Fm/Xm]| = |C|[B1/X1 · · ·Bm/Xm]

for all formulas C. We denote with = the provable equality in FClass. We proceed by induction on w.
Consider the last rule in the derivation of Γ ⊢ w : A:

1. If it is the rule for variables, then for some i, w = x
|Ai|
i and A = Ai. So w = ti �s Ai = A.

2. If it is the ∧I rule, then w = 〈u, t〉, A = B ∧ C, Γ ⊢ u : B and Γ ⊢ t : C. Therefore, w = 〈u, t〉. By
induction hypothesis, π0w = u �s B and π1w = t �s C; so, by definition, w �s B ∧ C = A.

3. If it is a ∧E rule, say left, then w = π0u and Γ ⊢ u : A ∧ B. So w = π0u �s A, because u �s A ∧ B
by induction hypothesis.

16

Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, with x1, . . . , xn proof variables and A1, . . . , An

formulas of LClass.

Axioms Γ, x : A ⊢ x|A| : A

Conjunction
Γ ⊢ u : A Γ ⊢ t : B
Γ ⊢ 〈u, t〉 : A ∧B

Γ ⊢ u : A ∧B
Γ ⊢ π0u : A

Γ ⊢ u : A ∧ B
Γ ⊢ π1u : B

Implication
Γ ⊢ u : A → B Γ ⊢ t : A

Γ ⊢ ut : B

Γ, x : A ⊢ u : B

Γ ⊢ λx|A|u : A → B

Disjunction Intro.
Γ ⊢ u : A

Γ ⊢ 〈True, ι0,|A|,|B|(u)〉 : A ∨ B
Γ ⊢ u : A

Γ ⊢ 〈False, ι1,|A|,|B|(u)〉 : A ∨ B

Disjunction Elim.
Γ ⊢ u : A ∨ B Γ ⊢ w1 : A → C Γ ⊢ w2 : B → C

Γ ⊢ (π1u)|C|w1w2 : C

Universal Quantification (1)
Γ ⊢ u : ∀αNA

Γ ⊢ ut : A[t/αN]
Γ ⊢ u : A

Γ ⊢ λαNu : ∀αNA

where t is a term of LClass and αN does not occur free in any formula B occurring in Γ.

Existential Quantification (1)
Γ ⊢ u : A[t/αN]
Γ ⊢ 〈t, u〉 : ∃αN A

Γ ⊢ u : ∃αN A Γ ⊢ t : ∀αN. A → C
Γ ⊢ t(π0u)(π1u) : C

where, in the second rule, αN is not free in C nor in any formula B occurring in Γ.

Universal Quantification (2)
Γ ⊢ u : ∀XA

Γ ⊢ u|B| : A[λxB(x)/X]
Γ ⊢ u : A

Γ ⊢ ΛXu : ∀XA

where B(x) is a formula of LClass and in the second rule X does not occur free in any formula occurring in Γ.

Existential Quantification (2)
Γ ⊢ u : A[λxB(x)/X]
Γ ⊢ 〈|B|, u〉 : ∃XA

Γ ⊢ u : ∃XA Γ ⊢ t : ∀X.A → C
Γ ⊢ u|C|t : C

where, in the second rule, X is not free in C nor in any formula occurring in Γ.

Induction
Γ ⊢ u : A(0) Γ ⊢ v : ∀α.A(α) → A(S(α))

Γ ⊢ λαN.R|A|uvα : ∀αA

Post Rules
Γ ⊢ u1 : A1 Γ ⊢ u2 : A2 · · · Γ ⊢ un : An

Γ ⊢ u1 ⋒ u2 ⋒ · · · ⋒ un : A

where n > 0 and A1, A2, . . . , An, A are first-order atomic formulas of LClass, and the rule is a Post rule for equality, for
a Peano axiom, for a classical propositional tautology or for booleans.

Post Rules with no Premises Γ ⊢ ∅ : A

where A is a first-order atomic formula of LClass and an axiom of equality or a classical propositional tautology.

EM1 Γ ⊢ Ea : ∀x. ∃y Pa(x, y) ∨ ∀y¬BoolPa(x, y)

SK1 Γ ⊢ λxNλyNif (Paxy ⇒Bool Pax(Φax)) then ∅ else (mkupd a x y) : ∀x∀y. Pa(x, y) ⇒Bool Pa(x,Φax)

Figure 2: Term Assignement Rules for HAS+ EM1 + SK1

4. If it is the → E rule, then w = ut, Γ ⊢ u : B → A and Γ ⊢ t : B. So w = ut �s A, for u �s B → A
and t �s B by induction hypothesis.

5. If it is the → I rule, then w = λx|B|u, A = B → C and Γ, x : B ⊢ u : C. Suppose now that t �s B;
we have to prove that wt �s C. By induction hypothesis on u, u �s C. By trivial equalities and

17

induction hypothesis

wt = (λx|B|u)t

= u[B1/X1 · · ·Bm/Xm][t/x|B| t1/x
|A1|
1 · · · tn/x

|An|
n n1/α1 · · ·nk/αk]

�s C

Therefore, wt �s C.

6. If it is a ∨I rule, say left, then w = 〈True, ι0,|B|,|C|(u)〉, A = B ∨ C and Γ ⊢ u : B. So, w =

〈True, ι0,|B|,|C|(u), 〉 and hence π0w = True. We indeed verify that u �s B with the help of induction
hypothesis.

7. If it is a ∨E rule, then
w = (π1u)|D|w1w2

and Γ ⊢ u : B ∨C, Γ ⊢ w1 : B → D, Γ ⊢ w2 : C → D, A = D.
Assume π0u[s] = True. By inductive hypothesis u �s B ∨C. Therefore,

π1u[s] = ι0,|B|,|C|(v) (1)

and v �s B. Hence, by definition 2 of ι0,|B|,|C| and by (1)

w[s]=ι0,|B|,|C|(v)|D|w1w2

= (ΛXλf |B|→Xλg|C|→X fv)|D|w1w2

= w1v[s]

By induction hypothesis w1 �s B → D. Therefore, w1v �s D. Thus, by saturation (proposition 1),
w �s D.
Symmetrically, if π0u[s] = False, we obtain again w �s D.

8. If it is the (first order) ∀E rule, then w = ut, A = B[t/αN] and Γ ⊢ u : ∀αNB. So, w = ut. For
some numeral n, we have n = t[s]. By inductive hypothesis u �s ∀αB and so un �s B[n/αN]. Since
ut[s] = un[s], by saturation (proposition 1), we conclude that ut �s B[t/αN].

9. If it is the (first order) ∀I rule, then w = λαNu, A = ∀αNB and Γ ⊢ u : B (with α not occurring free
in the formulas of Γ). So, w = λαNu, since α 6= α1, . . . , αn. Let n be a numeral; we have to prove that
wn = u[n/αN] �s B[n/αN], which amounts to show that the induction hypothesis can be applied to u.
For this purpose, it is enough to observe that for i = 1, . . . , n

ti �s Ai = Ai[n/α
N]

10. If it is the (first order) ∃E rule, then
w = t(π0u)(π1u)

Γ ⊢ t : ∀αN. B → A and Γ ⊢ u : ∃αN B. Assume n = π0u[s], for some numeral n. By induction
hypothesis t �s ∀αN. B → A and u �s ∃αN B. Therefore, π1u �s B[n/αN] and

tn(π1u) �s A[n/αN] = A

by for α does not occur free in A. Since w[s] = tn(π1u)[s], we obtain by saturation (proposition 1)
w �s A.

18

11. If it is the (first order) ∃I rule, then w = 〈t, u〉, A = ∃αNB, Γ ⊢ u : B[t/αN]. So, w = 〈t, u〉; and, indeed

π1w = u �s B[π0w/α
N] = B[t/αN]

since by induction hypothesis u �s B[t/αN]. We obtain the thesis by saturation (proposition 1).

12. If it is the (second order) ∀E rule, then w = u|C|, A = B[λxC(x)/X] and Γ ⊢ u : ∀XB. So, w = u|C|.
Define

C := n 7→ {t | t �s C(n)}

By inductive hypothesis u �s ∀XB and so u|C| �s B[
�

C/X]. By proposition 2, we conclude that

u|C| �s B[λxC(x)/X]

13. If it is the (second order) ∀I rule, then w = ΛXu, A = ∀XB and Γ ⊢ u : B (and X does not occur
free in the formulas of Γ). So, w = ΛXu, since X 6= X1, . . . , Xm. Let F : N → SatC(s); we have to

prove that wC = u[C/X] �s B[
�

F/X], which amounts to show that the induction hypothesis can be
applied to u. For this purpose, it is enough to observe that for i = 1, . . . , n

ti �s Ai = Ai[
�

F/X]

14. If it is the (second order) ∃E rule, then
w = u|A|t

Γ ⊢ t : ∀X.B → A and Γ ⊢ u : ∃XB, with X not occurring free in A. By inductive hypothesis on u,

u �s ∃XB; hence u = 〈C, v〉 and v �s B[
�

F/X], for some F : N → SatC(s). By induction hypothesis
on t, t �s ∀X.B → A and hence

tCv �s A[
�

F/X] = A

Moreover

w = 〈C, v〉|A|t
def. 2
= (ΛY λx∀X.B→Y xCv)|A|t = tCv

We thus obtain by saturation (proposition 1)

w �s A

15. If it is the (second order) ∃I rule, then w = 〈|C|, u〉, A = ∃XB, Γ ⊢ u : B[λxC(x)/X]. So, w = 〈|C|, u〉.
Moreover, by induction hypothesis

u �s B[λxC(x)/X]

Define
F := n 7→ {t | t �s C(n)}

By proposition 1,
�

F ∈ Sat|C|(s) and by proposition 2

u �s B[
�

F/X]

which is the thesis.

16. If it is the induction rule, then w = λαNR|B|uvα, A = ∀αB, Γ ⊢ u : B(0) and Γ ⊢ v : ∀α.B(α) →
B(S(α)). So, w = λαNR|B|uvα. Now let n be a numeral. A plain induction on n shows that

wn = R|B|uvn �s B[n/α]

for u �s B(0) and vi �s B(i) → B(S(i)) for all numerals i by induction hypothesis.

19

17. If it is a Post rule, then w = u1⋒u2⋒ · · ·⋒un and Γ ⊢ ui : Ai. So, w = u1⋒u2⋒ · · ·⋒un. First, suppose
that, for i = 1, . . . , n, ui[s] = Ui and w[s] = U . By induction hypothesis, dom(Ui) ∩ dom(s) = ∅, and
thus also dom(U) ∩ dom(s) = ∅. Suppose now that U = ∅; then we have to prove that A[s] = True.
It suffices to prove that

A1[s] = A2[s] = · · · = An[s] = True

Indeed, we have U1 = · · · = Un = ∅ and by induction hypothesis A1[s] = · · · = An[s] = True, since
ui �s Ai, for i = 1, . . . , n.

18. If is the excluded middle axiom EM1, then w �s EM1: this is Proposition 3.

19. If it is a Φ-axiom rule, then

w = λxNλyNif (Paxy ⇒Bool Pax(Φax)) then ∅ else (mkupd a x y)

and
A = ∀x∀y. Pa(x, y) ⇒Bool Pa(x,Φax)

Let n,m be two arbitrary numerals. We have to prove that

wnm �s Pa(n,m) ⇒Bool Pa(n,Φan)

There are two cases:

(a) Pa(n,m) ⇒Bool Pa(n, san) = True. In this case, wnm[s] = ∅ and we have only to check that
dom(s) ∩ dom(∅) = ∅, which is trivial.

(b) Pa(n,m) ⇒Bool Pa(n, san) = False. Then, Panm = True and Pansa(n) = False. Moreover

wnm[s] = mkupd a nm = U

with U = {(a, n,m)}. We have first to check that U is sound (see definition 1): this follows from
Panm = True. Then we have to verify that dom(s) ∩ dom(U) = ∅: indeed, dom(U) = {(a, n)},
and by definition 6, Pansa(n) = False implies (a, n) /∈ dom(s). Finally, we have to check that
U 6= ∅, which is indeed true.

As corollary of the Adequacy theorem 5, we obtain the main theorem.

Theorem 6. If A is a closed formula such that HAS+ EM1 + SK1 ⊢ t : A, then t � A.

4. Witness Extraction with Interactive Realizability

In this section, we turn our attention to a crucial problem, which is an important test for any realizability
semantics of classical Arithmetic: the witness extraction problem for Π0

2-formulas. Given a realizer t �

∀xN∃yNPxy, where P is an atomic recursive predicate, one is asked to extract from t a non-trivial program
taking as input a numeral n and yielding as output a witness for the formula ∃yNPmy (that is, a numeral
m such that Pnm = True). In the case of Interactive realizability, the problem of computing that witness
can be reduced to finding a “zero” for a suitable term u of type U, that is a state s : S such that u[s] = ∅.
Indeed, given any numeral n and state s, the following implications hold:

t � ∀xN∃yNPxy

=⇒

t �s ∀xN∃yNPxy

=⇒

20

tn �s ∃yNPny

=⇒

π0(tn)[s] = m ∧ π1(tn) �s Pnm

=⇒

π1(tn)[s] = ∅ =⇒ Pnm = True

Therefore, if s is a zero of π1(tn), then π0(tn) is equal in the state s to some witness m of the formula
∃yNPny. Intuitively, a zero for π1(tn) represents a sufficient amount of information to compute the required
witness.

Given a term u : U and a state s, we write u[s] � s if and only if u[s] = U , for some update U , and
dom(U) ⊆ dom(s). If u[s] � s, we call s a prefix point of u. A prefix point s of u represents a state
that u is not able to extend with new information; in particular, if u �s Q, for some atomic formula Q,
then s is a zero of u. In the rest of the paper, we will show how to compute a prefix point for any closed
term v : U of system FClass. We propose two methods for accomplishing this task; they construct exactly
the same witnesses and implement the very same idea, but they are radically different from the efficiency
point of view. The Iterative Method is very simple, easy to understand and provides an algorithm that can
be directly written in pure lambda calculus; but the proof of correctness uses the Axiom of Choice. The
State-Extending-Continuation-Passing-Style Method is more sophisticated, dramatically more efficient and
provides an algorithm that can be represented in System F ; the correctness proof is purely intuitionistic.
But the first method is useful to understand the second, which is nothing but an optimization of the first.

Remark 3. For simplicity, for the rest of the paper we assume that the product and boolean types of F ,
its booleans, pairs and if constructs are not primitive notions, but they are all defined (in the standard way,
see for example Girard [20]).

4.1. The Iterative Method

If t � ∀xN∃yNPxy and u := π0(tn), the interpretation of u : U is that of a state-extending operator.
That is, given a state s, since u[s] represents new information improving the approximation s of the oracle
Φ, it is natural to associate to u the state-extending operator λsS. s⊕u[s]. The idea of the Iterative Method
is to start from an arbitrary state and apply this state-extending operator until a zero of u is reached. Such
series of state extensions represents a terminating learning process.

Theorem 7 (Zero Theorem). Let P be an atomic predicate of Gödel’s T and suppose t � ∀xN∃yNPxy.
Let n be any numeral, define u := π0(tn) and let s be any state. Define, by induction on n, a sequence
{sn}n∈N of states as follows:

s0 := s

sn+1 := sn ⊕ u[sn]
def 6
= λxNλyN if (isu[sn]x y) then (getu[sn]x y) else sn(x, y)

Then, {sn}n∈N is weakly increasing and there exists a number k such that u[sk] = ∅.

Proof. We first prove that s0, s1, s2, . . . is a weakly increasing chain. Suppose si(a, n) 6= si+i(a, n): we have
to prove that (a, n) ∈ dom(si+1) and (a, n) /∈ dom(si). By definition of si+1, if it were isu[si] a n = False,
then we would have si(a, n) = si+i(a, n), contradiction. Thus, isu[si] a n = True, and if we choose an update
U such that U = u[si], we have:

isU an = True

that is, (a, n) ∈ dom(U), and for some m, (a, n,m) ∈ U . If we let l = u[si], then u �si Pnl; this means
that U is sound and dom(si) ∩ dom(U) = ∅. From dom(si) ∩ dom(U) = ∅ and (a, n) ∈ dom(U) we obtain
(a, n) /∈ dom(si). From U is sound and (a, n,m) ∈ U we obtain Panm = True. By definition,

si+1(a, n) = getu[si] a n = getU an = m

21

Therefore, si+1(a, n) = m and by definition 6 of dom, we have that (a, n) ∈ dom(si+1). We conclude that
s0, s1, s2, . . . is weakly increasing.
Now, by theorem 4, u converges over the chain {si}i∈N: there exists k ∈ N such that for every j ≥ k,
u[sj] = u[sk]. By choice of k

sk+1 ⊕ u[sk+1] = (sk ⊕ u[sk])⊕ u[sk+1]

= (sk ⊕ u[sk])⊕ u[sk]

= sk ⊕ u[sk]

= sk+1

and hence it must be that u[sk+1] = ∅, which is the thesis.

We are now able to extract from any realizer t � ∀xN∃yNPxy, with P atomic predicate of Gödel’s T, a
recursive map f from the set of numerals to the set of numerals, such that Pnf(n) = True for all numerals
n.

Theorem 8 (Witness Extraction via the Iterative Method). Suppose that t � ∀xN∃yNPxy, with P
atomic predicate of Gödel’s T. Then, from t one can effectively define a recursive function f from the set
of numerals to the set of numerals such that for every numeral n, Pn(f(n)) = True.

Proof. Let
v := λmN π1(tm)

v is of type N → U. By the Zero Theorem 7, there exists a recursive function zero from the set of numerals
to the set of states such that vn[zero(n)] = ∅ for every numeral n. Define the function

f := m 7→ π0(tm)[zero(m)]

and fix a numeral n. By unfolding the definition of realizability with respect to zero(n), we have that

tn �zero(n) ∃y
NPny

and hence
π1(tn) �zero(n) Pn(f(n))

that is to say
vn[zero(n)] = ∅ =⇒ Pn(f(n)) = True

and therefore
Pn(f(n)) = True

which is the thesis.

The recursive function f of theorem 8 is not directly representable in F , since it uses unbounded iteration
to compute zeros of atomic realizers, as in the proof of the zero theorem 7. However, f is easily representable
in pure lambda calculus, by means of any fixed point combinator. It is remarkable that one does not need
control operators at all and f can be written directly in a purely functional language (differently from what
happens with Krivine classical realizability [25, 27]). f can even be represented: i) in Spector’s system B

(see Aschieri[2]); ii) in pure system F , by using the methods of Aschieri [3] and of this paper: this is possible
because the number of times that a state-extending operator is iterated can be bounded constructively.

One may then wonder how it is implemented backtracking in our extracted programs: control operators
have precisely that function in [25]. The answer is that backtracking is implemented automatically in
the iteration of the state-extending operator u of theorem 7. More precisely, let us consider the chain
{sn}n∈N defined in the statement of theorem 7. When u is evaluated in sn, and it is different from ∅, then
dom(sn+1) = dom(sn ⊕ u[sn]) is strictly larger than dom(sn). In particular, for some pair of numerals (i, j),
there is a k such that (i, j, k) belongs to the update denote by u[sn] and it holds that k = sn+1(i, j) 6= sn(i, j).

22

The normalization of u[sn+1] is perfectly equal to the normalization of u[sn] up to the first point in which
sn+1(i, j) is computed: this is the backtracking point. Instead of putting control operators in u[sn] to save
all possible backtracking points and to jump directly to the right one (which is discovered by reducing u[sn]
to an update), the Iterative Method recomputes u[sn+1] from scratch. In this way, the backtracking point
is trivially rencountered, but with a great waste of resources.

The aim of the next section is to define in F a more efficient program, that is able to jump to the right
backtracking point while iterating the state-extending operator u.

4.2. The State-Extending-Continuation-Passing-Style Method

The State-Extending-Continuation-Passing-Style method defines a translation [[]] of the terms of System
FClass into F . [[t]] will be a program that manipulates continuation on states, and uses them to implement
backtracking. As a tool for describing and proving the properties of the translation we shall use, once again,
(intuitionistic) realizability combined with a constructive notion of forcing. The use of the notation [[]] is
not casual, since this translation has a nice model theoretic explanation in terms of non-standard natural
numbers (see Aschieri [3]).

The idea of the State-Extending-Continuation-Passing-Style method is to interpret the oracle Φa as
a kind of control operator. During computations, whenever it is asked the value of Φa(n), one uses the
approximation sa(n) given by some state s. But if the final value of a computation is an update U , it might
contain a triple (a, n,m): the value of s at point (a, n) was incorrect and must be corrected with the value
m. The idea is that the program interpreting Φa(n) should look at the future of the computation: if any
state s′ > s is ever encountered such that a triple (a, n,m) ∈ dom(s′) , then it returns m, otherwise it return
sn(m). The future of the computation, as usual, is given by a state-extending continuation.

Definition 12 (State-Extending Continuations). A closed term k : S → S of F is said to be state-
extending continuation if for all states s, s ≤ k(s). We denote with K the set of all state-extending contin-
uations.

There is, however, a complication. The idea explained above works with terms of the form Φa(n), where n
is a numeral, but not with terms of the form Φa(t), when t : N is a term of FClass. The problem arises when
computing t[s] = n. If the domain of the state s′ returned by the current continuation k ∈ K applied to
the current state s contains (a, n,m), then one has to evaluate once again t in the state s′. If t[s′] = n, the
program interpreting Φa(t) returns m. But it may happen that t[s′] = n′ 6= n. In this case, the program
interpreting Φa(t) must look again in the future s′′ = k(s′), check whether (a, n′,m) ∈ dom(s′′) and so on...
How do we know, constructively, that one cannot end stuck in an infinite loop? The key idea is that, starting
from any state, one can force t to have a value which is going to be stable in all the future states of the
computation. To express this precisely, we need the notion of modulus of forcing.

4.2.1. Moduli of Forcing and Constructive Forcing at Type N

Classically, a term t : N of System FClass denotes a natural number, when a Skolem function is chosen for
interpreting Φ. But from the constructive point of view, t is not a natural number, for we cannot compute
its value. Worse of all, t may have infinite values, one for each state! More precisely, in our realizability
model, there is no way whatsoever even in the classical sense to associate to t a definite natural number as
a value: we consider as states all possible computable approximations of all possible Skolem functions that
may interpret Φ, and thus different states may approximate different functions. Constructively, however,
we can force t to behave like a single natural number for “the rest of computation”. In particular, a state s
forces t to belong to N if for all k ∈ K there exists a state s′ ≥ s such that t is equal to the same numeral
when evaluated in any state r such that s′ ≤ r ≤ k(s′). In other words, there is an extension s′ of s such
that t will have the same values in all the states of the computation produced after s′.

Intuitively, a modulus of forcing represents the computational content of that notion of forcing. The
concept of modulus of forcing (due to Berardi) has been extensively motivated and exploited in Aschieri
[3] in order to define a state-extending-continuation-passing-syle translation of System TClass into Gödel’s
System T .

23

Definition 13 (Modulus of Forcing and Constructive Forcing at Type N). Let t be a closed term
of FClass and of type N.

1. For all states s, r, we define

t ↓ [s, r]
def
≡ ∀qS. s ≤ q ≤ r → t[q] = t[s]

2. A term M : (S → S) → (S → S) of F is a modulus of forcing for t if:

(a) ∀k ∈ K. Mk ∈ K

(b) ∀k ∈ K. ∀sS. t ↓ [Mk(s), k(Mk(s))]

3. Whenever M is a modulus of forcing for t, we write M
 t ∈ N and we say that M forces t to belong
to N.

As in [3], we now show that given two terms t1 and t2, if each one of them has a modulus of forcing, then
there is a modulus of forcing that works simultaneously for both of them. In particular, we can define a
binary operation ⊔ between moduli of forcing such that, for every pair of moduli M,N , M⊔N is “more
general” than both M and N . Here, for every M1,M2, we call M2 more general than M1, if for every
term t, if M1 is a modulus of forcing for t then also M2 is a modulus of forcing for t. We this terminology,
we may see M⊔N as an upper bound of the set {M,N}, with respect to the partial order induced by the
relation “to be more general than”. For any terms u, v : S, we define u ◦ v := λsS. u(v[s]).

Proposition 4 (Joint Forcing). Suppose M
 t1 ∈ N and N
 t2 ∈ N. Define

M⊔N := λkS→SλsSNh(Mk◦Nk
(z))

Then M⊔N
 t1 ∈ N and M⊔N
 t2 ∈ N .

Proof. Set
L := M⊔N

First, we check property (1) of definition 13. For all k ∈ K, Nk ∈ K by definition 13 point (1) and so
k ◦ Nk ∈ K. Thus, for all k ∈ K and state s

Lk(s) = Nk(Mk◦Nk
(s)) ≥ s

since M has property (1) of definition 13 and hence Mk◦Nk
∈ K. Therefore, for all k ∈ K, Lk ∈ K and we

are done.
Secondly, we check property 2 of definition 13. Fix a continuation k ∈ K and a state s. Since M
 t1 ∈ N,
we have that

t1 ↓ [Mk◦Nk
(s), k ◦ Nk(Mk◦Nk

(s))] (2)

Moreover, since N
 t2 ∈ N, we have

t2 ↓ [Nk(Mk◦Nk
(s)), k(Nk(Mh◦Nk

(s)))] (3)

But the starting point of the interval in (3) is greater or equal to the starting point of the interval in (2),
for Nk ∈ K, while their ending points are equal. Hence also

t1 ↓ [Nk(Mk◦Nk
(s)), k(Nk(Mk◦Nk

(s)))]

and hence both t1 and t2 are constant in the interval [Lk(s), k(Lk(s))] by definition of L.

24

The notion of modulus of forcing, as explained in [3], gives rise to an interesting non-standard model of
Gödel’s System T . In that model, integers are pairs (M, f), where f is a function from states to numbers
and M is a modulus of forcing of such function. It is natural to associate to every term of FClass the
non-standard numbers it represents.

Definition 14 (Non-Standard Natural Numbers). We define

∗
N := {〈M, t〉 | M = 〈L, g〉, g : S → N ∈ F , ∀sS g(s) = t[s] and L
 t ∈ N}

(all terms in the definition are supposed to be closed).

The notion of modulus of forcing, if extended to terms of type U, is sufficient to write down in F a
program that implements the Iterative Method. Indeed, that is the approach followed in [3]. But in order
to perform better, we need the additional notion of modulus of prefix point.

4.2.2. Moduli of Prefix Point and Constructive Forcing at Type U

An idea which is related to the concept of modulus of prefix point was introduced in Berardi and De’
Liguoro [10]. Interestingly, as well as the notion of modulus of forcing is not sufficient to write an efficient
optimization of the Iterative Method, the notion of modulus of prefix point alone misses the goal. But when
combined together, the two notions are able to produce the desired result.

Intuitively, a modulus of prefix point represents the computational content of the following constructive
notion of forcing for terms t of type U: a state s forces t to belong to U if for all k ∈ K there exists s′ ≥ s
such that k(s′) is a prefix point of t. In other words, there is an extension s′ of s such that the final state
of the computation that starts from s′ will be a prefix point of t. The idea is that the interpretation of the
type U is the set of all terms of type U having “stable” prefix points reachable from any state.

Definition 15 (Modulus of Prefix Point and Constructive Forcing at Type U). A term M : (S →
S) → (S → S) of F is a modulus of prefix point for t if:

1. ∀k ∈ K. Mk ∈ K

2. ∀k ∈ K ∀sS. s′ = k(Mk(s)) =⇒ t[s′] � s′

Whenever M is a modulus of prefix point for t, we write M
 t ∈ U and we say that M forces t to belong
to U.

It is natural to associate to every term of type U all its possible moduli of prefix point.

Definition 16 (Non-Standard Updates). We define

∗
U := {〈M, t〉 | M
 t ∈ U}

(all terms in the definition are supposed to be closed)

4.2.3. Constructive Forcing at All Types

Now that we have a notion of forcing at base types, we lift it to all types by means of intuitionistic
realizability. Since we are in an impredicative setting, we first have to put some general conditions that our
notion of forcing/realizability must satisfy. As usual, we define a notion of candidate, which in our case
is a set of pair of terms closed by the intensional equality of F and equipped with a monad operation (in
the sense of Moggi [28]). This operation takes as input a non-standard natural number (M, g) and term
L : N → U and return a term of type U . Intuitively, it means that: i) in some way one may apply functions
which takes as arguments natural numbers to non-standard numbers; ii) if one can force some property to
be true for all natural numbers, then one can force it to be true for all non-standard natural numbers. The
property ii) will be essential when interpreting recursion over non-standard numbers.

25

Definition 17 (Forcing Candidates). Let C be a set of terms of system FClass of type U×V , closed under
the intensional equality of F (i.e. if t ∈ C and t = t′, then t′ ∈ C). Let

N : CandU := ((S → S) → (S → S)) → (S → N) → (N → U) → U

be a closed term of system F . We define the relation N
 C ∈ CandU×V – representing the notion “N
realizes that C is a forcing candidate of type U × V ” – to hold whenever the following three conditions:

1. M
 t ∈ N;
2. for all states s, g(s) = t[s];

3. L : N → U is a term of F such that for every numeral m, 〈Lm,u(m)t1 . . . tn〉 ∈ C

imply that
〈NMgL, u(t)t1 . . . tn〉 ∈ C

(where t1 . . . tn is any sequence of types or terms). If N
 C ∈ CandU×V , then C is said to be a forcing
candidate (of type U×V). Whenever the type of the terms in C is known, we shall just write N
 C ∈ Cand.

For convenience, we now introduce to the language a type constant symbol for every forcing candidate. For
each type T in this extended language, we define two types of F : a type |T |, which represents the type in
F of a term of type T in the extended language, and a type [[T]], which represents the interpretation of T
in the realizability model.

Definition 18 (Extended Types, Interpretation of Types). We define:

1. For every forcing candidate C of type U × V , we introduce a type constant
�

C to the language of types

of system FClass and we define |
�

C| := V . An extended type is defined by induction as either a type

constant
�

C, or a type variable, or an expression U → V or ∀X U , with U and V extended types and
X a type variable. We define |∀X U | := ∀X |U |, |U → V | := |U | → |V |, |X | := X, for X variable.

2. For every extended type T , we define a type [[T]] by induction on T as follows.

(a) T = X, with X atomic. Then
[[X]] := X

(b) T = N. Then
[[N]] := ((S → S) → (S → S))× (S → N)

(c) T = U. Then
[[U]] := (S → S) → (S → S)

(d) T =
�

C, where C is a forcing candidate of type U × V . Then

[[
�

C]] := U

(e) T = A → B. Then
[[A → B]] := [[A]] → [[B]]

(f) T = ∀X A. Then
[[∀XA]] := ∀X.CandX → [[B]]

We are now ready to define our forcing/realizability relation. Intuitively, M
 t ↓ T means that M
forces the term t ∈ FClass to behave like a computable functional of higher-type. The notion can be seen as
a constructive extension of the standard Tait-Girard computability/reducibility predicate, defined in order
to deal with non-computable functionals. It also appears as a kind of constructively refined version of
Goodman’s forcing [16] (see section 5 for more about this point). Here, we could have also talked about
“higher-type convergence” since the notion can be as a tool for reformulating and proving constructively
the Converge Theorem 4.

26

Definition 19 (Constructive Forcing at Higher Types). We define:
Let T be a closed extended type, and M : [[T]] and t : |T | be closed terms respectively of F and FClass. We

define the relation M
 t ↓ T – representing the notion “M forces t to be a computable functional of type
T” – by induction on the type T as follows:

1. T = N. Then,

M
 t ↓ N ⇐⇒ M = 〈L, g〉, ∀sSg(s) = t[s] and L
 t ∈ N (definition 13)

2. T = U. Then, M
 t ↓ U is given by definition 15. That is,

M
 t ↓ U ⇐⇒ M is a moduls of prefix point for t

3. T =
�

C, |
�

C| = U . Let M : U . Then

M
 t ↓
�

C ⇐⇒ 〈M, t〉 ↓ C

4. T = A → B. Let M : [[A → B]]. Then

M
 t ↓ A → B ⇐⇒ (∀u. N
 u ↓ A =⇒ MN
 tu ↓ B)

5. T = ∀X A. Let M : [[∀XA]]. Then

M
 t ↓ ∀XA ⇐⇒ (∀C. N
 C ↓ CandU×V =⇒ MUN
 tV ↓ A[
�

C/X])

4.3. Non-Standard Updates are Forcing Candidates

We are now going to prove that ∗
U (see definition 16) is a forcing candidate. Therefore, we must define an

operation of “application” ▽∗U, that applies a term L : N → [[U]] to a non-standard natural number (M, g).
The goal is to define a modulus of prefix point for a term u(t), with t : N, out of L and (M, g), assuming
that for every numeral n, Ln is a modulus of prefix point for u(n), M is a modulus of forcing for t and for
all states s, g(s) = t[s]. We have to receive as input a k ∈ K and a state s; we have to compute a state
s′ ≥ s such that k(s′) is a prefix point for u(t). Since computing this prefix point requires in a somewhat
circular manner to know the value of g in this prefix point (value which will be given to L), the idea is first
to force g to be constant for the rest of computation: this is obtained by defining a continuation k′, which
represents the sequence of operations: evaluate g in a state r obtaining n, apply L to n and use the result
to extend the state r to some r′, such that k(r′) is a prefix point of u(n). This continuation k′, composed
with k, is given to M which will force g to be constant in such continuation. Finally, g is transformed into
a natural number in the state computed by M and given to L. Details follow.

Proposition 5 (∗U is a Forcing Candidate). Let L : N → (S → S) → (S → S), M : (S → S) → (S → S)
and g : S → N be term variables. Define

k′ := λsS. (Lg(s))ks

k′′ := Mk◦k′

and
L▽U(M, g) := λkS→S k′ ◦ k′′

Then
λMλg λL. L▽U(M, g)
 ∗

U ∈ Cand

Proof. According to definition 17, suppose that:

1. M
 t ∈ N;

27

2. for all states s, g(s) = t[s];

3. L : N → (S → S) → (S → S) is a term of F such that for every numeral m, 〈Lm,u(m)t1 . . . tn〉 ∈
∗
U

We have to prove that
L▽U(M, g) = λkS→S k′ ◦ k′′ ∈ ∗

U

So, let k ∈ K and s : S. k′ ◦ k′′ ∈ K follows from hypotheses on M and L and definition of k′, k′′. We thus
have to show that

u(t)t1 . . . tn[s] � s

Since k′′ = Mk◦k′ and M
 t ∈ N, we obtain that

t ↓ [k′′(s), k ◦ k′(k′′(s))]

Let m = g(k′′(s)). Since k′ = λsS. (Lg(s))ks, we have

k′(k′′(s)) = (Lmk)(k′′(s))

By hypothesis (3.) on L, Lm is a modulus of prefix point for u(m)t1 . . . tn. Letting

s′ = k((Lmk)(k′′(s))) = k(k′(k′′(s)))

we get that
u(m)t1 . . . tn[s

′] � s′

By k, k′ ∈ K, it holds that k′′(s) ≤ k′(k′′(s)) ≤ k(k′(k′′(s))). Therefore

t[s′] = t[k′′(s)] = g(k′′(s)) = m

It follows that
u(t)t1 . . . tn[s

′] = u(m)t1 . . . tn[s
′] � s′

which is the thesis.

4.4. Non-Standard Natural Numbers are Forcing Candidates

We now prove that ∗
N (see definition 14) is a forcing candidate. The construction involved is analogous

to the one used in proving that ∗
U is a forcing candidate.

Proposition 6 (Non-Standard Natural Numbers are Forcing Candidates). Let
L : N → ((S → S) → (S → S)× S → N), M : (S → S) → (S → S) and g : S → N be term variables. Define

k′ := λsS. (π0Lg(s))ks

k′′ := Mk◦k′

and
L▽∗N(M, g) := 〈λkS→S k′ ◦ k′′, λsS. (π1Lg(s))s〉

Then
λMλg λL. L▽N(M, g)
 ∗

N ∈ Cand

Proof. According to definition 17, suppose that:

1. M
 t ∈ N;

2. for all states s, g(s) = t[s];

3. L : N → ((S → S) → (S → S)×S → N) is a term ofF such that for every numeralm, 〈Lm,u(m)t1 . . . tn〉 ∈
∗Nat.

28

We have to prove that
L▽N(M, g) = 〈λkS→S k′ ◦ k′′, λsSπ1Lg(s)〉 ∈

∗
N

and therefore that: i) λkS→S k′ ◦ k′′ is a modulus of forcing for u(t)t1 . . . tn; ii) that when evaluated in any
state s, the former is equal to (π1Lg(s))s. ii) is immediate: since g(s) = t[s], and by hypothesis (3.) for
every numeral m, (π1Lm)s = u(m)t1 . . . tn[s], we get

(π1Lg(s))s = u(g(s))t1 . . . tn[s] = u(t)t1 . . . tn[s]

We now prove i). Let k ∈ K and s : S. The fact that k′ ◦ k′′ ∈ K follows from hypotheses on M and L and
by inspection of the definition of k′, k′′. It remains to show that

u(t)t1 . . . tn ↓ [k′(k′′(s)), k ◦ k′(k′′(s))]

Since k′′ = Mk◦k′ and M
 t ∈ N, we obtain that

t ↓ [k′′(s), k ◦ k′(k′′(s))]

Let m = g(k′′(s)). Since k′ = λsS. (π0Lg(s))ks, we have

k′(k′′(s)) = (π0Lm)k(k′′(s))

Since π0Lm
 u(m)t1 . . . tn ∈ N, we get that

u(m)t1 . . . tn ↓ [k′(k′′(s)), k(k′(k′′(s)))]

By k, k′ ∈ K, it holds that k′′(s) ≤ k′(k′′(s)) ≤ k(k′(k′′(s))). Therefore for every s′ in the interval
[k′(k′′(s)), k ◦ k′(k′′(s))]

t[s′] = t[k′′(s)] = g(k′′(s)) = m

It follows that
u(t)t1 . . . tn ↓ [k′(k′′(s)), k ◦ k′(k′′(s))]

which is the thesis.

4.5. The Interpretations of Types are Forcing Candidates

We are going to prove that the interpretation of types in our realizability model is a forcing candidate.
Before, we need some notation.

Notation. In the following, we shall assume that the type variables of FClass are X0, X1, . . . , Xn . . . (but
when the index is not important, we shall denote them with generical metavariables X,Y, . . .). To each type

variable Xi we associate a term variable x
CandXi

i . Moreover, we assume to have for each forcing candidate C

of type U × V a term variable x
�

C of type U .

We start by defining the operation ▽ of “application” of a term L : Nat → [[T]] to a non-standard number.

Definition 20 (Collection of Moduli Turned into a Single Modulus). Let T be an extended type.
Let L : Nat → [[T]], M : (S → S) → (S → S) and g : S → Nat be term variables. We define by induc-
tion on T a term L▽T (M, g) of type [[T]].

1. T = N or T = U. Then L▽T (M, g) has already been defined in propositions 5, 6.

2. T is a variable Xi. Then

L▽T (M, g) := x
CandXi

i MgL

29

3. T =
�

C, with C forcing candidate of type U × V . Then

L▽T (M, g) := x
�

CMgL

4. T = A → B. Then

L▽T (M, g) := λN [[A]](λmNLmN)▽B(M, g)

5. T = ∀XiA. Then

L▽T (M, g) := ΛXiλx
CandXi

i (λmNLmXixi)▽A(M, g)

Remark 4. The normal form of the term L▽T (M, g) is simply of the shape:

{ΛX1}λy
A1
1 . . . {ΛXn}λy

An . xBMg(L{X1}y1 . . . {Xn}yn)

where the notation {ΛXi} means that ΛXi may or may not appear.

We now prove that the operation ▽T realizes that the interpretation of types is a forcing candidate.

Lemma 9 (The Interpretation of Types are Forcing Candidates). Assume T is an extended type.
The following hold:

1. If Xi occurs free in T but not in Ui, M, g are closed terms and Ni
 Ci ∈ CandUi×Vi , then

L▽T (M, g)[Ui/Xi][Ni/x
CandUi

i] = L[Ui/Xi]▽
T [

�

Ci/Xi]
(M, g)][Ni/x

�

Ci]

2. Suppose that for i = 1, . . . , n, Ni
 Ci ∈ CandUi×Vi and that each candidate constant of T is equal to

some
�

Ci. Suppose that for every numeral m, Lm
 u(m)t1 . . . tk ↓ T , M is a modulus of forcing for t
and g = λsS t[s]. Then

L▽T (M, g) [N1/x
�

C1 . . .Nn/x
�

Cn]
 u(t)t1 . . . tk ↓ T

3. Suppose that for i = 1, . . . , n, Ni
 Ci ∈ CandUi×Vi and that each candidate constant of T is equal to

some
�

Ci. Define
▽

T := λM(S→S)→(S→S) λgN→S λLN→[[T]]L▽T (M, g)

Then

▽
T [N1/x

�

C1 . . .Nn/x
�

Cn]
 {〈N , t〉 | N
 t ↓ T } ∈ Cand[[T]]×|T |

4. Let
C := {〈N , t〉 | N
 t ↓ B}

Then

N
 t ↓ A[
�

C/X] ⇐⇒ N
 t ↓ A[B/X]

Proof. First of all we define the following abbreviation:

[~N/~x
~C] := [N1/x

�

C1 . . .Nn/x
�

Cn]

1. By induction on T (which is not a constant since Xi occurs in T).

30

(a) T is a variable. Then T = Xi, since Xi occurs free in T . Moreover,

L▽T (M, g)[Ui/Xi][Ni/x
CandUi

i] = x
CandXi

i MgL[Ui/Xi][Ni/x
CandUi

i]

= NiMg(L[Ui/Xi][Ni/x
CandUi

i])

= x
�

CiMg(L[Ui/Xi])[Ni/x
�

Ci]

= L[Ui/Xi]▽ �

Ci

(M, g)[Ni/x
�

Ci]

which is the thesis.

(b) T = A → B. Then, since [[A]][Ui/Xi] = [[A[
�

Ci/Xi]]], we have

L▽T (M, g)[Ui/Xi][Ni/x
CandUi

i] = λN [[A]](λmNatLmN)▽B(M, g)[Ui/Xi][Ni/x
CandUi

i]

ind.
= λN [[A[

�

Ci/Xi]]]((λmNatLmN)[Ui/Xi]▽
B[

�

Ci/Xi]
(M, g)[Ni/x

�

Ci])

= λN [[A[
�

Ci/Xi]]](λmNatLm[Ui/Xi]N)▽
B[

�

Ci/Xi]
(M, g)[Ni/x

�

Ci]

= L[Ui/Xi]▽
T [

�

Ci/Xi]
(M, g)[Ni/x

�

Ci]

(c) T = ∀XjA. Then Xi 6= Xj, since Xi occurs free in T . Moreover,

L▽T (M, g)[Ui/Xi][Ni/x
CandUi

i] = ΛXjλx
CandXj

j (λmNatLmXjxj)▽A(M, g)[Ui/Xi][Ni/x
CandUi

i]

= ΛXjλx
CandXj

j ((λmNatLmXjxj)▽A(M, g)[Ui/Xi][Ni/x
CandUi

i])

ind.
= ΛXjλx

CandXj

j (λmNatLmXjxj)[Ui/Xi]▽
A[

�

Ci/Xi]
(M, g)[Ni/x

�

Ci]

= ΛXjλx
CandXj

j (λmNatLm[Ui/Xi]Xjxj)▽
A[

�

Ci/Xi]
(M, g)[Ni/x

�

Ci]

= L[Ui/Xi]▽
∀XjA[

�

Ci/Xi]
(M, g)[Ni/x

�

Ci]

2. By induction on T (which by assumption on L is closed and hence cannot be a variable).

(a) T = N or T = U. The thesis follows by propositions 5 and 6.

(b) T =
�

Ci. Then

L▽(M, g)[~N/~x
~C] = x

�

Ci

i MgL[~N/~x
~C]

= NiMgL

Since Ni
 Ci ∈ CandUi×Vi , we obtain by definition 17 that

〈NiMgL, u(t)t1 . . . tk〉 ∈ C

and therefore by definition 19

NiMgL
 u(t)t1 . . . tk ↓
�

C

which is the thesis.

31

(c) T = C → B. Suppose I
 tk+1 ↓ C. We have to show that

L▽T (M, g)[N1/x
�

C1 . . .Nn/x
�

Cn]I

= (λH[[C]](λmNatLmH)▽B(M, g))I[N1/x
�

C1 . . .Nn/x
�

Cn]

= (λmNatLmI)▽B(M, g)[N1/x
�

C1 . . .Nn/x
�

Cn]

u(t)t1 . . . tktk+1 ↓ B

By hypothesis, for every numeral m, Lm
 u(m)t1 . . . tk ↓ C → B. Therefore, for every numeral
m

LmI
 u(m)t1 . . . tktk+1 ↓ B

By induction hypothesis

(λmNatLmNn)▽B(M, g)[N1/x
�

C1 . . .Nn/x
�

Cn]
 u(t)t1 . . . tk ↓ B

which is the thesis.

(d) T = ∀Xn+1A. Suppose that Nn+1
 Cn+1 ∈ CandUn+1×Vn+1 . We have to show that

L▽T (M, g)[~N /~x
~C]Un+1Nn+1

= (ΛXn+1λx
CandXn+1

n+1 (λmNatLmXn+1xn+1)▽A(M, g)[~N/~x
~C])Un+1Nn+1

= (λmNatLmXn+1xn+1)▽A(M, g)[Un+1/Xn+1][Nn+1/x
CandXn+1

n+1][N1/x
�

C1 . . .Nn/x
�

Cn]

(1.)
= (λmNatLmUn+1Nn+1)▽

A[
�

C/Xn+1]
(M, g)[N1/x

�

C1 . . .Nn+1/x
�

Cn+1]

= (λmNatLmUn+1Nn+1)▽
A[

�

C/Xn+1]
(M, g)[N1/x

�

C1 . . .Nn+1/x
�

Cn+1]

 u(t)t1 . . . tkVn+1 ↓ A[
�

Cn+1/Xn+1]

By hypothesis on L, for every numeral m,

LmUn+1Nn+1
 u(m)t1 . . . tkVn+1 ↓ A[
�

Cn+1/Xn+1]

Therefore, the thesis follows by induction hypothesis.

3. It is a corollary of (2.).

4. By induction on A.

(a) A is a type variable. If A 6= X , the thesis is obvious. Suppose A = X . Then A[
�

C/X] =
�

C and
A[B/X] = B. Therefore

N
 t ↓ A[
�

C/X] ⇐⇒ N
 t ↓
�

C ⇐⇒ 〈N , t〉 ∈ C ⇐⇒ N
 t ↓ B = A[B/X]

(b) The other cases are straightforward.

32

4.5.1. Forcing of Constants

From now on, we devote to the definition of our state-extending-continuation-passing-style translation
[[]] of terms of System FClass into System F . For simplicity, the translation is defined for proof-like terms
of FClass: a term t is said to be proof-like if: i) every occurrence in t of the constants Φi or mkupd is
of the form Φi or mkupdi, where i is some numeral; ii) no update constant different from ∅ occurs in t.
Indeed, that is the syntactic form of every interactive realizer extracted from some proof in HAS+EM1+SK1.

Notation. For notational convenience and to define in a more readable way terms of type A×B → C,
for any variables x0 : A and x1 : B we define

λ〈x0, x1〉
A×Bu := λxA×Bu[π0x/x0 π1x/x1]

where x is a fresh variable not appearing in u. We observe that for any terms t0, t1

(λ〈x0, x1〉
A×Bu)〈t0, t1〉 = u[t0/x0 t1/x1]

For each proof-like constant c : T of F , we now define a term [[c]], which is intended to satisfy the relation
[[c]]
 c ↓ T . [[c]] can be seen as the non-standard version of the operation denoted by c. More precisely:

• [[Φi]], as explained before, is a sort of control operator and it represents the computational content
of the excluded middle. Given a numeral n, a continuation k ∈ K and a current state s, it has the
task of choosing a state where to approximate Φi(n). It does that by looking at the future of the
computation s′ = k(s); if this future state s′ is defined on argument (i, n), while the current state s is
not, it returns the state s′ and Φi is approximated with (s′)i(n); otherwise if returns the current state
s and Φi is approximated with si(n). But we observe that the argument taken by Φi is in general a
term t of FClass. Therefore, [[Φi]] first of all forces t to be constant for the rest of the computation and
then translate it into a numeral; then it applies the previous considerations.

• [[mkupdi]] represents the computational content of the Skolem axiom relative to the predicate Pi. Given
a continuation k ∈ K, a current state s, and two terms t1, t2 : N, it has the task of computing a state
s′ ≥ s such that mkupdit1t2[k(s

′)] � k(s′). Again, when t1, t2 are numerals n1, n2, the task is easy: it
suffices to take s′ = s⊕i {(i, n1, n2)} (remember definition 6 of ⊕i); indeed

mkupdin1n2[k(s
′)] = {(i, n1, n2)} � s⊕i {(i, n1, n2)} = s′ ≤ k(s′)

But t1, t2 in general are terms of FClass: it might happen that t1[s] = n1, t2[s] = n2, t1[s
′] = n′

1 6=
n1, t2[s

′] = n′
2 and

mkupdit1t2[k(s
′)] = {(i, n′

1, n
′
2)} � s⊕i {(i, n1, n2)} = s′ ≤ k(s′)

As before, the solution is to force t1, t2 to behave like a pair n1, n2 for the rest of the computation, which
is defined as k composed with λsS. s⊕i mkupdi t1[s]t2[s]. Then [[mkupdi]] applies the considerations of
the easy case.

• [[R]] is recursion over non-standard natural numbers. The problem is that one does not know how to
iterate some functional a “number” of times given by a term t : N of System FClass. Thus [[RA]] uses
the realizer of a forcing candidate of type A to force t to behave like a fixed number n for the rest of
the computation and iterates the functional n times.

Definition 21 (Forcing of Constants). We define for every proof-like constant c : T of FClass a closed
term [[c]] : [[T]], accordingly to the form of c.

1. c = 0. Let u : N be any term of System F . We define

u∗ := 〈λkS→SλsSs, λsSu〉

Then
[[0]] := 0∗

33

2. c = ∅ : U. Then
[[∅]] := λkS→SλsS. s

3. c = S : N → N. Then
[[S]] := λ〈M, g〉[[N]]〈M, λsS. S(g(s))〉

4. c = Φi : N → N. Let

L := λnN〈λkS→SλsS if si(n) = (ks)i(n) then s else ks, λsS si(n)〉

Then
[[Φ]] := λ〈M, g〉[[N]]L▽N(M, g)

5. c = ⋒ : U → U → U. Let
k′ := Nk

k′′ := Mk◦k′

Then
[[⋒]] := λM[[U]]λN [[U]]. λkS→Sk′ ◦ k′′

6. c = mkupdi : N
2 → U. Let

k′ := λsS. s⊕i mkupdi g1(s)g2(s)

k′′ := (M1 ⊔M2)k◦k′

[[mkupdi]] := λ〈M1, g1〉
[[N]]λ〈M2, g2〉

[[N]] λkS→S. k′ ◦ k′′

7. c = R : ∀A.A → (N → A → A) → N → A. Define

N := λnN RUI(λn
NLn∗)n

with
U := [[A]] → (N → [[A]] → [[A]]) → N → [[A]]

Then

[[R]] := ΛAλHCandAλI [[A]] λL[[N→A→A]] λ〈M, g〉[[N]].HMgN

We now prove that for any constant c : T , [[c]] forces c to be a computable functional of type T .

Proposition 7. For every proof-like constant c : T , [[c]]
 c ↓ T .

Proof. We proceed by cases, accordingly to the form of c.

1. c : N, with c = 0. By definition 21
[[0]] = 〈λkS→SλsS s, λsS 0〉

We have therefore to prove that λkS→SλsS s is a modulus of forcing for 0, which is trivially true, since
0[s] = 0 for every state s and that (λsS0)s = 0[s], which is again trivial. We conclude [[0]]
 0 ↓ N.

2. c = ∅. By definition 21 of [[∅]]
[[∅]] := λkS→SλsS. s

Let k ∈ K and s be a state. Let
s′ = k([[∅]]ks) = k(s)

According to definition 19, we have to prove that

[[∅]]
 ∅ ↓ U

and thus that [[∅]]k ∈ K, which is trivially true, and that

∅ = ∅[s′] � s

which is again trivially true, since dom(∅) = ∅ ⊆ dom(s).

34

3. c = S : N → N. By definition 21

[[S]] = λ〈M, g〉[[N]]〈M, λsS. S(g(s))〉

Suppose 〈M, g〉
 t ↓ N. Then M is a modulus of forcing for t and for all states s, t[s] = g(s).
Obviously, M is also a modulus of forcing for S(t). Moreover, for all states s, S(t)[s] = S(g(s)). Hence

[[S(t)]]〈M, g〉
 S(t) ↓ N

which is the thesis.

4. c = Φi. Let t : N and suppose 〈M, g〉
 t ↓ N. By definition 19, we have to prove that

[[Φi]]〈M, g〉
Φt ↓ N

By definition 21 of [[Φ]]
[[Φi]]〈M, g〉 = L▽N(M, g)

with

L := λnN〈λkS→SλsS if si(n) = (ks)i(n) then s else ks, λsS si(n)〉

Since 〈M, g〉
 t ↓ N, if we prove that for every numeral n, Ln
Φn ↓ N, we obtain by lemma 9 (2.)
that L▽N(M, g)
Φt ↓ N and we are done. First we have to check that for all sS

π1Ln[s] = si(n)=Φi(n)[s]

which is true. It remains us to show that, given any numeral n,

π0Ln = λkS→SλsS if si(n) = (ks)i(n) then s else ks

is a modulus of forcing for Φi(n). We have to prove that given any k ∈ K and state s,

Φi(n) ↓ [(π0Ln)k(s), k((π0Ln)k(s))]

We have two possibilities:
i) si(n) = (ks)i(n). Since s ≤ k(s), we have either (i, n) ∈ dom(s) and so

∀qS. s ≤ q ≤ k(s) =⇒ qi(n) = si(n)

or (i, n) /∈ dom(s) and hence (i, n) /∈ dom(k(s)) and therefore

∀qS. s ≤ q ≤ k(s) =⇒ qi(n) = (ks)i(n)

Therefore

Φi(n) ↓[s, k(s)]

=[(π0Ln)k(s), k((π0(Ln)k(s))]

by definition of L.
ii) si(n) 6= (ks)i(n). Since s ≤ k(s), we have (i, n) ∈ dom(k(s)). Since k(s) ≤ k(ks), we have
(ks)i(n) = (k(ks))i(n) and with the same reasoning as above we obtain

Φi(n) ↓[k(s), k(k(s))]

=[(π0Ln)k(z), k((π0Ln)k(z))]

35

5. c = ⋒ : U → U → U. Let
k′ := Nk

k′′ := Mk◦k′

Then, by definition 21
[[⋒]] = λM[[U]]λN [[U]]. λkS→Sk′ ◦ k′′

Suppose M
 t1 ↓ U and N
 t2 ↓ U and let k ∈ K and s be a state. We must show that

s′ = k([[⋒]]MNks) =⇒ ⋒t1t2[s
′] � s′

By definition of s′ and [[⋒]], we have that

s′ = k(k′ ◦ k′′(s))

By definition of M
 t1 ↓ U and of k′′, we get t1[s
′] � s′. By definition of N
 t2 ↓ U and k′, we

get t2[s
′] � s′. Since, the update ⋒t1t2[s

′] is contained in the union of t1[s
′] and t2[s

′], we have that
⋒t1t2[s

′] � s′, which is the thesis.

6. c = mkupdi : N
2 → U. Let

k′ := λsS. s⊕i mkupdi g1(s)g2(s)

k′′ := (M1 ⊔M2)k◦k′

By definition 21
[[mkupdi]] = λ〈M1, g1〉

[[N]]λ〈M2, g2〉
[[N]] λkS→S. k′ ◦ k′′

Suppose 〈M1, g1〉
 t1 ↓ N and 〈M2, g2〉
 t2 ↓ N and let k ∈ K and s be a state. We must show that

s′ = k([[mkupdi]]〈M1, g1〉〈M2, g2〉ks) =⇒ mkupdit1t2[s
′] � s′

By definition of s′ and [[mkupdi]], we have that

s′ = k(k′ ◦ k′′(s))

By definition of 〈M1, g1〉
 t1 ↓ N and 〈M2, g2〉
 t2 ↓ N and by proposition 4, we deduce that M1⊔M2

is a modulus of forcing for both t1 and t2. Therefore, by definition of k′′

t1, t2 ↓ [k′′(s), k ◦ k′(k′′(s))] = [k′′(s), s′]

We may suppose that Pit1t2[s
′] = True (otherwise, mkupdit1t2[s

′] = ∅ and the thesis is obvious).
Thus,

Pit1t2[k
′′(s)] = Pit1t2[s

′] = True

Therefore,
mkupdit1t2[s

′] = mkupdit1t2[k
′′(s)]

= {(i, t1[k
′′(s)], t2[k

′′(s)])}

� k′′(s)⊕i {(i, t1[k
′′(s)], t2[k

′′(s)])}

= k′(k′′(s))

Since s′ ≥ k′(k′′(s)), we obtain mkupdit1t2[s
′] � s′, which is the thesis.

7. c = R : ∀A.A → (N → A → A) → N → A. Let

N := λnN RUI(λn
NLn∗)n

with
U := [[A]] → (N → [[A]] → [[A]]) → N → [[A]]

36

By definition 21

[[R]] = ΛAλHCandAλI [[A]] λL[[N→A→A]] λ〈M, g〉[[N]].HMgN

Suppose H
C ∈ CandV ×W , I
u ↓
�

C, L
 v ↓ N →
�

C →
�

C and 〈M, g〉
 t ↓ N. We have to prove that

[[R]]V HIL〈M, g〉 = HMgN
 RWuvt ↓
�

C

If we show that for all numerals n, Nn
RWuvn ↓
�

C, then for all numerals n, 〈Nn,RWuvn〉 ∈ C and
by definition 17 of H
 C ∈ CandV ×W we obtain that

〈HMgN ,RWuvt〉 ∈ C

which is the thesis. We prove that by induction on n.
If n = 0, then

N0 = RUI(λn
NLn∗)0 = I
u = RWuv0 ↓

�

C

If n = S(m), then

NS(m) = RUI(λn
NLn∗)S(m)

= (λnNLn∗)m(RUI(λn
NLn∗)m)

= Lm∗(RUI(λn
NLn∗)m)

= Lm∗Nm

By induction hypothesis, Nm
RUuvm ↓
�

C. Moreover, m∗

m ↓ N and by hypothesis L
 v ↓ N →

�

C →
�

C. Hence

Lm∗Nm
 vm(RWuvm) = RWuvS(m) ↓
�

C

which is the thesis.

4.5.2. The Adequacy Theorem

We are finally ready to define the translation of every term of FClass.

Definition 22 (Realizers of Forcing for Terms of FClass). For every proof-like term v : T of system
FClass, we define a term [[v]] : [[T]] by induction on v and by cases as follows:

1. v = c, with c constant. We define [[c]] as in definition 21.

2. v = zA, z variable. Then
[[zA]] := z[[A]]

3. v = ut. Then
[[ut]] := [[u]][[t]]

4. v = λzAu. Then
[[λzAu]] := λz[[A]] [[u]]

5. v = uV , with u : ∀Xi U and T = U [V/Xi]. Then

[[uV]] := [[u]][[V]]▽V

37

6. v = ΛXi u. Then

[[ΛXi u]] := ΛXi λx
CandXi

i [[u]]

We are now able to prove our main theorem. For every closed term u of FClass, [[u]] forces u to be a
computable functional.

Theorem 10 (Adequacy Theorem). Let w : A be a proof-like term of FClass and let zA1
1 , . . . , zAn

n contain
all the free variables of w and X1, . . . , Xm contain all the free type variables of A1, . . . , An, A. Then

[[ΛX1 . . .ΛXmλzA1
1 . . . λzAn

n w]]
ΛX1 . . .ΛXmλzA1
1 . . . λzAn

n w ↓ ∀X1, . . . , XmA1 → . . . → An → A

Proof. Suppose
H1
C1 ∈ CandU1×V1 , . . . ,Hm
Cm ∈ CandUm×Vm

For any type B, set B := B[
�

C1/X1 . . .
�

Cm/Xm], B̃ := B[V1/X1 . . . Vm/Xm] and B̂ := [U1/X1 . . . Um/Xm].

(thus Mi : [[Ai]] = [̂[Ai]] and ti : |Ai| = Ãi). Suppose also

M1
 t1 ↓ A1, . . . ,Mn
 tn ↓ An

We have to prove that

[[w]][U1/X1][H1/x
CandU1
1] . . . [Um/Xm][Hm/x

CandUm
m][M1/z

̂[[A1]]
1 . . .Mn/z

[̂[An]]
n]

w[V1/X1 . . . Vm/Xm][t1/z
Ã1

1 . . . tn/z
Ãn
n] ↓ A

For any term v, we set

ṽ := v[V1/X1 . . . Vm/Xm][t1/z
Ã1
1 · · · tn/z

Ãn
n]

and

[̂[v]] := [[v]][U1/X1][H1/x
CandU1

1] . . . [Um/Xm][Hm/x
CandUm
m][M1/z

̂[[A1]]
1 . . .Mn/z

[̂[An]]
n]

With that notation, we have to prove that [̂[w]]
 w̃ ↓ A. The proof is by induction on w and proceeds by
cases, accordingly to the form of w.

1. w = c, with c constant. Since [[c]] is closed and c does not have free variables, by proposition 7

[̂[c]] = [[c]]
 c = c̃ ↓ A

which is the thesis.

2. w = zAi

i , for some 1 ≤ i ≤ n. Then

[̂[w]] = z
̂[[Ai]]
i [M1/z

̂[[A1]]
1 . . .Mn/z

[̂[An]]
n] = Mi
 ti = zÃi

i [t1/z
Ã1
1 · · · tn/z

Ãn
n] = w̃ ↓ A

which is the thesis.

3. w = ut. By induction hypothesis, [̂[u]]
 ũ ↓ B → A and [̂[t]]
 t̃ ↓ B. So

[̂[ut]] = [̂[u]] [̂[t]]
 ũ t̃ = w̃ ↓ A

which is the thesis.

38

4. w = λzBu. Suppose M
 t ↓ B. We have to prove that [̂[w]]M
 w̃t ↓ A. By induction hypothesis

̂[[λzBu]]M = (λz [̂[B]][̂[u]])M = [̂[u]][M/z [̂[B]]]
 ũ[t/zB̃] = w̃t ↓ A

which is the thesis.

5. w = uV , with u : ∀XB and A = B[V/X]. Define

C := {〈N , t〉 | N
 t ↓ V }

By lemma 9, point 3 and since [[V]] = [̂[V]], |V | = Ṽ , we obtain

▽
V [H1/z

�

C1 . . .Hm/z
�

Cm]
 C ∈ Cand
[̂[V]]×Ṽ

Moreover, we may suppose that none of the variables zÃi

i occurs in ▽
V and none of the Xi occurs in

Ui or Hi. Therefore, by repeated application of lemma 9, point 1,

(̂▽V) = ▽
V [U1/X1][H1/x

CandU1

1] . . . [Um/Xm][Hm/x
CandUm
m]

= ▽
V [H1/x

�

C1
1 . . .Hm/x

�

Cm
m]

By induction hypothesis, [̂[u]]
 ũ ↓ ∀XB. Therefore,

[̂[uV]] = [̂[u]] [̂[V]] (̂▽V)
 ũṼ ↓ B[
�

C/X]

By lemma 9, point 4, we obtain

[̂[uV]]
 ũṼ ↓ B[V /X] = A

which is the thesis.

6. w = ΛXiu and A = ∀Xi B, i > n. Since ̂[[ΛXiu]] = ΛXiλx
CandXi

i [̂[u]], we have to suppose that
H
 C ∈ CandU×V , and then show

[̂[u]][U/Xi][H/xCandU
i]
 ũ[V/X] ↓ B[

�

C/Xi]

But this follows by the induction hypothesis.

4.5.3. Witness Extraction with the State-Extending-Continuation-Passing-Style Translation Method

At the end, we are able to show that our translation can be used for program extraction with Interactive
realizability.

Theorem 11 (Program Extraction via SECPS-Translation). Let t be a proof-like term of FClass and
suppose that t � ∀xN∃yNPxy, with P atomic predicate of Gödel’s T. Let r : S be any state. Define a term
wit of F as follows:

wit := λxN. π0(tx)[[[λn
Nπ1(tn)]]x

∗(λzS z)r]

Then, for all numerals m, Pm(witm) = True.

Proof. Let m be any numeral and let

s := [[λnNπ1(tn)]]m
∗(λzS z)r

Since tm �s ∃yNPmy and witm = π0(tm)[s], we have that

π1(tm) �s Pm(witm)

39

which by definition 11 in particular means that

π1(tm)[s] = ∅ =⇒ Pm(witm) = True

Thus, in order to obtain the thesis, it is enough to show that π1(tm)[s] = ∅. By the Adequacy theorem 10,

[[λnNπ1(tn)]]
 λnNπ1(tn) ↓ N → U

Since m∗

m ↓ N, we obtain that

[[λnNπ1(tn)]]m
∗

 π1(tm) ↓ U

Therefore, by definition 19, π1(tm)[s] � s which means that

dom(π1(tm)[s]) ⊆ dom(s)

Since π1(tm) �s Pm(witm), we also have that dom(π1(tm)[s]) ∩ dom(s) = ∅. Therefore, π1(tm)[s] = ∅.

5. Conclusions and Related Works

We conclude the paper with some important remarks.

5.1. Interactive Realizability and Krivine Classical Realizability

We have introduced a new realizability interpretation based on states and learning for the classical system
of second-order Arithmetic HAS+EM1+SK1. Then we have developed in full detail two program extraction
techniques. The second one is a new CPS-translation and looks particularly interesting: it has a nice model
theoretic meaning and it appears as a first step towards a more efficient computational interpretation of
classical logic. Indeed, the defect of programs extracted from classical proofs is that they waste too many
resources: when they backtrack, they tend to “forget” precious information.

For example, let us examine Krivine classical realizability [25] interpretation of excluded-middle with cc.
Consider a computation of the form

cc t ⋆ π ≻ t ⋆ kπ.π ≻ . . . ≻ kπ ⋆ u.ρ ≻ u ⋆ π

The penultimate instruction executed in this computation is an operation of backtracking: the process takes
the term u and put it in the context π of the first instruction. Thus, everything between the first and last
instruction of the process is discarded, except for u. But it is unreasonable that everything must be erased;
it might happen, for example, that between the first and last instruction some witness for some instance of
the excluded middle EM1 is learned.

Krivine’s realizability interpretation of choice axioms, such as countable choice and SK1, suffers other
inefficiency problems which, on the contrary, the interpretation of the excluded middle does not. Indeed,
the choice functions are defined in the realizability model through the minimum principle. As explained in
remark 2, this approach leads to a waste of resources: a choice function is allowed to return any witness,
while imposing some arbitrary criterion over the witnesses that must be returned may force a realizer to
change witness even if its current one is correct.

Realizability based on states seems an answer to this kind of efficiency issues. In classical logic, for writing
down more efficient programs, it seems necessary to describe exactly: a) what the programs learn; b) how
the knowledge of programs varies during the execution. The programs obtained by our SECPS-translation
not only are able to backtrack as programs with cc can do, but also keep all the useful information coming
from a failure. In fact, when they backtrack (i.e. when the program [[Φi]] is executed), they restart the
computation into a state coming from the execution of a state-extending continuation and thus possibly
much bigger than the current one. That is, even in a dead branch of the execution, something useful might
be learned and has to be kept. Moreover, no arbitrary definition of the choice function that interprets SK1

is given and realizers are free to keep any witness they find during computations.

40

5.2. Interactive Realizability and Bar Recursive Interpretations of Analysis

As another example of inefficiency problems in classical logic, let us consider Spector’s computational
interpretation of Analysis by means of bar recursion [32]. Albeit it provides a very interesting computational
reduction of the countable choice axiom to recursion over well-founded trees, Spector’s bar recursion is
dramatically inefficient. Choice functions are approximated not just in the values that must be used in some
particular computation, but instead finite initial segments of the shape f(0), f(1), f(2), . . . , f(n) are built,
regardless the fact that some of these values are not at all asked.

A nice solution to this problem has been provided by Berardi, Bezem and Coquand [9]. They have
introduced a much more efficient bar recursion, that indeed may be called: demand-driven bar recursion.
As the name suggests, choice functions are approximated only in the values that are asked during the
computation. Its equational axiom (following Berger [11]) is:

(DDBR)Y GHs = Y (λnNif n ∈ domain(s) then s(n) else Gn(λzA(DDBR)Y GHs ∪ (n, z)))

where s is a finite partial function N → A, with n ∈ domain(s) and s ∪ (n, z) having the expected meaning,
and Y : (N → A) → N, G : N → (A → N) → A.

Unfortunately, with each recursive call of DDBR, the functional Y is recomputed from scratch even if
the partial function s changes only in one point (it becomes s∪ (n, z)). This inefficiency is similar to the one
of the Iterative Method that we have pointed out in section 4.1. Since the SECPS-translation was devised
precisely to solve this issue, it provides a more efficient computational interpretation than demand-driven
bar recursion (of course in our limited setting).

5.3. Comparison with Goodman’s Forcing

Also Goodman [16] gave a forcing definition of what it means that a functional of finite type depending
on some non-recursive function is “computable”. The worlds considered by Goodman are partial functions
order by inclusion and for him a term t of type N is “forced to be computable of type N by a partial function
p” if t is defined in p, that is, if p contains all the values need for reducing t to a natural number. Instead,
we use as states total functions; but we can easily rephrase Goodman’s concept of being defined in our
framework.

Since Goodman’s definition refers to finite types, we concentrate on terms of TClass. We say that a term
t ∈ TClass is defined in a state s : S, if for all s′ ≥ s, t[s′] = t[s]. Intuitively, if t is defined in s, then s
contains all the information necessary to compute t, since increasing the information of s yields the same
value. Then, Goodman’s forcing relation s gf t ∈ A, where t is a term of TClass of type A and s is a state,
can be defined as:

s gf t ∈ N ⇐⇒ t is defined in s

s gf t ∈ A → B ⇐⇒ (∀s′ ≥ s. s′ gf A =⇒ ∃s′′ ≥ s′. s′′ gf B)

Then one defines
gf t ∈ A ⇐⇒ ∀s∃s′ ≥ s. s′ gf t ∈ A

Unfortunately, from the constructive point of view, already the notion s gf t ∈ N is unsustainably strong.
Indeed, to prove gf t ∈ N one needs a classical metatheory!

However, if one takes the Kreisel’s no-counterexample-interpretation [23] of gf t ∈ N, one can define

s
 t ∈ N ⇐⇒ ∀k ∈ K ∃s′ ≥ s. t ↓ [s, k(s)]

and
 t ∈ N as ∀s. s
 t ∈ N. Then, applying modified realizability, one obtains our definition 13 of forcing
M
 t ∈ N. To put it in another way, one replaces the unrestricted quantification over future worlds,
typical of forcing semantics, with a restricted one: the future that can be considered is only the future of
the computation.

41

5.4. Interactive Realizability, Avigad’s Forcing and Update Procedures

Avigad [7] showed how to use forcing to eliminate the use of Skolem axioms in classical proofs. Un-
fortunately, the resulting proofs are classical, because they still use excluded middle. Anyway, Avigad’s
forcing have an interesting computational interpretation, because composing it with any negative transla-
tion of classical logic into intuitionistic logic allows one to extract programs from the original proofs that
use Skolem axioms.

While at the time of [4] it was not completely clear how Interactive realizability relates to forcing, it is now
evident that the theory of Interactive realizability, as developed in this paper, is a direct constructivization
of Avigad’s forcing. In fact, we have proved conservativity of HAS+ EM1 + SK1 over HAS for Π0

2-formulas.
Another contribution of this paper is related to Avigad’s update procedures. The concept of update

procedure [2, 6] provides an axiomatization of the computational content of the epsilon substitution method.
However, with the current technology it was not possible to extract update procedures from impredicative
systems. Here, we have showed how to do that, since realizers of Σ0

1-formulas are update procedures.

5.5. Interactive Realizability and Friedman’s Translation

The same result of Aschieri and Berardi [5] holds here: Interactive realizability can be characterized as
a new way of using Friedman’s translation, which allows to extract programs from classical proofs without
passing from logical negative translations.

5.6. Forcing Semantics, Evolution of Knowledge and Interactive Realizability

There is another observation which is worth to be done. A limit of the intuitionistic forcing semantics
(Goodman, Kripke [24] etc.) is that while they depict, correctly, knowledge and mathematical ability as
something which grows in time, they remain completely silent about how this knowledge evolves. Indeed,
Interactive Realizability shows that the computational content of a classical proof is a state-extending oper-
ator. Moreover, we have shown that the interactive realizers can be given a constructive forcing semantics
explaining their stability with respect any evolution of the future given by any continuation. In our opinion,
Kripke semantics is much more interesting in the classical setting than in the intuitionistic one!

Appendix A. Interactive Realizability for HAS + EM1 + SK1 plus Ex-Falso-Quodlibet

As remarked in section 3.4, the system HAS + EM1 + SK1 does not prove the full ex-falso-quodlibet
principle:

∀X.⊥ → X0

There were good reasons to leave it out of our system. The axiom is not very interesting from the computa-
tional point of view, because it is usually interpreted by dummy realizers. On top of that, the ex-falso also
creates annoying technical issues, since there are no closed terms of type |∀X.⊥ → X0| = ∀X. U → X in
system F . Furthermore, the trivial translation mapping atomic formulas of the form Xt to Xt∨⊥ eliminates
the need of the full ex-falso axiom in the system HAS+ EM1 + SK1.
In our framework as well, the ex-falso may be interpreted by dummy realizers, albeit in a slightly less trivial
way than in intuitionistic logic. In this appendix, we sketch two approaches. First, we show how to formulate
Interactive realizability in such a way that the ex-falso-quodlibet axiom is realizable by a term of System F
(and for avoiding to change notations, we shall just “overwrite” the definitions of section 3). Then, we show
how the first approach can be drastically simplified, but at the cost of adding dummy constants to pure F .

Appendix A.1. First Approach: Realizing Ex-Falso-Quodlibet in pure F

In classical realizability, it is not entirely trivial to realize an axiom of the form ⊥ → A, since in any
state s there is a realizer of ⊥: it is enough to take a sound update U such that dom(U) ∩ dom(s) = ∅.
Therefore, given such an update U , one must show that is possible to define a dummy realizer of A. Indeed,
in a first-order setting that is very easy. But in second-order logic it is technically more complicated and one
needs to charge every s-saturated set to provide a constructor, taking an update and returning an element
of the set.

42

Definition 23 (s-Saturated Sets). Let A be a closed type of F and s be any state. Let S be a set of
closed type-A terms of FClass such that if t ∈ S and t[s] = u[s] in F , then u ∈ S.

1. We say that a closed term v : U → A of System F realizes that S is a s-saturated set, and write
v � S ∈ SatA(s), if for all non-empty sound updates U such that dom(U)∩dom(s) = ∅, it is true that
vU ∈ S.

2. Let L+
Class

the language resulting from LClass by adding a constant symbol
�

F for every function F : N →
SatA(s). We write v � F : N → SatA(s) if for all numbers n, v � F (n) ∈ SatA(s)

For every formula A of L+
Class

, we are now going to define what type |A| a realizer of A must have.
The difference with section 3 is just in the types |∀XA|, |∃XA| which must account for an extra argument,
representing a realizer of a s-saturated set.

Definition 24 (Types for realizers). For each formula A of L+
Class

we define a type |A| of FClass by induc-
tion on A:

1. |P | = U, when P is atomic,

2. |Xt| = X,

3. |
�

Ft| = C if F : N → SatC(s),

4. |A ∧B| = |A| × |B|,

5. |A ∨B| = Bool× (|A| + |B|),

6. |A → B| = |A| → |B|,

7. |∀xA| = N → |A|,

8. |∀XA| = ∀X. (U → X) → |A|,

9. |∃xA| = N× |A|,

10. |∃XA| = ∃X. (U → X)× |A|

We now define the realizability relation t � C, where t ∈ FClass, C ∈ L+
Class

and t : |C|. The difference
with section 3 lies just in the definition of t �s ∀XA, ∃XA.

Definition 25 (Interactive Realizability). Assume s is a state, t is a closed term of FClass, C ∈ L+
Class

is
a closed formula, and t : |C|. We define first the relation t �s C by induction and by cases according to the
form of C:

1. t �s Q if and only if:

• t[s] = U implies that U is sound and dom(U) ∩ dom(s) = ∅

• t[s] = ∅ implies Q[s] = True

2. t �s

�

Fu if and only if for some numeral n, u[s] = n and t ∈ F (n)

3. t �s A ∧B if and only if π0t �s A and π1t �s B

43

4. t �s A ∨B if and only if either π0t[s] = True, π1t[s] = ι0,|A|,|B|(u) and u �s A, or π0t[s] = False,
π1t[s] = ι1,|A|,|B|(v) and v �s B

5. t �s A → B if and only if for all u, if u �s A, then tu �s B

6. t �s ∀xA if and only if for all numerals n, tn �s A[n/x]

7. t �s ∃xA if and only for some numeral n, π0t[s] = n and π1t �s A[n/x]

8. t �s ∀XA if and only if for all v, if v � F ∈ N → SatB(s) then tBv �s A[
�

F/X]

9. t �s ∃XA if and only if t = 〈B, u〉, π0u � F ∈ N → SatB(s) and π1u �s A[
�

F/X]

We define t � A if and only if for all states s, t �s A.

We are going to prove that interpretations of formulas in our realizability model are saturated sets.
Before, we need some notation.

Notation. In the following, we shall assume that the type variables of FClass are X0, X1, . . . , Xn . . . (but
when the index is not important, we shall denote them with generical metavariables X,Y, . . .). To each type
variable Xi we associate a term variable xU→Xi

i . Moreover, we assume to have for each F : N → SatA(s) a

term variable x
�

F of type U → A.

We start by defining the terms dumA that will used as constructors, taking updates as input and returning
dummy members of saturated sets as output.

Definition 26 (Dummy Realizers). Let A a be a formula of L+
Class

and z a variable of type U. We define
by induction on A a term dumA(z) of type |A|.

1. A = P , with P atomic. Then
dumA(z) = z

2. A = Xit, where Xi is a variable. Then

dumA(z) := xU→Xi

i z

3. A =
�

Ft. Then

dumA(z) := x
�

F z

4. A = B → C. Then
dumA(z) := λy|B| dumC(z) (with y fresh)

5. A = B ∧ C. Then
dumA(z) := 〈dumB(z), dumC(z)〉

6. A = B ∨ C. Then
dumA(z) := 〈True, ι0,|B|,|C|(dumB(z))〉

7. A = ∀xNB. Then
dumA(z) := λyN dumB(z)

8. A = ∀XiB. Then

dumA(z) := ΛXi λx
U→Xi

i dumB(z)

44

9. A = ∃xNB. Then
dumA(z) := 〈0, dumB(z)〉

10. A = ∃XiB. Then
dumA(z) := 〈U, 〈λzUz, dumB(z)[U/Xi][λz

Uz/xU→U

i]〉〉

We now prove that the dummy term dumA(U) realizes in a state s any closed formula A of LClass,
whenever U is sound, non-empty and dom(U) ∩ dom(s) = ∅.

Lemma 12 (Dummy Realizers). Assume A is a formula of L+
Class

without free number variables. The
following hold:

1. If Xi occurs free in A and vi � Fi ∈ N → SatVi(s), then

dumA(z)[Vi/Xi][vi/x
U→Vi

i] = dum
A[

�

F i/Xi]
(z)[vi/x

�

F i]

2. Suppose that for i = 1, . . . , n, vi � Fi ∈ N → SatVi(s) and that each set constant of A is equal to

some
�

F i. Let U be a non-empty sound update such that dom(U) ∩ dom(s) = ∅. Then

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn] �s A

Proof. 1. By induction on A (which is not of the form
�

Ft or P , with P atomic predicate, since Xi

occurs in A).

(a) A = Xit, with Xi second-order variable. Then,

dumA(z)[Vi/Xi][vi/x
U→Vi

i] = xU→Xi

i z[Vi/Xi][vi/x
U→Vi

i]

= viz

= x
�

F iz[vi/x
�

F i]

= dum
A[

�

F/Xi]
(z)[vi/x

�

F i]

which is the thesis.

(b) A = B → C. Then, since |B|[Vi/Xi] = |B[
�

F i/Xi]|, we have

dumA[Vi/Xi][vi/x
U→Vi

i](z) = λy|B|dumC(z)[Vi/Xi][vi/x
U→Vi

i]

ind.
= λy|B[

�

F i/Xi]| dum
C[

�

F i/Xi]
(z)[vi/x

�

F i]

= dum
A[

�

F i/Xi]
[vi/x

�

F i]

which is the thesis.

(c) A = ∀XjB. Then Xi 6= Xj, since Xi occurs free in A. Moreover,

dumA(z)[Vi/Xi][vi/x
U→Vi

i] = ΛXjλx
U→Xj

j (dumB(z)[Vi/Xi][vi/x
U→Vi

i])

ind.
= ΛXjλx

U→Xj

j dum
B[

�

F i/Xi]
(z)[vi/x

�

F i]

= dum
A[

�

F i/Xi]
(z)[vi/x

�

F i]

which is the thesis.

45

(d) The other cases are trivial.

2. By induction on A (which by assumption is closed).
(a) A = P , with P atomic. Then

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn] = U �s P

by definition 25 of realizability and since U 6= ∅.

(b) A =
�

F it. Then

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn] = x
�

F i

i U [v1/x
�

F 1 . . . vn/x
�

Fn]

= viU

Letting t[s] = n, since vi � Fi(n) ∈ SatVi(s), we obtain by definition 23 that

viU ∈ Fi(n)

and therefore by definition 25 of realizability

viU �s

�

F (t)

which is the thesis.

(c) A = B → C. Suppose t �s B. We have to show that

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn]t

= (λy|B|dumC(U))t[v1/x
�

F 1 . . . vn/x
�

Fn]

= dumC(U)[v1/x
�

F 1 . . . vn/x
�

Fn]

�s C

which is true by induction hypothesis.

(d) A = ∀Xn+1B. Suppose that vn+1 � Fn+1 ∈ N → SatVn+1(s). We have to show that

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn]Vn+1vn+1

= (ΛXn+1λx
U→Xn+1

n+1 dumB(U)[v1/x
�

F 1 . . . vn/x
�

Fn])Vn+1vn+1

= dumB(U)[Vn+1/Xn+1][vn+1/x
U→Xn+1

n+1][v1/x
�

F 1 . . . vn/x
�

Fn]

by (1.)
= dum

B[
�

F/Xn+1]
(U)[v1/x

�

F 1 . . . vn+1/x
�

Fn+1]

�s A[
�

Fn+1/Xn+1]

which is true by induction hypothesis.

(e) A = ∃Xn+1A. Let Fn+1 be the function mapping any number to the set of all closed terms of
FClass of type U. Then λzUz � Fn+1 ∈ N → SatU(s). We have to show that

dumA(U)[v1/x
�

F 1 . . . vn/x
�

Fn]

= 〈U, 〈λzUz, dumB(U)[U/Xn+1][λz
Uz/xU→U

n+1]〉〉[v1/x
�

F 1 . . . vn/x
�

Fn]

by (1.)
= 〈U, 〈λzUz, dum

B[
�

Fn+1/Xn+1]
(U)[v1/x

�

F 1 . . . vn/x
�

FnλzUz/x
�

Fn+1]〉〉

46

By induction hypothesis

dum
B[

�

Fn+1/Xn+1]
(U)[v1/x

�

F 1 . . . vn/x
�

FnλzUz/x
�

Fn+1] �s B[
�

Fn+1/Xn+1]

which is the thesis.

(f) The other cases are trivial.

The following proposition remains valid.

Proposition 8 (Comprehension). Let B(x) be a formula of L+
Class

in the only free natural number variable
x. Define B : N → Sat|B|(s) as

B := n 7→ {t | t �s B(n)}

Then for every t

t �s A[
�

B/X] ⇐⇒ t �s A[λxB(x)/X]

Proof. Same proof of proposition 2.

In figure A.3 we have modified the term assignment rules of figure 2 in order to take account of the
ex-falso-quodlibet and of the new definition of realizability. The changes are very minor and involve only
the second-order quantifiers.

Ex-Falso-Quodlibet Axiom
Γ ⊢ ΛXλxU→XλzU. xz : ∀X.⊥ → X0

Universal Quantification (2)
Γ ⊢ u : ∀XA

Γ ⊢ u|B|λzUdumB(z) : A[λxB(x)/X]
Γ ⊢ u : A

Γ ⊢ ΛXλxU→Xu : ∀XA

where B(x) is a formula of LClass and X does not occur free in any formula occurring in Γ.

Existential Quantification (2)
Γ ⊢ u : A[λxB(x)/X]

Γ ⊢ 〈|B|, 〈λzUdumB(z), u〉〉 : ∃XA

Γ ⊢ u : ∃XA Γ ⊢ t : ∀X.A → C

Γ ⊢ u|C|(ΛXλx(U→X)×|A|tX(π0x)(π1x)) : C

where X is not free in C nor in any formula occurring in Γ.

Figure A.3: Term Assignement Rules for HAS+ EM1 + SK1 + ∀X.⊥ → X0

We now are now able to prove that every theorem of HAS+ EM1 + SK1 + ∀X.⊥ → X0 is realizable. As
usual in adequacy proofs for realizability, we prove a stronger version of the theorem, suitable to be proved
by induction on proofs.

Theorem 13 (Adequacy Theorem). Suppose that Γ ⊢ w : A in the system HAS+EM1+SK1+∀X.⊥ →
X0, with Γ = z1 : A1, . . . , zn : An, and that the free variables of the formulas occurring in Γ and A are among
α1 : N, . . . , αk : N, X1, . . . , Xm. Fix any state s, numerals n1, . . . , nk and F1 : N → SatB1(s), . . . , Fm : N →

SatBm(s). For every formula C, let C := C[n1/α1 · · ·nk/αk

�

F1/X1 · · ·
�

Fm/Xm]. Suppose t1, . . . , tn, v1, . . . , vm
are terms such that

for i = 1, . . . , n, ti �s Ai, vi � Fi ∈ N → SatBi(s)

Then

w[B1/X1 · · ·Bm/Xm][v1/x
U→B1
1 . . . vm/xU→Bm

m][t1/z
|A1|
1 · · · tn/z

|An|
n n1/α1 · · ·nk/αk] �s A

Proof. Notation: for any term v, we denote

v[B1/X1 · · ·Bm/Xm][v1/x
U→B1
1 . . . vm/xU→Bm

m][t1/z
|A1|
1 · · · tn/z

|An|
n n1/α1 · · ·nk/αk]

47

with v. We have

|C| = |C[
�

F1/X1 · · ·
�

Fm/Xm]| = |C|[B1/X1 · · ·Bm/Xm]

for all formulas C. We denote with = the provable equality in FClass. We proceed by induction on w.
Consider the last rule in the derivation of Γ ⊢ w : A:

1. If it is the (second order) ∀E rule, then w = u|C|λzUdumC(z), A = B[λxC(x)/X] and Γ ⊢ u : ∀XB.
Since the only free term variables in λzUdumC(z) are of the form xU→Xi

i , we have

w = u|C|
(
λzUdumC(z)[B1/X1 · · ·Bm/Xm][v1/x

U→B1
1 . . . vm/xU→Bm

m]
)

Define
C := n 7→ {t | t �s C(n)}

By repeated application of lemma 12, point 1) and some rearrangement of the substitution, we get

λzU dumC(z)[B1/X1 · · ·Bm/Xm][v1/x
U→B1

1 . . . vm/xU→Bm
m]

=λzU dumC(z)[v1/x
�

F1 . . . vm/x
�

Fm]

By lemma 12, point 2), we obtain that

λzU dumC(z)[v1/x
�

F1 . . . vm/x
�

Fm] � C ∈ N → Sat|C|(s)

By inductive hypothesis u �s ∀XB and so w �s B[
�

C/X]. By proposition 11, we conclude that

w �s B[λxC(x)/X]

2. If it is the (second order) ∀I rule, then w = ΛXkλx
U→Xku, A = ∀XkB and Γ ⊢ u : B (and X does

not occur free in the formulas of Γ). So, w = ΛXkλx
U→Xk

k u, since Xk 6= X1, . . . , Xm. Suppose

v
 F ∈ N → SatC(s); we have to prove that wCv = u[C/Xk][v/x
U→Xk

k] �s B[
�

F/X], which amounts
to show that the induction hypothesis can be applied to u. For this purpose, it is enough to observe
that for i = 1, . . . , n

ti �s Ai = Ai[
�

F/X]

3. If it is the (second order) ∃E rule, then Γ ⊢ t : ∀X.B → A, Γ ⊢ u : ∃XB and

w = u|A|(ΛXλx(U→X)×|B|tX(π0x)(π1x))

with X not occurring free in A nor in the formulas of Γ. By inductive hypothesis on u, u �s ∃XB;

hence u = 〈C, v〉, π0v � F ∈ N → SatC(s) and π1v �s B[
�

F/X]. By induction hypothesis on t,
t �s ∀X.B → A and hence

tC(π0v)(π1v) �s A[
�

F/X] = A

Moreover
w = 〈C, v〉|A|t

def. 2
= (ΛY λx∀X. (U→X)×B→Y xCv)|A|(ΛXλx(U→X)×|B|tX(π0x)(π1x))

= (ΛXλx(U→X)×|B|tX(π0x)(π1x))Cv

= tC(π0v)(π1v)

We thus obtain by saturation (proposition 1)

w �s A

48

4. If it is the (second order) ∃I rule, then Γ ⊢ u : B[λxC(x)/X],

w = 〈|C|, 〈λzUdumC(z), u〉〉

and A = ∃XB. So,

w = 〈|C|, (λzUdumC(z)[B1/X1 · · ·Bm/Xm][v1/x
U→B1
1 . . . vm/xU→Bm

m]), u〉〉

Moreover, by induction hypothesis
u �s B[λxC(x)/X]

Define
C := n 7→ {t | t �s C(n)}

We have already proved that

λzU dumC(z)[B1/X1 · · ·Bm/Xm][v1/x
U→B1
1 . . . vm/xU→Bm

m]

=λzU dumC(z)[v1/x
�

F1 . . . vm/x
�

Fm]

�C ∈ N → Sat|C|(s)

Moreover, by proposition 11, u �s B[
�

C/X], and thus we have the thesis.

5. The other cases are treated as in the proof of theorem 5.

As corollary of the Adequacy theorem 13, we obtain the main theorem.

Theorem 14. If A is a closed formula such that HAS+ EM1 + SK1 + ∀X.⊥ → X0 ⊢ t : A, then t � A.

Appendix A.1.1. Second Approach: Dummy Constants

Since in our first solution the ex-falso-quodlibet axiom is interpreted in a dummy way, it is perhaps
more efficient and more direct to introduce dummy constants encoding the realizers of our first solution.
This approach is more in line with the approaches exposed in Girard [20] (§10.6) and Schwichtenberg and
Troelstra [30] in the case of HAS.

We add to system FClass a constant c of type ∀X. U → X . For every type A and term v : U, we shall
denote cAv with cA

v
. Let R be the set of the following reduction rules for the constant c:

cA → B

v
t 7→ cB

v

πic
A1 × A2
v 7→ cAi

v

c∀XA

v
B 7→ cA[B/X]

v

cN
v

7→ 0

cBoolv 7→ True

cU
v

7→ v

As the rules suggest themselves, cA
v is intended to be a constant functional always returning fixed values of

atomic types. The idea is that the terms of the form cA
v
will be used as dummy realizers of the ex-falso-

quodlibet axiom, taking the role of the dummy terms dumA(v) of section Appendix A.1. The extra power of
the constant c allows to relieve saturated sets of providing constructors for dummy terms, thus simplifying
the definitions of section Appendix A.1.

Now we have to redefine the concept of saturated set and define a realizability notion which is perfectly
equal to the one for HAS+EM1+SK1 but the range of the notion of saturated set occurring in the definition.
The types |A| of realizers remain the same of the definition 10 of section 3, differently from what was done
in section Appendix A.1.

49

Definition 27 (Interactive Realizability). We define:

1. For every closed type A, let SatA(s) be the set of sets S of closed type-A terms of FClass + C such that:

i) if t ∈ S and t[s] = u[s] in F + c +R, then u ∈ S;

ii) if U 6= ∅, U is sound and dom(s) ∩ dom(U) = ∅, then cA

U
∈ S.

2. Assume s is a state, t is a closed term of FClass + c, D ∈ L+
Class

is a closed formula, and t : |D|. We
first define by induction on D the relation t �s D:

(a) t �s Q if and only if:

• t[s] = U implies that U is sound and dom(U) ∩ dom(s) = ∅

• t[s] = ∅ implies Q[s] = True

(b) t �s

�

Fu if and only if for some numeral n, u[s] = n and t ∈ F (n)

(c) t �s A ∧B if and only if π0t �s A and π1t �s B

(d) t �s A ∨B if and only if either π0t[s] = True, π1t[s] = ι0,|A|,|B|(u) and u �s A, or π0t[s] =
False, π1t[s] = ι1,|A|,|B|(v) and v �s B

(e) t �s A → B if and only if for all u, if u �s A, then tu �s B

(f) t �s ∀xA if and only if for all numerals n, tn �s A[n/x]

(g) t �s ∃xA if and only for some numeral n, π0t[s] = n and π1t �s A[n/x]

(h) t �s ∀XA if and only if for every type B and F : N → SatB(s), tB �s A[
�

F/X]

(i) t �s ∃XA if and only if t = 〈B, u〉 and u �s A[
�

F/X], for some F : N → SatB(s)

We define t � A if and only if for all closed s : N → N of F , t �s A.

Given any state s, one may now define a dummy realizer of any formula and thus of the ex-falso axiom.

Proposition 9 (Dummy Realizers). The following hold:

1. Suppose U is a sound non-empty update and s is a state such that dom(s) ∩ dom(U) = ∅. Then

c
|A|

U
�s A

2.
ΛXλxU cX

x
�s ∀X.⊥ → X0

Proof. 1. is proved by routine induction on A and 2. is immediate.

We are now able to prove that the following propositions 2 still holds that is, the new notion of saturated
set captures the notion of �.

Proposition 10 (Saturation). The following hold:

1. {t | t �s A} ∈ ⊥Sat|A|(s)

50

2. If u[s] = v[s], then {t | t �s B[u/x]} = {t | t �s B[v/x]}

Proof. By straightforward induction on A.

Proposition 11 (Comprehension). Let B(x) be a formula of L+
Class

in the only free natural number vari-
able x. Define B : N → ⊥Sat|B|(s) as

B := n 7→ {t | t �s B(n)}

Then for every t

t �s A[
�

B/X] ⇐⇒ t �s A[λxB(x)/X]

Proof. As the proof of proposition 2.

Let now HAS + EM1 + SK1 + ∀X.⊥ → X0 the type system obtained from the one in figure 2 for HAS +
EM1 + SK1 by adding the rule:

Γ ⊢ ΛXλxU cX
x
: ∀X.⊥ → X0

We finally have the main theorem:

Theorem 15 (Adequacy). If A is a closed formula such that HAS + EM1 + SK1 + ∀X.⊥ → X0 ⊢ t : A,
then t�A.

Proof. The proof is exactly the same of theorem 14.

[1] F. Aschieri, Learning, Realizability and Games in Classical Arithmetic, PhD Thesis, 2011. http://arxiv.org/abs/1012.4992
[2] F. Aschieri, Transfinite Update Procedures for Predicative Systems of Analysis, Proceedings of Computer Science Logic,

2011.
[3] F. Aschieri, A Constructive Analysis of Learning in Peano Arithmetic, Annals of Pure and Applied Logic, 2011, doi:

10.1016/j.apal.2011.12.004.
[4] F. Aschieri, S. Berardi, Interactive Learning-Based Realizability for Heyting Arithmetic with EM1, Logical Methods in

Computer Science, 2010.
[5] F. Aschieri, S. Berardi, A New Use of Friedman’s Translation: Interactive Realizability, draft, 2011.
[6] J. Avigad, Update Procedures and 1-Consistency of Arithmetic, Mathematical Logic Quarterly, volume 48, 2002.
[7] J. Avigad, Eliminating Definitions and Skolem functions in First-Order Logic, ACM Transactions on Computational

Logic, (4), 2003.
[8] J. Avigad, A realizability Interpretation for Classical Arithmetic, in Buss, Hjek, and Pudlk eds., Logic Colloquium ’98,

Lecture Notes in Logic 13, AK Peters, 57-90, 2000.
[9] S. Berardi, M. Bezem, T. Coquand, On the Computational Content of the Axiom of Choice, Journal of Symbolic Logic,

vol. 63, n. 2, 1998.
[10] S. Berardi and U. de’ Liguoro, A Calculus of Realizers for EM1 Arithmetic, Computer Science Logic, Lecture Notes in

Computer Science, vol. 5213, 2008.
[11] U. Berger, Strong Normalization for Applied Lambda Calculi, Logical Methods in Computer Science, 2005.
[12] P. Cohen, Set Theory and the Continuum Hypothesis, Dover ed., 1966.
[13] T. Coquand, A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic 60, pag 325-337,1995.
[14] H. Friedman, Classically and Intuitionistically Provable Recursive Functions, Lecture Notes in Mathematics, 1978, Volume

669/1978, 21-27.
[15] K. Gödel Uber eine bisher noch nicht ben utzte Erweiterung des niten Standpunktes, Dialectica 12, 280287 (reproduced

with English translation, in [Gödel 1990], 240251.
[16] Nicolas D. Goodman, Relativized Realizability in Intuitionistic Arithmetic of All Finite Types,Journal of Symbolic Logic

43, 1, pag. 23-44 (1978).
[17] W. Felscher, Dialogues as a Foundation for Intuitionistic Logic, Handbook of Philosophical Logic, 2nd Edition, Volume

5, pages 115-145 2002 Kluwer Academic.
[18] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112:493-565, 1935. English

translation: The consistency of elementary number theory, in Szabo [465], pages 132-200.
[19] G. Gentzen, Untersuchungen fiber das logische Schliessen. Mathematische Zeitschrift, 39:176-210, 405-431, 1935. English

translation: Investigations into logical deduction, in Szabo [465], pages 68-131
[20] J.-Y. Girard, Proofs and Types, Cambridge University Press (1989).
[21] U. Kohlenbach, Applied Proof Theory, Springer-Verlag, Berlin, Heidelberg, 2008.
[22] G. Kreisel, On the interpretation of non-finitist proofs, part I. J. Symbolic Logic 16, pp.241-267, 1951.

51

[23] G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, Heyting, A. (ed.), Constructivity
in Mathematics, pp. 101128. North- Holland, Amsterdam (1959).

[24] S. Kripke, Semantical Analysis of Intuitionistic Logic I, In Formal Systems and Recursive Functions, edited by M.
Dummett and J. N. Crossley. Amsterdam: North-Holland Publishing Co. 1965.

[25] J-L. Krivine, Realizability in Classical Logic, in Interactive models of computation and program behaviour. Panoramas et
synthses, Socit Mathmatique de France, 27, p. 197-229 (2009).

[26] G. Mints, S. Tupailo, W. Bucholz, Epsilon Substitution Method for Elementary Analysis, Archive for Mathematical Logic,
volume 35, 1996

[27] A. Miquel, Relating classical realizability and negative translation for existential witness extraction. In Typed Lambda
Calculi and Applications (TLCA 2009), pp. 188-202, 2009.

[28] E. Moggi, Notions of Computations and Monads, Journal of Logic and Computation, 93(1),1991.
[29] P. Oliva, T. Striecher, On Krivine Realizability Interpretation of Second-Order Classical Arithmetic, Fundamenta Infor-

maticae, 2008.
[30] H. Schwichtenberg, A. Troelstra, Basic Proof Theory, Cambridge University Press, 1996
[31] M. H. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Studies in Logic and the Foundations of

Mathematics, vol. 149, Elsevier, 2006.
[32] C. Spector, Provably Recursive Functionals of Analysis: a Consistency Proof of Analysis by an Extension of Princi-

ples in Current Intuitionistic Mathematics, Dekker (ed.), Recursive Function Theory: Proceedings of Symposia in Pure
Mathematics, vol. 5. AMS, Providence, 1962

[33] A. Troelstra, D. van Dalen, Constructivism in Mathematics, vol. I, North-Holland, 1988.
[34] A. Troelstra, Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics,

Springer-Verlag, Berlin-Heidelber-NewYork, 1973.

52

	Introduction
	Realizability Based on Interactive Learning
	Plan of the Paper

	The Term Calculus FClass
	Updates
	The System F
	The System FClass

	An Interactive Learning-Based Notion of Realizability for HAS + EM 1+ SK 1
	Language of HAS + EM 1+ SK 1
	s-Saturated Sets
	Interactive Realizability
	Curry-Howard Correspondence for HAS + EM 1+ SK 1

	Witness Extraction with Interactive Realizability
	The Iterative Method
	The State-Extending-Continuation-Passing-Style Method
	Moduli of Forcing and Constructive Forcing at Type N
	Moduli of Prefix Point and Constructive Forcing at Type U
	Constructive Forcing at All Types

	Non-Standard Updates are Forcing Candidates
	Non-Standard Natural Numbers are Forcing Candidates
	The Interpretations of Types are Forcing Candidates
	 Forcing of Constants
	The Adequacy Theorem
	Witness Extraction with the State-Extending-Continuation-Passing-Style Translation Method

	Conclusions and Related Works
	Interactive Realizability and Krivine Classical Realizability
	Interactive Realizability and Bar Recursive Interpretations of Analysis
	Comparison with Goodman's Forcing
	Interactive Realizability, Avigad's Forcing and Update Procedures
	Interactive Realizability and Friedman's Translation
	Forcing Semantics, Evolution of Knowledge and Interactive Realizability

	Interactive Realizability for HAS + EM 1+ SK 1 plus Ex-Falso-Quodlibet
	First Approach: Realizing Ex-Falso-Quodlibet in pure F
	Second Approach: Dummy Constants

