
https://hal.inria.fr/hal-00657306
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

38
--

F
R

+
E

N
G

RESEARCH
REPORT

N° 7838
November 2011

Project-Teams GRAAL

Building Safe PaaS
Clouds: a Survey on
Security in Multitenant
Software Platforms
Luis Rodero-Merino, Luis M. Vaquero, Eddy Caron, Frédéric
Desprez, Adrian Muresan

UMR CNRS - ENS de Lyon - INRIA - UCB Lyon 5668,
46 allée d'Italie, F-69364 Lyon, France

Universidad Politécnica de Madrid, Facultad de Informática,
B2 L3201, 28660 Boadilla del Monte, Spain

Hewlett-Packard Labs, Stoke Gufford BS34 8QZ, Bristol, UK

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Building Safe PaaS Clouds: a Survey on
Security in Multitenant Software Platforms

Luis Rodero-Merino� , Luis M. Vaqueroy, Eddy Caronz, Frédéric
Desprezx, Adrian Muresan{

UMR CNRS - ENS de Lyon - INRIA - UCB Lyon 5668,
46 allée d'Italie, F-69364 Lyon, France

Universidad Politécnica de Madrid, Facultad de Informática,
B2 L3201, 28660 Boadilla del Monte, Spain

Hewlett-Packard Labs, Stoke Gu�ord BS34 8QZ, Bristol, UK

Project-Teams GRAAL

Research Report n° 7838 � November 2011 � 28 pages

� lrodero@�.upm.es
y luis.vaquero@hp.com
z Eddy.Caron@ens-lyon.fr
x Frederic.Desprez@ens-lyon.fr
{ Adrian.Muresan@ens-lyon.fr

Abstract: This paper surveys the risks brought by multitenancy in software platforms, along
with the most prominent solutions proposed to address them. A multitenant platform hosts and
executes software from several users (tenants). The platform must ensure that no malicious or
faulty code from any tenant can interfere with the normal execution of other users' code or with
the platform itself. This security requirement is specially relevant in Platform-as-a-Service (PaaS)
clouds. PaaS clouds o�er an execution environment based on some software platform. Unless PaaS
systems are deemed as safe environments users will be reluctant to trust them to run any relevant
application. This requires to take into account how multitenancy is handled by the software plat-
form used as the basis of the PaaS o�er. This survey focuses on two technologies that are or will be
the platform-of-choice in many PaaS clouds: Java and .NET. We describe the security mechanisms
they provide, study their limitations as multitenant platforms and analyze the research works that
try to solve those limitations. We include in this analysis some standard container technologies
(such as Enterprise Java Beans) that can be used to standardize the hosting environment of PaaS
clouds. Also we include a brief discussion of Operating Systems (OSs) traditional security capaci-
ties and why OSs are unlikely to be chosen as the basis of PaaS o�ers. Finally, we describe some
research initiatives that reinforce security by monitoring the execution of untrusted code, whose
results can be of interest in multitenant systems.

Key-words: Security, Cloud, PaaS, Multitenancy, Container, Java, .NET

Étude sur la sécurité dans les plates-formes
logiciels multi-utilisateurs pour la mise en oeuvre

d'une infrastructure PaaS en nuage

Résumé : Ce papier étudie les risques induits par les architectures multi-
utilisateurs pour les plates-formes logicielles, et les solutions les plus avancées
pour résoudre ces questions. Une plate-forme multi-utilisateurs héberge et
exécute des logiciels pour plusieurs utilisateurs. La plate-forme doit assurer
qu'aucun code maliceux ou défaillant provenant d'un utilisateur ne vienne inter-
férer avec l'exécution normale d'un autre code utilisateur ou avec la plate-forme
en elle-même. Ce besoin de sécurité est particulièrement approprié dans les in-
frastructures en nuage de type PaaS (pour Platform-as-a-Service). Les PaaS en
nuage o�re un environnement d'exécution basé sur des plates-formes logicielles.
A moins que les systèmes PaaS soient considérés comme des environnements
sécurisés les utilisateurs seront récalcitrants a faire con�ance à ces plates-formes
pour exécuter les applications appropriées. Cela implique de prendre en compte
la façon dont les multi-utilisateurs sont gérés par la plate-forme logicielle sous-
jacente au PaaS. Cette étude se focalise sur deux technologies qui ont été choisis
dans de nombreuses plates-formes PaaS: Java et .NET. Nous décrivons les mé-
canismes de sécurités qu'elles fournissent, nous étudions leurs limitations dans
le cadre de plates-formes multi-utilisateurs et nous analysons les travaux de
recherche qui essaye de s'attaquer à ces limitations. De plus nous évoquerons
des technologies a base de containers standards (telle que Enterprise Java Beans)
qui peuvent être utilisées pour standardiser l'hébergement des PaaS. De plus,
nous proposons une brève discussion sur les traditionnelles niveau de sécurité
dans les systèmes d'exploitation et pourquoi les systèmes d'exploitation sont peu
aptes a être choisi comme base de l'o�re PaaS. En�n, nous décrivons quelques
initiatives de recherche qui renforce la sécurité par le monitorage de l'exécution
de code non �able, dont les résultats peuvent être intéressant dans le cadre de
systèmes multi-utilisateurs.

Mots-clés : Sécurité, Cloud, PaaS, Multi-utilisateurs, Container, Java, .NET

4 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

Contents

1 Introduction 4

2 Safe Multitenancy through Process Isolation at Operating Sys-
tem Level 7

3 Security and Multitenancy in the Java Platform 8
3.1 Standard Security Capabilities of Java 8
3.2 Security Hazards in Java . 10

4 Security in Java Application Containers 14
4.1 J2EE Containers . 15

4.1.1 A Servlets-Based PaaS: Google App Engine 15
4.2 OSGi Containers . 16

5 Security Considerations about the .NET Platform as a PaaS
Enabler Technology 17
5.1 Standard Security Capabilities of .NET 17
5.2 Security Hazards in .NET . 17
5.3 Security in .NET Application Containers 19

6 Monitoring External Code Execution to Enforce Security 20

7 Discussion and Conclusion 21

1 Introduction

The term multitenancy refers to the ability of a platform to run software from
di�erent users in a safe manner. To some degree, multitenancy is supported
in many software platforms such as OSs or Virtual Platforms (VPs) such as
Java and .NET. However, as this survey shows, none of these platforms o�er a
fully secured hosting environment. This problem is relevant even in controlled
environments where only code from trusted users will be run: faulty code can
stall its container for example by allocating too many objects (so the system
runs out of memory). Security concerns are even more pressing if code from
unknown users is hosted.

This work depicts how malicious code can interfere with the container plat-
form that executes it, or with other software also hosted in the same container.
Also, it presents the research works that try to solve the security limitations
of standard platforms regarding multitenancy. As we will see this problem has
not been neglected by the research community, but arguably it has not received
as much attention as other security-related problems so far (e.g. Web attacks
such as denial of service, cross-site scripting or SQL injections have been deeply
studied). This is likely to change due to the growing importance of cloud sys-
tems [53] where multitenancy is specially relevant.

Cloud systems allow organizations to outsource the operation of IT infras-
tructure, both hardware and software. Much attention has been payed to
them due to the potential bene�ts and business opportunities that clouds could
bring [18]. However, there are several concerns that could impede the adoption

Inria

PaaS security survey 5

of cloud-based solutions [40]. Some of them are uncertain reliability (low avai-
lability and/or performance dropouts), vulnerability to network attacks (e.g.
Denial of Service attacks), or potential vendor lock-in (users not being able to
migrate their software to other clouds). Those are not addressed here as they
are outside the scope of this work. Another relevant factor to be considered by
potential cloud users is security: if clouds are perceived as risky environments
users will be very reluctant to migrate their systems there [55]. Unfortunately,
securing clouds is not a trivial task as they must face several threats. This
survey focuses on the risks induced by multitenancy inPlatform-as-a-Service
(PaaS) clouds. A PaaS cloud provides a container platform where users de-
ploy and run their components. A well known example is Google App Engine
(GAE) 1, which runs Java servlets. In a PaaS cloud components from di�erent
users can be run in the same platform or container system. As we will see, this
implies that malicious users have several straightforward ways to interfere with
the normal execution of other components or with the container itself. This
is emphasized in [52], where the authors specify that providers are responsible
for isolating components so that no user software can interfere with other users.
This paper further explores this requirement by surveying the isolation capabili-
ties of potential PaaS platforms. This analysis is due at three levels representing
three possible container systems: Operating System (OS) level, Virtual Plat-
form (VP) level (i.e. Java and .NET) and container level. Most emphasis is put
on the VP and container levels as, as we will see, these are more relevant for
PaaS clouds.

To avoid confusion, we should clarify that there are some systems also de-
noted PaaS clouds that build a unique environment per user which is hosted
in not shared machines, e.g. provided by anInfrastructure-as-a-Service (IaaS)
cloud. This is the case for example of Stax.net2 that o�ers pre-packaged disk
images with the software stack that the user demands and where the deployment
and monitoring process is eased thanks to the custom tools provided. Fig. 1(a)
shows an example of such layout, where the PaaS system deploys each user's
components in di�erent Virtual Machines. In these systems it is the provider of
the VMs (an IaaS provider) who is in charge of implementing proper isolation
(which has its own challenges, see [48]). Hence, this paper does not deal with
such PaaS systems as they delegate the implementation of secure isolation to
the VM level.

In this paper we focus instead on PaaS clouds that host and run applica-
tions from several di�erent users in the same platform [57] in a safe manner.
Tenants share PaaS platform resources (hardware, libraries, supporting services,
IT management, etc.), but this is totally transparent to them. This way, the
provider can host more users' applications in the same resources. Fig. 1(b) de-
picts such a PaaS system, where components from di�erent users are deployed
in the same container systems. To achieve safe multitenancy in PaaS platform
each application must run isolated from the rest, so a malicious or faulty ap-
plication cannot impact others. Also, as the code executed by the PaaS system
may be untrusted, it is necessary to �nd mechanisms that can enforce security
policies to decrease the risks involved in running such code.

The rest of this paper is organized as follows. In Section 2 we explore security

1http://code.google.com/appengine
2http://stax.net

RR n ° 7838

http://code.google.com/appengine
http://stax.net

6 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

(a) Non-shared Resources PaaS

(b) Shared Resources PaaS

Figure 1: PaaS Systems

mechanisms at OS level, while at the same time we discuss the limitations of
the OS as a hosting environment for PaaS applications. Such limitations seem
to signal VPs such as Java as more adequate to build PaaS systems. The most
well-known container systems are based on Java, so emphasis is put on this
platform. Thus, Section 3 focuses on studying standard Java features and its
limitations as a PaaS container platform from the point of view of security, while
Section 4 discusses security on Java container systems. Section 5 switches focus

Inria

PaaS security survey 7

to the .NET platform, whose security characteristics are also analyzed. With
a more general approach, Section 6 commentsexternal code monitoring as a
security solution to be applied in PaaS platforms. Finally, Section 7 presents
some conclusions resulting from this survey.

2 Safe Multitenancy through Process Isolation at
Operating System Level

In [29] a complete de�nition of a secure Operating System is given: �A secure
OS provides security mechanisms that ensure that the system's security goals are
enforced despite the threats faced by the system.�. An OS deals with resources
such as devices, network, data, memory and processors. Each resource type has
di�erent security issues related with it, but to implement safe resource sharing
in a multitenant OS �ve main security areas can be considered. 1)Access
control, an access mechanism should be available to authorize requests from
users or processes to perform OS operations as read, write, etc., on OS objects
such as �les, sockets, etc. The most well-known solution is based on ACL (for
Access Control List), where each object has a list of permissions associated; 2)
Integrated �rewall functionality, like IP Filter, IPsec and VPN techniques; 3)
Data encryption for data in transit or stored in the �lesystem; 4) Prevention of
execution of memory zones, using theNo execute(Nx) page �ag; 5) Isolation is
�nally the last (but not least) security area OSs must provide. Process isolation
has been a basic feature of most OSs for decades. Proper isolation prevents
any process to interfere with others or to access protected resources. This is
achieved through well known protection mechanisms (memory segmentation and
page mapping) that build a separated address space for each process. A process
cannot access memory regions outside its address space. Although other ways
to implement process isolation have been proposed [2], this is by far the most
common in modern OSs. [39] shows how to take bene�t of virtual machines
to secure an OS. Also, [13] propose a Mandatory Access Control (MAC) based
system to ensure integrity in OS and VMs.

Other menaces are present, but they are not so related with multitenancy
(which is the main focus of this paper) or are already dealt with by the areas
depicted above. Techniques like intrusion prevention, authentication and avai-
lability deal with external attacks; data integrity is preserved by ACLs and data
encryption; hidden information �ows , which occur when some user' software
propagates information that should remain con�dential, can happen if users
share critical data (e.g. the same database), but in PaaS systems users do
not share application-level data, which should prevent this kind of risks if data
integrity is properly implemented.

However, typical PaaS systems do not host applications that run right on
top of the OS. Although this is technically feasible, PaaS providers prefer to
o�er other abstractions to users. Reasons may vary:

ˆ Platform standardization and portability. If a PaaS player allowed users
to deploy applications to run on top of the OS, she/he would have to
decide which OS(s) to o�er, which version, and which dynamically linked
libraries (and versions) should be available for applications. This is far
from trivial and could constrain the set of applications that could be run

RR n ° 7838

8 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

in the cloud.

ˆ Simpli�ed abstractions. Also, given the domain of the applications that
run in PaaS clouds, providers may prefer to o�er simpli�ed abstractions
that ease the development tasks.

ˆ Dominance of interpreted languages and virtualized platforms in Web de-
velopment. Finally, it is foreseeable that future developments in PaaS
clouds will be strongly Web-oriented (as they will be accessed through
the Web). In Web development, scripting languages (Ruby, Python and
others) and virtualized platforms (Java or .NET) are dominant.

There are also several concerns that could be raised if PaaS platforms are
allowed to run applications from several tenants on the same OS, [30] enumerates
some of them: administration, installation, fault and attack isolation; along with
crash recovery.

Furthermore, as noted in [4], general purpose OSs do not allow for an appro-
priate control of scheduling policies and resource management. These authors
already advocated for the utilization of containers, although with an important
di�erence from present container systems: those containers were an abstraction
provided at the OS level. Each container encompassed the resources associated
to a particular task. Each application could use one or many containers, and
through them the OS was able to monitor and manage the resources (CPU,
memory, bandwidth) consumed by each task executed by the application.

This same idea of `container' is present in many systems, however they are
implemented at the application level (where any resource management and ten-
ant isolation task must be implemented).

3 Security and Multitenancy in the Java Plat-
form

Arguably, the best well-known container systems are based on the Java platform.
The Enterprise Java Bean [35] (EJB) and Servlets [34] speci�cations (part of the
J2EE speci�cation [36]), and the OSGi3 speci�cation [43] are the most relevant
Java container technologies and they can be expected to have a prominent role
in future PaaS platforms. For example, the GAE PaaS system already provides
a runtime engine for Java servlets.

3.1 Standard Security Capabilities of Java

This section presents a brief summary of the main security features of the stan-
dard Java platform (for more information on this topic see [42, 60]). The Java
speci�cation includes the Java security model4, a set of features that intend to
make Java a safe environment. They include: sandbox execution so potential
risks for the hosting system are limited; bytecode veri�cation so the runtime is
not corrupted; and cryptography, PKI, and secure transport APIs for communi-
cations protection. Also, Java implements aclass loadingmechanism that can

3The term OSGi was originally the acronym of Open Services Gateway initiative , but today
that name is obsolete.

4http://java.sun.com/javase/technologies/security/

Inria

http://java.sun.com/javase/technologies/security/

PaaS security survey 9

Figure 2: Checking of Permissions in Execution Stack

be used to control which classes can be instantiated by each thread. Typically,
in cloud platforms untrusted code will be run by special threads with speci�c
class loaders that limit which classes can be accessed.

Furthermore, Java implements strongaccess controlcapabilities to limit ac-
cess to resources such as network, �les, system properties, or any logical entity
that the container must protect. The class loader sets for each class thepro-
tection domain it belongs to. This domain carries 1) a set ofpermissions; 2)
the code source, an entity that contains the public certi�cates used to sign the
code (if any). The security policy, which is set when the platform starts, is used
to determine which permissions can be assigned to each class depending on its
code source. Finally, thesecurity manager is the entity that enforces security.

Resources are usually �wrapped� by speci�c classes. When some function-
ality needs a resource it will call the corresponding class. That class protects
the resource by asking to the service manager to check if a calling thread has
the corresponding permissions by traversing back the method stack. For each
method in the stack, the security manager checks if the permissions carried by
the protection domain the method class belongs to are enough to grant the re-
quested access. If it �nds a method in that stack belonging to a class that does
not have the required permission, an exception is thrown. This is depicted in
Fig. 2.

Previous control is code-centric, but can also be user-centric by using the
standard Java Authentication and Authorization Service (JAAS) APIs. Once a
user is authenticated through JAAS, one or moreprincipals are associated to
her. The security policy used determines which permissions are assigned to each
principal when running a certain code. A more complex authorization solution
(both role-based and hierarchical) oriented to multitenant clouds is presented
in [10].

RR n ° 7838

10 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

3.2 Security Hazards in Java

Unfortunately, the Java platform also presents certain limitations that hinder
the construction of secure multitenant environments. In [27] and [6] the authors
analyze the problems and threats to be taken into account when using Java as
a multitenant platform. In [27] the authors also study the problems derived
from running multitenant software as Java threads. As they explained, even if
newer Java versions include protection mechanisms [60] so that no thread could
neither modify nor stop other threads, still many issues remain:

ˆ Isolation . A proper isolation mechanism must ensure that one tenant
cannot access to components of other tenants. Figure 3 shows three di�e-
rent isolation solutions that PaaS platforms can use, ranging from isolating
applications by running them on their own OS process, going through us-
ing already available security devices such as class loaders, or using last
advances on virtual platforms to provide full applications isolation in the
same container.

(a) Isolation at OS Level

(b) Isolation by Standard Java Security

(c) Isolation at VM Level

Figure 3: Isolation Options in PaaS Platforms

Fig.3(a) shows the most straightforward option, to create a new JVM per
user application. This is a safe approach as it uses OS processes to isolate

Inria

PaaS security survey 11

di�erent applications. However it is expensive in terms of resources.

Fig.3(b) depicts an approach that enforces security by means of standard
Java technologies. Isolation is reinforced by class loaders. Through class
loaders, a Java runtime can prevent malicious tenants from loading (and
running) not allowed classes or corrupting classes used by other tenants.
However, this is not enough to ensure proper isolation among tenants
running code in the same JVM. Potential problems vary: visibility of
object references from mutable parts of classes (specially static ones), and
the possibility for malicious tenants to block other tenants through shared
data structures (such as queues) or static synchronized methods [27, 15,
6, 51].

Certain research works have tried to implement the option depicted in
Fig.3(c)) by providing better isolation mechanisms to Java. In [15] the
authors introduce the Multitasking Virtual Machine (MVM), a modi�ed
JVM that implements the concept of isolates. Each isolate runs a di�e-
rent application (also denoted task by the authors) with its own threads
in such a way that the application has the illusion of being executed in a
non-shared VP. In MVM each task has its own memory heap and so there
are no shared objects. Communication between isolates must use other
mechanisms such as sockets. Depending on the amount of calls among
isolates this can induce a considerable overhead. At the same time, MVM
promotes the sharing of as much resources as possible to enhance perfor-
mance (e.g. core native methods are shared).

Also, static variables are considered by MVM. In a typical JVM, static
variables of any class are shared by all threads. In MVM, each isolate
keeps its own copy of the static variables, only shared by the threads
inside that isolate. Static synchronized methods in each class can be
another source of trouble. The monitor associated to those methods is
kept by the corresponding instance ofjava.lang.Class (in fact it is the
own monitor of the instance). But in the JVM there is only one single
instance of Class per class, shared by all threads. Hence, the monitor
of the Class instance is also shared, so if a thread gets the monitor (by
synchronizing on the Class instance or by calling a static synchronized
method of the class) it can block any other thread trying to access it. To
avoid this, MVM keeps for the same class di�erent instances ofClass in
each isolate.

Later on, an evolution of the MVM was developed so the same MVM
could support applications of di�erent users at OS level [14]. This is im-
plemented by controlling access to private �les, allowing the safe execution
of native code and adding a mechanism to ensure the correct operation of
core native libraries by replicating the global state of shared core classes.
Note that this work refers to users at OS level, not to be confused with
the tenants of PaaS systems that will try to run their code in the VP. In
a PaaS environment, it is safe to assume that the platform will always be
started by a single OS level user (admin).

These and other works in�uenced the Java Speci�cation Request5 (JSR)

5Java Speci�cation Requests are the standard process to de�ne and propose new additions
to the Java platform.

RR n ° 7838

12 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

121Java Isolation API [33], which enables Java applications to start other
applications in an isolated manner. This speci�cation de�nes a set of in-
terfaces for the creation and control of isolated containers for components.
However, it does not impose any implementation strategy so each isolated
component could be implemented by a whole JVM running on an OS pro-
cess of its own, or all isolations could share the same JVM (as in the case
of MVM).

On the other hand, the JSR 121 has not been included yet in any standard
release of the Java platform, and in fact it seems to be a dormant speci-
�cation. Also, research project Barcelona6, that hosted the development
of the MVM, is no longer active7.

Ka�eOS is another interesting proposal developed by Back and Hsieh [3].
Ka�eOS is a new JVM that implements support for isolated processes
inside the runtime and manages the CPU and memory resources available
to each process. These processes are similar to the ones given by typical
OSs. They claim that they provide better isolation capacities that the
isolates given by the MVM.

Geo�ray et al. [22, 24] also apply the concept ofisolates originated by
the work on MVMs. However, they transform them so that they are not
associated to a running task (i.e. threads can migrate among domains
in contrast to isolates) but to class loaders (classes loaded by the same
class loader are in the same isolation). With this approach they avoid the
overhead caused by inter-task communication in the MVM. As in the case
of MVM, each isolate keeps its own copy of static variables and instances
of Class . In [24] the authors introduce I-JVM , a modi�ed JVM that
implements their concept of isolates. I-JVM is based on VMKit [23], a
software framework to speed up the creation of VPs.

Finally, Sun et al. [51] focus on solving the problems originated by the
sharing of the heap memory, such as memory leaks from faulty software
that can consume all available memory. The heap is split in logical parti-
tions, so the memory faults caused by a component only a�ect the partition
it resides in. The partition can be repaired without rebooting the whole
system.

ˆ Resource Accounting . As commented before, the security manager and
protection domains are the foundation of the Java environment to imple-
ment and assign custom security policies that control access to resources
by code (depending, for example, on the origin of that code). Unfortu-
nately, once access is granted to some code, that code can use the resource
without limitations. There is no accounting of resource usage by threads
in the Java platform, and, so, there is no way to enforce a limited utiliza-
tion of resources. Therefore, a malevolent tenant can, for example, try to
exhaust all available memory just by creating many instances of objects.

The (somewhat old) Java Virtual Machine Pro�ling Interface 8 (JVMPI)

6 http://labs.oracle.com/projects/barcelona/
7We tried to get in touch with Sun/Oracle to access to the last version of the MVM. We

were noti�ed that, although there is a more recent and stable version based on JDK 7, access
to the MVM has been restricted since Oracle acquired Sun.

8http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

Inria

http://labs.oracle.com/projects/barcelona/
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

PaaS security survey 13

and its more recent replacement theJava Virtual Machine Tooling In-
terface9 (JVMTI) can be used to support resource accounting as they
allow to inspect the state of applications and the JVM. However, these
interfaces must be used by software written in native code, breaking Java
portability. Also, they introduce a considerable overhead that can make
them unusable in many production environments. Finally, these interfaces
do not aim at accounting of generic resources.

There have been several approaches trying to solve this for di�erent single
resources. For example [47] proposes a system able to account memory
usage by using a modi�ed garbage collector that computes the total size
of objects reachable by each task as it looks for unreachable objects. They
are deemed to be imprecise due to shared references [3].

Other works apply bytecode rewriting (also called program transforma-
tions) to inject some kind of accounting capabilities to the Java platform
in a portable way. This manner, the platform should be able to prevent
threads from using too many resources. The most prominent e�orts using
this approach are JRes [16] and JRAF-2 [8, 9, 28, 7].

As a result of this concern about the lack of a proper resource control mech-
anism in Java, Czajkowski and others started to work in a new Resource
Management (RM) API [17]. This work and the MVM [15] (discussed
above) are strongly related. The RM uses MVM's idea ofisolates as the
basic accounting entity that can demand or dispense resources, and [17]
introduces an implementation of the RM API on top of the MVM.

Eventually [17] leaded to the creation of the JSR 284Resource Consump-
tion Management API [37]. This JSR, which has been recently approved,
de�nes a set of interfaces that enable the programming of resource man-
agement policies. This API �will be a framework through which resources
can be uniformly exposed to client programs as entities subject to manage-
ment� . Also, JSR 284 includes a set of core resources that all compliant
implementations will have to expose by default. An implementation is
already available, but it is unknown if this API will be included in future
releases of any of the �avors (J2ME, J2SE, J2EE) of the standard Java
platform.

On the other hand, Ka�eOS implements per process resource accounting
and bounds setting (CPU and memory). It does not provide accounting
of other resources neither from the platform nor handled by the users.

Regarding I-JVM, it implements per-isolate accounting of CPU time,
threads created, I/O r/w operations and memory. But as Ka�eOS, it
does not have a general accounting framework for a generic resource.

ˆ Safe Thread Termination . This problem is due to the lack of a safe way
to enforce the termination of a Java thread. Thejava.lang.Thread.stop()
method was intended for that, but:

� It is deprecatedbecause it is deemed unsafe: the terminated thread
would release all its monitors, which could leave some objects in an
inconsistent state.

9http://java.sun.com/javase/6/docs/technotes/guides/jvmti

RR n ° 7838

http://java.sun.com/javase/6/docs/technotes/guides/jvmti

14 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

� The method triggers a java.lang.ThreadDeath exception in the
thread to stop it. The thread can just catch that exception and
ignore it to keep running.

Hence malicious threads can remain alive forever, consuming resources try-
ing to monopolize resources, block other threads, etc. Another problem
could be caused by the platform trying to run a safe shutdown, which
implies that all threads running inside the platform must be stopped �rst.
If the platform waits for a malicious thread to terminate then it could be
brought to a stall state. Some solutions [49] propose to modify the un-
trusted software bytecode to inject termination checks at certain execution
points. These solutions have a drawback: they incur heavy performance
penalties.

MVM does solve this problem. A MVM-aware application can create,
execute, pause, resume and stop other applications. Also, Ka�eOS allows
to stop the processesit is based on.

Finally, in I-JVM, when one isolate is terminated all the threads originated
by it are stopped by a specialStoppedIsolateException exception that
can only be caught by objects outside the terminated isolate (so the ex-
ception cannot be ignored by the isolate being stopped).

But I-JVM, on the other hand, does not totally implement safe thread
termination. The problem is that in I-JVM the same thread can traverse
di�erent domains regardless its origin (this cannot happen in MVM nor
in Ka�eOS) as isolations are not based on threads unlike MVM isolates or
Ka�eOS processes. When one thread is stopped all the monitors locked
by it are released, which could leave objects synchronized by those locks
in an inconsistent state. In I-JVM this could happen when releasing the
locks of objects in isolates other than the one being stopped. This is
the same reason because the standardjava.Thread.stop() method was
deprecated in Java. The creators of I-JVM estimate that the bene�ts of
light inter-isolation communication outweigh this problem.

4 Security in Java Application Containers

It is to be expected that future PaaS clouds will not run user components right
on top of the JVM. It seems more likely they will use container technologies
to provide added standard services. In [26], the authors identify the security
threats that multitenant containers must address and enumerate the security
requirements they must ful�ll:

ˆ Availability : an application shall not use local or connected resources that
prevent other applications from running due to resource starvation. The
container should have mechanisms to enforce di�erent resource sharing
policies. Also, the container must be available regardless of the state of
the applications running inside.

ˆ Con�dentiality and Integrity : an application shall not explore or mod-
ify the platform of other applications if not authorized. Access to other
applications and their data must be controlled.

Inria

PaaS security survey 15

It is straightforward to see that these requirements would be achieved by
properly addressing the issues listed in Section 3. Container availability can be
brought by safe thread termination and resource accounting, while con�dential-
ity and integrity would be implemented by full isolation of components.

The remainder of this section focuses on the security features of J2EE and
OSGi technologies, as they are the most prominent relevant Java container
solutions today. Also, the works that try to bring stronger security capabilities
to each container technology are listed.

4.1 J2EE Containers

The EJB speci�cation [35], as part of the contract between the EJB and the
container, imposes strong restrictions and limitations to what EJBs can do.
EJBs cannot create threads (to avoid interferences with the container's ability
to control components' lifecycle), manipulate �les (�les are not transactional
resources and could also limit the application distributability), modify class
loaders, access non �nal static �elds (such �elds would make a bean di�cult to
distribute), etc.

These restrictions are enforced by the EJB container through the standard
Java security model (see Section 3.1), and all together build an interesting se-
curity mechanism. EJB containers combine these constraints with the appli-
cation of class loaders to achieve proper EJBs isolation. Unfortunately, these
restrictions impose a somewhat limited programming model which may not be
appropriate for many development needs. And, more important, they are not
enough to fully achieve the requirements listed in Section 3.2.

On the other hand, the Servlet speci�cation, which is also part of the J2EE
platform (as the EJB speci�cation), does not stress isolation among servlets,
nor imposes strict restrictions for servlet programming. In this speci�cation,
security is concerned only with authentication and authorization of servlets'
clients.

It is possible, of course, to apply the standard security Java mechanisms
(such as access control and PKI APIs) to the development of servlets and EJBs
based systems. There are texts available that address this topic [61, 62]. But
even in this case, properIsolation, Resource Accounting and Safe Thread Ter-
mination (Section 3.2) would remain as open issues.

Some research works [32, 31] have tried to use MVM (see Section 3.2) to
achieve proper isolation among users applications on J2EE environments. In [32]
the authors discuss how to apply MVM's isolates in a J2EE server. They propose
using application domain isolates, where one application domain encapsulates
one or more user J2EE applications, including its required servers. Later on,
in [31] the authors used a MVM extended with the Resource Management API
(de�ned in [17], see Section 3.2) and combine it with application domain isolates,
so they can easily monitor the resources used by each application.

4.1.1 A Servlets-Based PaaS: Google App Engine

Being a prominent PaaS platform, based totally in the Java Virtual Platform,
it is worth to discuss how GAE has addressed the security problems of standard
Java.

RR n ° 7838

16 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

First, they limit the possible actions that users can perform applying the
Java security model, i.e. they apply custom class loaders and security policies
enforced by the Security Manager. For example, tenants cannot create new
threads, instantiate certain classes, modify system properties or read �les that
do not belong to the user application (a GAE application is basically a set of
Java servlets, Javascript code, con�guration �les and static content like images
or HTML pages).

Regarding isolation, GAE solves it in a quite �naive� manner: users do not
share servers. Each user application runs on its own JVM instance (as depicted
in Fig. 3(a)).

GAE o�ers accounting data of certain resources: CPU, network bandwidth
and stored data size. Users are billed depending on the amount of resources
used. However, it is not explained how GAE performs this accounting (using a
custom JVM, using the JVM Tooling Interface, at OS level, etc.).

Finally, GAE uses thread termination to control how long it takes to at-
tend each request. A request in GAE can last up to 30 seconds. When that
limit expires, an exception is thrown by the platform to the servlet processing
the request. If the exception is not caught, the thread will �nish and a HTTP
500 server error message will be sent in response to the HTTP request that
triggered the thread execution. If the exception is caught the runtime engine
will give �the request handler a little bit more time (less than a second) after
raising the exception to prepare a custom response�. After that, the thread is
terminated by force. Google claims that the thread is shutdown �gracefully�,
other threads in the same server are not a�ected. In fact, the whole container
is stopped. To make sure that other threads are not a�ected, the load balancer
in front of the container stops sending requests to it when a thread is to be
stopped. Then, when no more threads are running, the whole container server
can be stopped. This implies that programmers should develop servlets taking
into account that requests should be attended by stateless processes (there is
no concept of session a�nity per user) as consecutive requests from the same
user can be forwarded to di�erent server instances.

4.2 OSGi Containers

The OSGi framework de�nes a platform where loosely coupled software mod-
ules (denotedbundles) can expose and use services; OSGi enforces some isolation
through its Module Layer. This layer de�nes a modularization model so that
packages included in each bundle are shared (exported) or hidden to other bun-
dles as declared by the developer. Again, this isolation is implemented through
class loaders.

Extra security is provided by controlling whether bundles can export/import
certain packages, access resources, etc. Still, OSGi carries several potential secu-
rity hazards. In [45] the authors enumerate 25 di�erent security �aws in di�erent
OSGi implementations. And, while 17 of them can be �xed programmatically
by setting proper security measures, there are still 8 vulnerabilities that need to
be addressed at JVM level. All of them are related with the security limitati-
ons of Java mentioned in Section 3.2: poor isolation (e.g. a bundle can modify
shared static variables), need for resource accounting (e.g. a bundle could use
all of the memory available) and lack of support for thread termination (e.g. a
bundle can ignore signals to stop and catch allThreadDeath exceptions).

Inria

PaaS security survey 17

Some works try to improve the OSGi framework robustness by providing
better isolation: Gama and Donsez [21] patch an OSGi implementation using
the Isolation API (JSR 121) on MVM to provide service level isolation.

In [24] the authors modify an OSGi implementation to run with I-JVM. They
show how applying I-JVM this new OSGi platform solves the 8 risks described
in [45] tied to the JVM.

Other works try to enhance the tolerance to faulty software, for example
in [1] the authors use light proxies to route calls between bundles that wrap
service objects and handle failures when they occur.

5 Security Considerations about the .NET Plat-
form as a PaaS Enabler Technology

No any other VP has been as intensively studied as the Java platform. Also,
no other VP has reached the same popularity. But Java is not the only candi-
date VP that can be used to build a PaaS system. This section will introduce
the main security features of the .NET platform, which can be regarded as an
alternative to the Java platform.

5.1 Standard Security Capabilities of .NET

The .NET platform is a development environment created by Microsoft with
several similarities with the Java platform. The Common Language Runtime
(CLR), which would be the equivalent to the JVM in .NET settings, implements
the main security aspects of this platform.

In .NET, software is contained in libraries denoted assemblies, which are
grouped in code groups. Membership of code groups is ruled by theevidences
that each assembly carries (for example who signs the code). Each code group
has an associated set ofpermissions. If some assembly belongs to more than
one group, its associated permissions are the union of all the permissions of all
groups it belongs to.

The mapping between code groups and permissions is done throughsecurity
policies. Policies are organized in a hierarchy with 4 levels (top-down order):
enterprise, machine, user and application domain. Usually, the permission asso-
ciated to each code group is given by the intersection of the permissions at all
levels it belongs to, although more complex settings are possible.

Permissions are used for granting access to resources or to other code. They
have a stack walking semantics very similar to the one found in Java. If a
method demands a certain permission, then all the methods higher than the
current one in the call stack are checked for that permission. This prevents
attacks in which some untrusted software tries to use a trusted piece of code to
run a protected operation.

We can see that the CLR access control mechanism has similarities with the
one used in Java, although it is considered by some [46] as easier to use.

5.2 Security Hazards in .NET

ˆ Isolation . The CLR implements the concept of Application Domains
(ADs). Each application is assigned an AD when is run by the CLR (the

RR n ° 7838

18 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

same CLR instance can run several ADs with several instances of di�erent
applications). ADs are isolated, so code running in one AD neither can
call, nor can be called from code running in other AD. If several application
instances use the same code, the CLR will handle one copy of that code per
AD where it is used. For intra-process isolation in .NET, using di�erent
application domains is recommended because they can be dynamically
loaded and unloaded during the runtime of the application.

An interesting feature of the CLR is that it keeps a separate copy of
the static variables maintained for each domain, thus preventing object
references from being leaked across domains as static variables. We can
conclude that, by default, the CLR has more complete (and thus safer)
isolation capabilities than the standard JVM. However, although the appli-
cation domain concept provides a straightforward way to achieve tenancy
isolation, the fact is that CLR still su�ers some other limitations of the
Java platform.

ˆ Resource Accounting Just like in the case of Java, .NET does not
implement any generic resource accounting functionality. It does have
a pro�ling mechanism, but it provides information about the state of the
CLR through events (load/unload of classes, threads creation, and others),
it cannot be used by components developers to control the resources they
o�er.

There has been some works around resource accounting that target Win-
dows applications. Notably [44] have described a framework that allows
resource accounting. This framework allows the dynamic assignment of
resources to tasks and task management to a �ne granularity that includes
bounding the running context of tasks (for example in CPU and memory
usage) therefore creating a sandboxed context for the task. The frame-
work described here targetsunmanaged code(code that does not target
the .NET framework and is not run by the CLR) but the authors stated it
was being extended to allow .NET remote resources to be used. As such
the presented framework is a viable solution for resource accounting for
the .NET framework.

ˆ Safe Thread Termination

CLR's thread termination solution is based on a C#'s method (System.
Threading. Thread. Abort()) that injects an exception in the aborted
thread, as thejava. lang. Thread. stop() does in Java. TheAbort()
method is not deprecated (as thestop() method is), yet it is recommended
to avoid it 10. But even more important is the fact that .NET does not
guarantee that the thread on which Abort() was called is stopped. In fact
it is easy for the thread to continue its execution by handling the excep-
tion and calling System.Threading.Thread.ResetAbort() or by having
unbound computations in its catch or finally statements. Thus, like
Java, .NET does not provide a safe mechanism for thread termination.

This impacts ADs management. Before unloading an application do-
main all its threads must be stopped, which is implemented by using

10 http://msdn.microsoft.com/en-us/library/system.threading.thread.abort.aspx

Inria

http://msdn.microsoft.com/en-us/library/system.threading.thread.abort.aspx

PaaS security survey 19

the Thread.Abort() method. Note that, given the fact that thread stop-
ping is not guaranteed neither is the successful unloading of an application
domain.

5.3 Security in .NET Application Containers

Regarding container architectures, no container system similar to Java's EJBs
or OSGi exists in .NET. The closest technologies could beASP.net11 and Com-
ponent Object Model12 (COM). ASP.net provides a Web framework, but as in
the case of the Servlets speci�cation there is no special reinforcement of iso-
lation among components (although it uses the concept of ADs). Regarding
the COM platform, it is not built on top of .NET and is not part of the .NET
framework. Also, COM is not a container technologyper se, it is more oriented
to enabling the connection of components. COM+ has been developed as an
improvement of COM. Recent versions of COM+ add private / public com-
ponent isolation mechanisms whereas previous versions only o�ered role-based
authorization. For its use in the .NET framework, a wrapper library has been
built under the name of .NET Enterprise Services13.

The compliance and possible implementation of an OSGi-like platform on
the .NET framework has been studied by [20]. To enforce OSGi-like containers
in .NET, the authors recommend applying ADs. They can provide the necessary
isolation mechanisms, yet the only way to communicate between two non-shared
application domains is by using interprocess communication solutions such as
.NET remoting. These communication mechanisms come with a considerable
time overhead which would make some applications impractical, yet the pos-
sibility of an OSGi-like platform implemented on top of the .NET framework
exists.

There have been a few projects that aim towards the development of a
PaaS cloud based on the .NET framework. One such project is the Aneka
Cloud Platform described in [54]. The goal of the Aneka project is to provide
a PaaS cloud that enables the deployment of public, private or hybrid clouds.
The Aneka platform is based on Aneka containers. They provide the services
required for platform management and the runtime necessary for the execution
of applications.

Security inside the Aneka platform is handled by providers of authentication
and authorization. The providers have the role of abstracting the concrete
mechanisms that perform the task. As such, Aneka is able to use the underlying
authentication and authorization mechanisms of the environment in which it was
deployed if required and also to provide custom ones.

Although the general mechanisms used for application isolation in current
cloud environments have been presented, the speci�cs implemented in Aneka
related to this domain have not been detailed in the referenced work. As a
result, the reader is unsure if Aneka contains implicit isolation or sandboxing
for its deployed applications or if the Aneka user is responsible for developing
her/his own isolation mechanisms.

In a previous work [12] Aneka has been described as an enterprise grid plat-
form. In addition to the membership-based security approach described above,

11 http://www.asp.net
12 http://www.microsoft.com/com
13 http://msdn.microsoft.com/en-us/library/Aa286569

RR n ° 7838

http://www.asp.net
http://www.microsoft.com/com
http://msdn.microsoft.com/en-us/library/Aa286569

20 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

[12] also presents the possibility of using a certi�cation-based approach with
X.509 certi�cates for authentication. No further details related to the applica-
tion isolation mechanisms used are given.

6 Monitoring External Code Execution to En-
force Security

The security features of VPs and the related research e�orts studied so far try
to build a safe environment by addressing the platform characteristics that can
be used by malevolent code (e.g. not proper thread termination mechanisms).

Another complementary approach is to monitor untrusted code execution
to ensure that security policies are ful�lled by tenants' code. For example a
security policy that could be enforced in PaaS systems is to impose tenants
code to apply SSL connections when sockets are used. Relevant research works
related with this approach are analyzed in this section.

The components that monitor code execution and take actions when some
policy is violated are denotedReference Monitors. Schneider in [50] presents
1) a formalism to determine which security policies can be reinforced by what
he denotesExecution Monitoring (EM); 2) an automata-based mechanism to
de�ne such policies. The formalism uses a set of restrictions: EM only uses the
information obtained by observing the code execution, it does not modify the
code observed. It truncates the code execution when some security policy is
violated.

On the other hand, although Schneider's de�nition of EM does not include
any mechanism that modi�es the executed code, such solutions are also con-
sidered by other authors as EM. Schneider himself states that nothing prevents
using such approach with arbitrary security automata [50].

Security monitors that modify the untrusted code are denotedInline Refer-
ence Monitors (IRM). Some examples of IRM based solutions are

ˆ SASI [59], it adds code that 1) simulates an automaton that enforces a
certain security policy and 2) it is executed before each untrusted code
instruction.

ˆ Java-MaC [38], an implementation in Java of the Monitoring and Checking
architecture, which ensures that the code runs correctly with regards to a
formal speci�cation of requirements.

ˆ Polymer [5], it allows to de�ne monitors in the Polymer language and
translates them to Java bytecode, which is then used to rewrite the un-
trusted code.

The idea of weaving security enforcement code inside untrusted modules is
clearly related with Aspect Oriented Programming (AOP). AOP [19] intends
to provide mechanisms to de�ne �crosscutting concerns�, or aspects, that are
present in di�erent components of the same system. Security is one of such con-
cerns, as many components (if not all) must take into account security policies
and constraints.

Through AOP a PaaS platform could reinforce security rules in a trans-
parent manner [56], like for example log relevant data, implement protection

Inria

PaaS security survey 21

techniques against bu�er over�ows, etc. The Polymer system is in fact using
an approach similar to AOP. Java-MOP [11] also applies AOP to monitor for-
mal speci�cations in programs. In a recent work [25] the authors present an
XML-based language to express security rules as automata whose edge labels
(i.e. transitions) become AOP pointcuts, that is, places in the code a�ected by
a certain aspect and where the IRMs will be injected. A more straightforward
application of AOP to security is found in [58]. Here the authors apply AOP to
add role-based access control to a CORBA access control system. Also, users
could apply AOP to point out in which parts of the service some security policies
must be checked.

Rather than injecting extra code to untrusted applications, other solutions
are oriented to the static analysis of software before execution to ensure that
it does not break any security police. For example,Proof Carrying Code [41]
(PCC) carries static information that can be examined before execution to prove
that the code is safe. It is unlikely however that in PaaS systems such extra
information will be available.

Feature JVM CLR MVM I-JVM Ka�eOS

Access
control
mecha-
nisms

Based on
Permissions
and Policies

Based on
Permissions
and Policies

Similar to
JVM

Similar to
JVM

Similar to JVM

Reference
leak

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Shared
static
references

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Block by
synchro-
nized
static
compo-
nents

Not �xed Fixed with
ADs

Fixed with
Isolations

Fixed with
Isolations

Fixed with Processes

Thread
termina-
tion

Not �xed Not �xed Fixed with
Isolations

Not Fixed Fixed with Processes

Resource
accounting

Pro�ling
through
JVMTI.
Resource
accounting
speci�ed by
JSR 284

Pro�ling
mechanism

Generic
resource
manage-
ment
API

CPU,
memory,
#threads,
I/O

CPU and memory

Table 1: Summary of Security Features of Virtual Platforms

7 Discussion and Conclusion

As cloud adoption grows, also there will be an increasing demand for multitenant
platforms that allow to run, in a safe manner, untrusted code from di�erent users
in the same container system.

RR n ° 7838

22 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

Figure 4: Summary of PaaS Security Issues and Solutions at Di�erent Layers.

But present standard VPs, that could be used as the basic building blocks
of PaaS clouds, still su�er from some important security �aws that must be
taken into account when designing a PaaS system. Figure 4 summarizes the
main open security issues at each level of a Java PaaS platform. Also, for each
level the �gure brie�y enumerates both the solutions presented in this survey to
address those issues, along with the security mechanisms already implemented.

Table 1 summarizes the security features discussed in this paper for di�erent
VPs. The access control mechanismsecurity feature in that table refers to the
standard security mechanisms explained in Sections 3.1 and 5.1. Thereference
leak, shared static references, block by synchronized static components, thread
termination and resource accountingfeatures are discussed in Sections 3.2 (for
the JVM, MVM, I-JVM and Ka�eOS VPs) and 5.2 (for the CLR VP). From the
analysis carried out in those sections it can be concluded that the standard Java
platform still has some limitations that hinder the safe execution of untrusted
code, a capability that we deem necessary for the construction of PaaS systems.
The CLR on the other hand implements more powerful isolation characteristics
that solve some of the problems present in Java. However it seems that Java is
better positioned as a base platform for building PaaS clouds. First, the CLR
still lacks a safe mechanism for thread termination and a generic resource ac-
counting framework (which is addressed in Java by JSR 284). Also, remarkable
container technologies are based on the Java platform (J2EE and OSGi) and
it is reasonable to expect them to be the basis of several PaaS platforms (as
they are already). Furthermore, much research e�ort has been put on the JVM
to address its security limitations (MVM, Ka�eOS, I-JVM). Of all these works,
MVM seems the more complete solution as it answers all open security issues.
I-JVM, on the other hand, takes a di�erent approach to isolation, so they allow
threads to traverse di�erent isolates. This way they solve the high costs of inter-
isolate communication present in MVM and Ka�eOS. However, due precisely
to its design, I-JVM does not solve the thread termination issue. Designers of
secure PaaS systems should decide which approach better suits their needs.

Besides the security guarantees achieved by the platform, security in PaaS
clouds must address other aspects. First they must try to enforce security poli-

Inria

PaaS security survey 23

cies so users do not build applications that are themselves prone to attack. This
can be done through the enforcement of security policies by the code monitor-
ing techniques studied above. A survey of research in this area shows that most
proposals are based on AOP in the Java platform, which further positions Java
as a good candidate to build secure PaaS clouds.

In any case, future work on VPs and container systems (which will impact
on the security of PaaS clouds) should take into account the risks brought by
multitenancy outlined in this work. They should use or develop artifacts that
bring full isolation among components, blocking access to external references.
Also, it must be possible to stop non-trusted threads without a�ecting the
platform, and mechanisms that allow to implements resource sharing policies
should be available.

Acknowledgements
This research has been partially funded by the EC under project Cumu-

loNimbo FP7-257993, by the Madrid Research Council (CAM) under project
CLOUDS S2009TIC-1692 and by the Spanish Science Foundation under project
CloudStorm TIN2010-19077.

References

[1] Ahn, H., Oh, H., Sung, C. O., April 2006. Towards reliable OSGi framework
and applications. In: Proceedings of the 2006 21st ACM Symposium on
Applied Computing (SAC'06), pp. 1456�1461.

[2] Aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, G., Larus, J., October
2006. Deconstructing process isolation. In: Proceedings of the 2006 Work-
shop on Memory system performance and correctness (MSPC'06), pp. 1�10.

[3] Back, G., Hsieh, W. C., July 2005. The Ka�eOS Java runtime system.
ACM Transactions on Programming Languages and Systems (TOPLAS)
27, pp. 583�630.

[4] Banga, G., Druschel, P., Mogul, J. C., February 1999. Resource containers:
A new facility for resource management in server systems. In: Proceedings
of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI'99). pp. 45�58.

[5] Bauer, L., Ligatti, J., Walker, D., June 2005. Composing security policies
with polymer. ACM SIGPLAN Notices 4, pp. 305�314.

[6] Binder, W., April 2006. Secure and reliable Java-based middleware - chal-
lenges and solutions. In: Proceedings of the First International Conference
on Availability, Reliability and Security 2006 (ARES'06), pp. 662�669

[7] Binder, W., Hulaas, J., October 2006. Exact and portable pro�ling for the
JVM using bytecode instruction counting. Electronic Notes in Theoretical
Computer Science 164, pp. 45�64.

[8] Binder, W., Hulaas, J. G., October 2001. Portable resource control in Java -
the J-SEAL2 approach. In: Proceedings of the 2001 16th ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages and
Applications (OOPSLA'01), pp. 139�155.

RR n ° 7838

24 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

[9] Calderón, V., Binder, W., June 2002. JRAF�the Java resource accounting
facility. In: Proceedings of the 2002 1st Workshop on Resource Management
for Safe Languages (ECOOP`02).

[10] Calero, J. M. A., Edwards, N., Kirschnick, J., Wilcock, L., Wray, M.,
December 2010. Toward a multi-tenancy authorization system for cloud
services. IEEE Security and Privacy 8, pp. 48�55.

[11] Chen, F., Grigore, R., April 2005. Java-MOP : A monitoring oriented pro-
gramming environment for Java. In: Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS'05). Vol. 3440 of Lecture Notes in Computer Science,
Springer, pp. 546�550.

[12] Chu, X., Nadiminti, K., Jin, C., Venugopal, S., Buyya, R., December
2007. Aneka: Next-generation enterprise grid platform for e-science and
e-business. In: Proceedings of the 3rd IEEE International Conference on
e-Science and Grid Computing (eScience'07), pp. 151�159.

[13] Clemente, P. and Rouzaud-Cornabas, J. and Toinard, C. 2010. From a
Generic Framework for Expressing Integrity Properties to a Dynamic MAC
Enforcement for Operating Systems. Transactions on Computational Sci-
ence XI. Springer. pp. 131�161.

[14] Czajkowski, G., Daynès, L., Titzer, B., June 2003. A multi-user virtual ma-
chine. In: Proceedings of the 2003 USENIX Annual Technical Conference.
USENIX Association, p. 7.

[15] Czajkowski, G., Daynés, L., November 2001. Multitasking without com-
promise: a virtual machine evolution. ACM SIGPLAN Notices 36, pp.
125�138.

[16] Czajkowski, G., Eicken, T. V., October 1998. JRes: A resource account-
ing interface for Java. In: Proceedings of the 1998 13th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA'98), pp. 21�35.

[17] Czajkowski, G., Hahn, S., Skinner, G., Soper, P., Bryce, C., November
2004. A resource management interface for the Java platform. Software:
Practice and Experience 35, pp. 123�157.

[18] Economist, T., October 2009. Clash of the clouds. The Economist, Online
version available.
http://www.economist.com/displaystory.cfm?story_id=1463%7206

[19] Elrad, T., Filman, R. E., Bader, A., October 2001. Aspect-oriented pro-
gramming: Introduction. Communications of the ACM 44, pp. 29�32.

[20] Esco�er, C., Donsez, D., Hall, R. S., January 2006. Developing an OSGi-
like service platform for .NET. In: Proceedings of the 3rd IEEE Consumer
Communications and Networking Conference (CCNC'06). Vol. 1, pp. 213�
217.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1%593018

Inria

http://www.economist.com/displaystory.cfm?story_id=1463% 7206
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1% 593018

PaaS security survey 25

[21] Gama, K., Donsez, D., June 2009. Towards dynamic component isolation in
a service oriented platform. In: Proceedings of the 2009 12th International
Symposium on Component-Based Software Engineering (CBSE'09). Vol.
5582 of Lecture Notes in Computer Science, Springer, pp. 104�120.

[22] Geo�ray, N., Thomas, G., Clément, C., Folliot, B., April 2008. Towards a
new isolation abstraction for OSGi. In: Proceedings of the 2008 1st Work-
shop on Isolation and integration in embedded systems (IIES'08), pp. 41�
45.

[23] Geo�ray, N., Thomas, G., Lawall, J., Muller, G., Folliot, B., March 2010.
VMKit: a substrate for managed runtime environments. In: Proceedings
of the 6th ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE'10), pp. 51�62.

[24] Geo�ray, N., Thomas, G., Muller, G., Parrend, P., Frénot, S., Folliot, B.,
2009. I-JVM: a Java Virtual Machine for component isolation in OSGi.
Research Report RR-6801, INRIA.
http://hal.inria.fr/inria-00354580/en/

[25] Hamlen, K. W., Jones, M., June 2008. Aspect-oriented in-lined reference
monitors. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security (PLAS'08), pp. 11�20.

[26] Herzog, A., Shahmehri, N., June 2005. An evaluation of Java application
containers according to security requirements. In: Proceedings of the 2005
14th IEEE International Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprise (WETICE'05), pp. 178�183.

[27] Herzog, A., Shahmehri, N., September 2005. Problems Running Untrusted
Services as Java Threads. Vol. 177/2005 of IFIP International Federation
for Information Processing, Springer, pp. 19�32.

[28] Hulaas, J., Binder, W., August 2004. Program transformations for portable
CPU accounting and control in Java. In: Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation (PEPM'04), pp. 169�177.

[29] Jaeger, T., 2008. Operating System Security. Synthesis Lectures on Infor-
mation Security, Privacy, and Trust. Morgan & Claypool Publishers.

[30] Jiang, X., Xu, D., 2003. Protection of application service hosting platforms:
an operating system perspective. Position paper, Purdue University.
http://www.cs.purdue.edu/homes/dxu/pubs/SODA-protection%.pdf

[31] Jordan, M., Czajkowski, G., Kouklinski, K., Skinner, G., October 2004. Ex-
tending a J2EE server with dynamic and �exible resource management. In:
Proceedings of the 2004 5th ACM/IFIP/USENIX international conference
on Middleware. Vol. 78 of Middleware Conference, Springer, pp. 439�458.

[32] Jordan, M., Daynès, L., Jarzab, M., Bryce, C., Czajkowski, G., June 2004.
Scaling J2EE application servers with the multi-tasking virtual machine.
Tech. Rep. TR-2004-135, SUN Microsystems.

RR n ° 7838

http://hal.inria.fr/inria-00354580/en/
http://www.cs.purdue.edu/homes/dxu/pubs/SODA-protection% .pdf

26 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

[33] JSR121, June 2006. Java Speci�cation Request 121: Java Isolation API.
Available Online.
http://jcp.org/en/jsr/detail?id=121

[34] JSR154, September 2007. Java Speci�cation Request 154: Java Servlet 2.5
Speci�cation. Available Online.
http://jcp.org/en/jsr/detail?id=154

[35] JSR220, May 2006. Java Speci�cation Request 220: Enterprise Java Beans
3.0. Available Online.
http://jcp.org/en/jsr/detail?id=220

[36] JSR244, May 2006. Java Speci�cation Request 244: Java Platform, Enter-
prise Edition 5 (Java EE Speci�cation). Available Online.
http://jcp.org/en/jsr/detail?id=244

[37] JSR284, January 2009. Java Speci�cation Request 284: Resource Con-
sumption Management API. Available Online.
http://jcp.org/en/jsr/detail?id=284

[38] Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O., October
2004. Java-MaC: A run-time assurance approach for java programs. Formal
Methods in System Design, pp. 129�155.

[39] King, S. T., Dunlap, G. W., Chen, P. M., 2003. Operating system support
for virtual machines. In: USENIX Annual Technical Conference, General
Track. USENIX, pp. 71�84.

[40] Leavitt, N., January 2009. Is cloud computing really ready for prime time?
Computer 42, pp. 15�20.

[41] Necula, G. C., Lee, P., June 1998. The design and implementation of a
certifying compiler. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (SIGPLAN'98), pp.
333�344.

[42] Oaks, S., May 2001. Java Security. O'Reilly.

[43] OSGi, June 2009. OSGi Service Platform Core Speci�cation. Available On-
line.
http://www.osgi.org/Release4/HomePage

[44] Parlavantzas, N., Coulson, G., Blair, G., June 2003. A resource adapta-
tion framework for re�ective middleware. In: Proceedings of the 2nd Inter-
national Workshop on Re�ective and Adaptive Middleware (located with
ACM/IFIP/USENIX Middleware'03).

[45] Parrend, P., Frenot, S., April 2009. Security benchmarks of OSGi platforms:
toward hardened OSGi. Software- Practice & Experience 39, pp. 471�499.

[46] Piliptchouk, D., December 2008. Java vs. .NET Security. O'Reilly.

[47] Price, D. W., Rudys, A., Wallach, D. S., May 2003. Garbage collector
memory accounting in language-based systems. In: Proceedings of the 2003
IEEE Symposium on Security and Privacy (SP'03), pp. 263�274.

Inria

http://jcp.org/en/jsr/detail?id=121
http://jcp.org/en/jsr/detail?id=154
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=244
http://jcp.org/en/jsr/detail?id=284
http://www.osgi.org/Release4/HomePage

PaaS security survey 27

[48] Ristenpart, T., Tromer „ , E., Shacham, H., Savage, S., November 2009.
Hey, you, get o� of my cloud: Exploring information leakage in third-party
compute clouds. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS'09), pp. 199�212.

[49] Rudys, A., Wallach, D. S., May 2002. Termination in language-based sys-
tems. ACM Transactions on Information and System Security 5, pp. 138�
168.

[50] Schneider, F. B., February 2000. Enforceable security policies. ACM Trans-
actions on Information and System Security 3 (1), pp. 30�50.

[51] Sun, K., Li, Y., Hogstrom, M., Chen, Y., October 2006. Sizing multi-
space in heap for application isolation. In: Proceedings of the 2006 21st
ACM SIGPLAN symposium on Object-oriented programming systems, lan-
guages, and applications (OOPSLA'06), pp. 647�648.

[52] Takabi, H., Joshi, J. B. D., Ahn, G.-J., December 2010. Security and pri-
vacy challenges in cloud computing environments. IEEE Security and Pri-
vacy 8, pp. 24�31.

[53] Vaquero, L., Rodero-Merino, L., Caceres, J., Lindner, M., 2009. A break
in the clouds: Towards a cloud de�nition. ACM Computer Communication
Review 39 (1), pp. 50�55.

[54] Vecchiola, C., Chu, X., Buyya, R., January 2010. Aneka: A Software Plat-
form for .NET-based Cloud Computing. Vol. 18 of Advances in Parallel
Computing. IOS Press, pp. 267�298.

[55] Viega, J., Aug 2009. Cloud computing and the common man. Computer,
106�108.

[56] Viega, J., Bloch, J., Chandra, P., February 2001. Applying aspect-oriented
programming to security. Cutter IT 14, pp. 31�39.

[57] Weissman, C. D., Bobrowski, S., June 2009. The design of the force.com
multitenant internet application development platform. In: Proceedings of
the 5th SIGMOD International Conference on Management of Data (SIG-
MOD'09), pp. 889�896.

[58] Yi, S. G., Deng, Y., Yu, H., He, X., Beznosov, K., Cooper, K., June 2004.
Applying aspect-orientation in designing security systems: A case study. In:
Proceedings of the 16th International Conference of Software Engineering
and Knowledge Engineering (SEKE'04), pp. 360�365.

[59] Úlfar Erlingsson, Schneider, F. B., September 1999. SASI enforcement of
security policies: a retrospective. In: Proceedings of the Workshop on New
Security Paradigms (NSPW'99), pp. 87�95.

[60] Gong, L., Ellison, G., Dageforde, M., June 2003. Inside Java 2 Platform
Security: Architecture, API Design and Implementation. Prentice Hall.

[61] Kumar, P., September 2003. J2EE Security for Servlets, EJBs, and Web
Services. Prentice Hall.

RR n ° 7838

28 L. Rodero-Merino, Luis M. Vaquero, Eddy Caron et al.

[62] Pistoia, M., Nagaratnam, N., Koved, L., Nadalin, A., February 2004. En-
terprise JavaTM Security: Building Secure J2EETM Applications. Addison
Wesley.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Safe Multitenancy through Process Isolation at Operating System Level

