4D Variational Data Assimilation for Locally Nested Models : complementary theoretical aspects and application to a 2D shallow water model

Ehouarn Simon 1 Laurent Debreu 2 Eric Blayo 2
2 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We consider the application of a four-dimensional variational data assimilation method to a numerical model, which employs local mesh refinement to improve its solution. We focus on structured meshes where a high-resolution grid is embedded in a coarser resolution one, which covers the entire domain. The formulation of the nested variational data assimilation algorithm was derived in a preliminary work (Int. J. Numer. Meth. Fluids 2008). We are interested here in complementary theoretical aspects. We present first a model for the multi-grid background error covariance matrix. Then, we propose a variant of our algorithms based on the addition of control variables in the inter-grid transfers in order to allow for a reduction of the errors linked to the interactions between the grids. These formulations are illustrated and discussed in the test case experiment of a 2D shallow water model.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Fluids, Wiley, 2011, 66 (2), pp.135-161. 〈10.1002/fld.2244〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00658105
Contributeur : Laurent Debreu <>
Soumis le : lundi 9 janvier 2012 - 21:12:07
Dernière modification le : jeudi 3 mai 2018 - 22:26:01

Lien texte intégral

Identifiants

Collections

Citation

Ehouarn Simon, Laurent Debreu, Eric Blayo. 4D Variational Data Assimilation for Locally Nested Models : complementary theoretical aspects and application to a 2D shallow water model. International Journal for Numerical Methods in Fluids, Wiley, 2011, 66 (2), pp.135-161. 〈10.1002/fld.2244〉. 〈hal-00658105〉

Partager

Métriques

Consultations de la notice

332