
HAL Id: hal-00658310
https://inria.hal.science/hal-00658310

Submitted on 10 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Faceted Search and Query Languages for the
Semantic Web

Sébastien Ferré, Alice Hermann, Mireille Ducassé

To cite this version:
Sébastien Ferré, Alice Hermann, Mireille Ducassé. Combining Faceted Search and Query Languages for
the Semantic Web. Semantic Search over the Web (SSW) - Advanced Information Systems Engineering
Workshops - CAiSE Int. Workshops, Jun 2011, London, United Kingdom. pp.554-563. �hal-00658310�

https://inria.hal.science/hal-00658310
https://hal.archives-ouvertes.fr

Combining Faceted Search and Query Languages

for the Semantic Web

Sébastien Ferré1, Alice Hermann2, and Mireille Ducassé2

1 IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
ferre@irisa.fr

2 IRISA/INSA de Rennes, Campus de Beaulieu, 35708 Rennes cedex 7, France
{alice.hermann,ducasse}@irisa.fr

Abstract Faceted search and querying are the two main paradigms to
search the Semantic Web. Querying languages, such as SPARQL, offer
expressive means for searching knowledge bases, but they are difficult to
use. Query assistants help users to write well-formed queries, but they do
not prevent empty results. Faceted search supports exploratory search,
i.e., guided navigation that returns rich feedbacks to users, and pre-
vents them to fall in dead-ends (empty results). However, faceted search
systems do not offer the same expressiveness as query languages. We in-
troduce semantic faceted search, the combination of an expressive query
language and faceted search to reconcile the two paradigms. The query
language is basically SPARQL, but with a syntax that better fits in a
faceted search interface. A prototype, Camelis 2, has been implemented,
and a usability evaluation demonstrated that semantic faceted search re-
tains the ease-of-use of faceted search, and enables users to build complex
queries with little training.

1 Introduction

With the growing amount of available resources in the Semantic Web (SW), it is
a key issue to provide an easy and effective access to them, not only to special-
ists, but also to casual users. The challenge is not only to allow users to retrieve
particular resources (e.g., flights), but to support them in the exploration of a
knowledge base (e.g., which are the destinations? Which are the most frequent
flights? With which companies and at which price?). We call the first mode re-

trieval search, and, following Marchionini [Mar06], the second mode exploratory

search. Exploratory search is often associated to faceted search [HEE+02,ST09],
but it is also at the core of Logical Information Systems [Fer09], and Dynamic
Taxonomies [Sac00]. Exploratory search allows users to find information without
a priori knowledge about either the data or its schema. Faceted search works
by suggesting restriction values, i.e., selectors for subsets of the current selection
of items. Restriction values are organized into facets, and only those that share
items with the current selection are suggested. This has the advantage to remove
the need to write queries, and to prevent dead-end queries, i.e., queries with no
answer. Therefore, faceted search is easy and safe: easy because users only have

to choose among the suggested restriction values, and safe because, whatever the
choice made by users, the resulting selection is not empty. The selections that
can be reached by navigation correspond to queries that are generally limited to
conjunctions of restriction values, possibly with restricted negation and disjunc-
tion. This is far from the expressiveness of query languages for the semantic web,
such as SPARQL1. SlashFacet [HvOH06] and BrowseRDF [ODD06] are faceted
search systems for RDF data that extend the expressiveness of reachable queries,
but still to a small fragment of SPARQL. For instance, both of them allow for
neither cycles in graph patterns, nor unions of graph patterns (disjunction).

Querying languages for the semantic web, such as SPARQL [AG08], OWL-
QL [FHH04], or SPARQL-DL [SP07], are quite expressive but are difficult to
use, even for specialists. They do not return enough feedback to offer exploratory
search, and nothing prevents users to write a query that has no answer. Indeed,
even if users have a perfect knowledge of the syntax and semantics of the query
language, they may be ignorant about the data schema, i.e., the ontology. If they
also master the ontology or if they use a query assistant (e.g., Protégé2) or an
auto-completion system (e.g., Ginseng [BKK05]), the query will be syntactically
correct and semantically consistent w.r.t. the ontology but it can still produce
no answer.

The contribution of this paper is to extend faceted search to the Semantic
Web, so as to offer an exploratory search that is (1) easy to use, (2) safe, and
(3) expressive. Ease-of-use and safeness are retained from existing faceted search
systems by keeping their general principles, as well as the visual aspect of their
interface. Expressiveness is obtained by representing the current selection by a
query rather than by a set of items, and by representing navigation links by
query transformations rather than by set operations (e.g., intersection). In this
way, the expressiveness of faceted search is determined by the expressiveness of
the query language, rather than by the combinatorics of user interface controls.
In this paper, the query language is based on SPARQL graph patterns, but with
a syntax that better fits in a faceted search interface: LISQL.

The use of queries for representing selections in faceted search has other
benefits than navigation expressiveness. The current query is an intensional de-
scription of the current selection that complements its extensional description
(listing of items). It informs users in a precise and concise way about their exact
position in the navigation space. It can easily be copied and pasted, stored and
retrieved later. Finally, it allows expert users to modify the query by hand at
any stage of the navigation process, without loosing the ability to proceed by
navigation.

The paper is organized as follows. Section 2 presents semantic faceted search,
and illustrates it with our prototype implementation Camelis 2. Section 3 re-
ports about a user study that demonstrates the usability of our approach. Our
approach is also compared in Section 4 to other work in faceted search for the
Semantic Web. Section 5 concludes this paper.

1 see http://www.w3.org/TR/rdf-sparql-query/
2 See http://protege.stanford.edu/

2 Semantic Faceted Search

The principle of our approach, Semantic Faceted Search (SFS), is to reconcile
querying and navigation. Navigation can be defined as moving from place to
place through navigation links. In faceted search, a navigation place is a set of
items, and a navigation link is the choice of a restriction value. In SFS, a naviga-
tion place is defined by a query, whose answers form the current set of items; and
a navigation link is defined as a query transformation. The set of possible query
transformations is designed to make it possible to build arbitrary queries. How-
ever, the set of navigation links is restricted to those query transformations that
do not lead to empty results, like in standard faceted search. In the following,
SFS is illustrated on genealogical datasets converted from GED files3.

2.1 Queries and Query Transformations

The reference query language for the Semantic Web is SPARQL. While its se-
mantics is adequate to our needs, we find that its syntax is not best-suited to
SFS. First, it makes it difficult to define query transformations, because it is not
regular and compositional enough. Second, it tends to be verbose, and exhibits
relational algebra operators, and a number of symbols that are alien to most
people: e.g., UNION, &&.

We propose an alternative syntax, LISQL, for a large fragment of SPARQL.
This fragment corresponds to unary queries, i.e., queries with only one variable
in the SELECT clause. This restriction is not due to LISQL, but to the very
definition of faceted search, where a navigation place is a set and not a relation.
For reasons of space, we present LISQL and its query transformations through
examples only. Full definitions can be found in a research report [FHD11].

As an illustrating example covering all aspects of LISQL, we consider the
task of retrieving, in the genealogy of George Washington, “every person that
was born in 1601 or 1649 at some place in England, and some child of which
was not born at the same place”. In SPARQL, this query can be expressed as
follows.

SELECT DISTINCT ?p

WHERE {

?p a person.

?p birth ?b.

?b year ?y FILTER (?y=1601 || ?y=1649).

?b place ?X. ?X in England.

?c father ?p.

?c birth ?bc.

?bc place ?pc FILTER ?pc != ?X }

The same query can be expressed in LISQL as:

3 http://jay.askren.net/Projects/SemWeb/

a person and birth : (year : (1601 or 1649) and place : (?X

and in England)) and father of birth : place : not ?X.

A LISQL query is a LISQL expression, where some subexpression, the query

focus, is underlined. LISQL expressions denote sets of items (RDF resources),
and can be coordinated by Boolean operators that correspond to set operations:
and for intersection, or for union, and not for complement. Atomic expressions
can be individuals (e.g., 1601, England) that denote themselves as singleton sets,
or classes (e.g., person) that denote their set of instances. The subexpression
year : (1601 or 1649) is a restriction, made of the property year and of the
subexpression, (1601 or 1649), and here denotes the set of events whose year
is 1601 or 1649. The keyword (of) is used instead of (:) for the inverse reading of
a property. The variable ?X is here used to refer to the birthplace of the father,
whatever it is. A LISQL expression translates to a SPARQL graph pattern, using
a variable for each entity. The query focus determines which of those variables
is put in the SELECT clause. Therefore, the query a woman and father : ?

denotes the women’s fathers, and is equivalent to father of a woman. A focus
is never ambiguous; however, two different foci can be equivalent, i.e., put the
same variable in the SELECT clause, if they are conjunctively coordinated or
associated to a same LISQL variable. LISQL variables therefore allow for cycles
in the graph patterns.

We present the different kinds of query transformations through a possible
scenario for building the above query. Table 1 gives for each step the query trans-
formations, and the resulting intermediate query. Most transformations apply to
the query focus, letting the rest of the query unchanged. Transformation Reset

resets the whole query to the most general query ?. Transformation And appends
a given subexpression to the focus, connecting the two with and (? is a neutral
element for and). When the focus is on the whole expression, this transforma-
tion corresponds to faceted search selection. Transformation Focus on moves the
focus on a given subexpression. Transformation Cross is an abbreviation for a
common navigation idiom: the And of a restriction followed by a Focus on the
subexpression of the restriction. Transformation Name does the same as a And,
but for a freshly generated variable. The And of the same variable at a later stage
allows for the formation of cycles. Transformation Or introduces an alternative
to the focus with the connector or. Transformation Not applies the connector
not to the focus.

Only transformation And requires a LISQL expression to be passed. A set of
expressions is suggested to the user so as to avoid dead-ends, and to allow for ar-
bitrarily complex queries. It is sufficient to suggest individuals, variables already
in the query, classes, and unqualified restrictions (e.g., father of ?) [FHD11].

2.2 Faceted User Interface and Interaction

SFS has been implemented as a prototype, Camelis 24. Figure 1 shows a screen-
shot of Camelis 2. From top to bottom, and from left to right, it is composed of

4 downloadable at http://www.irisa.fr/LIS/ferre/camelis/camelis2.html

0 Reset
?

1 And a person

a person

2 And birth : year : 1601

a person and birth : year : 1601

3 Focus on year : 1601

a person and birth : year : 1601

4 Cross place : ? + Name
a person and birth : (year : 1601 and place : ?X)

5 And in England

a person and birth : (year : 1601 and place : (?X and in England))

6 Focus on 1601 + Or
a person and birth : (year : (1601 or ?) and place : (?X and in

England))

7 And 1649

a person and birth : (year : (1601 or 1649) and place : (?X and in

England))

8 Focus on a person + Cross father of birth : place : ?

a person and birth : (year : (1601 or 1649) and place : (?X and in

England)) and father of birth : place : ?

9 Not
a person and birth : (year : (1601 or 1649) and place : (?X and in

England)) and father of birth : place : not ?

10 And ?X + Focus on a person

a person and birth : (year : (1601 or 1649) and place : (?X and in

England)) and father of birth : place : not ?X

Table1. A navigation scenario in Camelis 2 on the genealogy of George Washington.

a menu bar (M), a toolbar (T), a query box (Q), query controls (QC), feature
controls (FC), an answer list or extension box (E), a facet hierarchy (F), and
a set of value boxes (V). A query engine can be derived from Camelis 2 by re-
taining only the components Q and E. A standard faceted search system can be
derived by retaining only the components E, F, and V.

Navigation links, i.e., suggested query transformations, are available on all
components. Whenever a navigation control is triggered, the corresponding query
transformation is applied, and components (Q,E,F,V) are refreshed accordingly.
The toolbar (T) has a button for Reset. The query box (Q) is clickable for setting
the focus on any subexpression. Query controls (QC) provide buttons for Name,
Or, Not (and a few others). Every element of components (E,F,V) can be used
as an argument for And, with the guarantee that the resulting query does have
answers; And is replaced by Cross for unqualified restrictions. The contents of
components (E,F,V) play the role of restriction values in standard faceted search,
and are here dispatched in the three components according to their type. The
facet hierarchy (F) contains variables of the current query (e.g., ?X, classes (e.g.,

Figure1. A screenshot of the user interface of Camelis 2. It shows the selection of male
persons whose lastname is Washington.

a person), and unqualified restrictions (e.g., father of ?, birth : year : ?).
Value boxes (V) contain qualified restrictions with individuals as subexpressions
(e.g., father of ’George Washington’, birth : year : 1601), grouped by
property path. The extension box (E) contains individuals (e.g., England). The
hierarchical organization of facets in (F) is based on RDFS class and property
hierarchies. A value box (V) is hierarchically organized according to the last
property of its property path, if it is transitive (e.g, in).

3 Usability Evaluation

This section reports on the evaluation of Semantic Faceted Search in terms of
usability5. we have measured the ability of users to answer questions of various
complexities, as well as their response times. Results are strongly positive and
demonstrate that semantic faceted search offers expressiveness and ease-of-use
at the same time.

Methodology. The subjects consisted of 20 graduate students in computer sci-
ence. They had prior knowledge of relational databases but neither of Camelis 2,

5 Details can be found on http://www.irisa.fr/LIS/alice.hermann/camelis2.html

Figure2. Average time and number of correct queries and answers for each question

nor of faceted search, nor of semantic web. None was familiar with the dataset
used in the evaluation. The evaluation was conducted in three phases. First, the
subjects learned how to use Camelis 2 through a 20min tutorial, and had 10
more minutes for free use and questions. Second, subjects were asked to answer
a set of questions, using Camelis 2. We recorded their answers, the queries they
built, and the time spent on each question.

The test was composed of 18 questions, with smoothly increasing difficulty.
The questions can be grouped in 7 categories: the first 2 categories are covered by
standard faceted search, while the 5 other categories are not in general. The first
category, Visualization, did not require the creation of a query. The exploration
of the facet hierarchy was sufficient: e.g., “How many men are there?”. In the
second category, Selection, we asked to count or list items that have a particular
feature: e.g., “How many women are named Mary?”. In the third category, Path,
subjects had to follow a path of properties: e.g., “Which man is married with
a woman born in 1708?”. The fourth category, Disjunction, required to use
disjunction: e.g., “Which women have for mother Jane Butler or Mary Ball?”.
The fifth category, Negation, required to use negation: e.g., “How many women
have a mother whose death’s place is not Warner Hall?”. The sixth category,
Inverse, required to use the inverse of a property: e.g., “Who was born in the
same place as Robert Washington?”. In the seventh category, Cycle, required
the use of variables: e.g., “How many persons have the same firstname as one of
their parent?”.

Results. Figure 2 shows the number of correct queries and answers, the average
time spent on each question and the number of participants who had a correct
query for at least one question of each category. For example, in category “Visu-
alization”, the first two questions had 20 correct answers and queries; the third
question had 10 correct answers and 13 correct queries; all the 20 participants
had a correct query for at least one question of the category; the average re-

sponse times were respectively 43, 21, and 55 seconds. The difference between
the number of correct queries and correct answers is explained by the fact that
some subjects forgot to set the focus on the whole query after building the query.

All subjects but one had correct answers to more than half of the questions.
Half of the subjects had the correct answers to at least 15 questions out of
18. Two subjects answered correctly to 17 questions, their unique error was on
a disjunction question for one and on a negation question for the other. All
subjects had the correct query for at least 11 questions. For each question, there
is at least 50 percent of success. The subjects spent an average time of 40 minutes
on the test, the quickest one spent 21 minutes and the slowest one 58 minutes.

The first 2 categories corresponding to standard faceted search, visualization
and selection, had a high success rate (between 94 and 100) except for the
third question. The most likely explanation for the latter is that the previous
question was so simple (a man) that subjects forgot to reset the query between
the questions 2 and 3. All questions of the first two categories were answered in
less than 1 minute and 43 seconds on average. Those results indicate that the
more complex user interface of semantic faceted search does not entail a loss of
usability compared to standard faceted search for the same tasks.

For other categories, all subjects but two managed to answer correctly at least
one question of each category. Within each category, we observed that response
times decreased, except for the Cycle category. At the same time, for Path,
Disjunction and Inverse, the number of correct answers and queries increased.
Those results suggest a quick learning process of the subjects. The decrease in
category Negation is explained by a design flaw in the interface. For category
Cycle, we conjecture some lassitude at the end of the test. Nevertheless, all but
two subjects answered correctly to at least one of Cycle questions. The peak of
response time in category Inverse is explained by the lack of inverse property
examples in the tutorial. It is noticeable that subjects, nevertheless, managed
to solve the Inverse questions with a reasonable success rate, and a decreasing
response time.

4 Related Work

As faceted search is becoming widespread, a number of proposals have been made
to apply it on the Semantic Web (SW). They all have in common to assume that
data is represented in a SW format, either RDF(S) or OWL. Most of them, such
as Ontogator [MHS06], mSpace6, and Longwell7, do not claim for a contribution
in terms of expressiveness, and contribute either to the design of better interfaces
and visualizations, or to methods for the rapid or user-centric configuration of
faceted views [SVH07]. Therefore, their contributions are somewhat orthogonal
to ours, and could certainly complement ours. Other approaches, such as Slash-
Facet [HvOH06], BrowseRDF [ODD06], and SOR [LMZ+07], extend faceted
search towards a more expressive navigation.

6 see http://mspace.fm/
7 see http://simile.mit.edu/wiki/Longwell

The most essential ingredient for an expressive and flexible semantic search in
RDF graphs is focus change. It allows to change the perspective without chang-
ing the underlying graph pattern. To the best of our knowledge, no faceted search
system offers this in a general way. SlashFacet and SOR have the crossing op-
eration that selects the images of the items in the current selection through
a property. Crossing includes a focus change, but crossing back a property is
not equivalent to a focus change, because it introduces an additional restric-
tion: starting from a query Q and crossing p : ? and then p of ? leads to p :

p of Q instead of Q and p : ? (they are not equivalent). Other systems allow
to focus on different types of items, but this focus cannot be changed in the
course of a search. For example, in a dataset about publications, a choice has to
be made between authors and documents.

It is generally considered that the query should be hidden from the interface.
In fact, in most faceted search systems, the query is displayed as the list of the
restriction values users have already selected in the course of their search. This is
important so that users do not feel lost, and can easily reverse previous selections.
When expressiveness is raised to SPARQL with graph patterns, disjunction, and
negation, it becomes necessary to introduce syntax. While, in Camelis 2, the
query is simply rendered as a sentence following some grammar, nothing prevents
to render syntax through graphical widgets (e.g., lists for conjunction, trees for
restrictions, tab panels for disjunction).

Disjunction and negation are either absent or strongly limited in existing
approaches. Disjunction is restricted to build sets of values or sets of items,
e.g., in SlashFacet. Negation is restricted to restriction values, and also applies
to unqualified restrictions (not father of ?) in BrowseRDF. No other system
allows to form cycles as we do with variables.

5 Conclusion

We have introduced Semantic Faceted Search (SFS) as a search paradigm for
Semantic Web knowledge bases, in particular RDF graphs. It combines the ex-
pressiveness of the SPARQL query language, and the benefits of exploratory
search and faceted search. The user interface of semantic faceted search includes
the user interface of other faceted search systems, and can be used as such. It
adds a query box to tell users where they are in their search, and to allow them
to change the focus or to remove query parts. It also adds a few controls for
applying some query transformations such as insertion/deletion of disjunction,
negation, and variables. We have introduced a new query syntax, LISQL, to
better fit with a faceted interface and query transformations. Beside the list of
selected items, the user interface has a hierarchy of facets organizing classes and
properties by subsumption.

SFS has been implemented as a prototype, Camelis 2. Its usability has been
demonstrated through a user study, where, after a short training, all subjects
were able to answer simple questions, and most of them were able to answer
complex questions involving disjunction, negation, or cycles. This means seman-

tic faceted search retains the ease-of-use of other faceted search systems, and
gets close to the expressiveness of query languages such as SPARQL.

Acknowledgments. We would like to thank the 20 students, from the University
of Rennes 1 and the INSA engineering school, for their volunteer participation
to the usability evaluation.

References

[AG08] R. Angles and C. Gutierrez. The expressive power of SPARQL. In
A. P. Sheth et al, editor, Int. Semantic Web Conf., LNCS 5318, pages 114–
129. Springer, 2008.

[BKK05] A. Bernstein, E. Kaufmann, and C. Kaiser. Querying the semantic web
with Ginseng: A guided input natural language search engine. In Work.
Information Technology and Systems (WITS), 2005.

[Fer09] S. Ferré. Camelis: a logical information system to organize and browse a
collection of documents. Int. J. General Systems, 38(4), 2009.

[FHD11] Sébastien Ferré, Alice Hermann, and Mireille Ducassé. Semantic faceted
search: Safe and expressive navigation in rdf graphs. Research report, 2011.

[FHH04] R. Fikes, P. J. Hayes, and I. Horrocks. OWL-QL - a language for deductive
query answering on the semantic web. J. Web Semantic, 2(1):19–29, 2004.

[HEE+02] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Yee.
Finding the flow in web site search. Communications of the ACM, 45(9):42–
49, 2002.

[HvOH06] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet: A browser
for heterogeneous semantic web repositories. In I. Cruz et al, editor, Int.
Semantic Web Conf., LNCS 4273, pages 272–285. Springer, 2006.

[LMZ+07] Jing Lu, Li Ma, Lei Zhang, J.S. Brunner, Chen Wang, Yue Pan, and Yong
Yu. SOR: A practical system for ontology storage, reasoning and search
(demo). In Int. Conf. Very Large Databases (VLDB), VLDB Endowment,
pages 1402–1405. ACM, 2007.

[Mar06] G. Marchionini. Exploratory search: from finding to understanding. Com-
munications of the ACM, 49(4):41–46, 2006.

[MHS06] E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - a semantic view-based
search engine service for web applications. In I. F. Cruz et al., editor, Int.
Semantic Web Conf., LNCS 4273, pages 847–860. Springer, 2006.

[ODD06] E. Oren, R. Delbru, and S. Decker. Extending faceted navigation to RDF
data. In I. Cruz et al, editor, Int. Semantic Web Conf., LNCS 4273, pages
559–572. Springer, 2006.

[Sac00] G. M. Sacco. Dynamic taxonomies: A model for large information bases.
IEEE Transactions Knowledge and Data Engineering, 12(3):468–479, 2000.

[SP07] E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for OWL-DL. In
C. Golbreich, A. Kalyanpur, and B. Parsia, editors, Work. OWL Experiences
and Directions (OWLED), volume 258. CEUR-WS, 2007.

[ST09] G. M. Sacco and Y. Tzitzikas, editors. Dynamic taxonomies and faceted
search. The information retrieval series. Springer, 2009.

[SVH07] O. Suominen, K. Viljanen, and E. Hyvönen. User-centric faceted search
for semantic portals. In E. Franconi, M. Kifer, and W. May, editors, Eu.
Semantic Web Conf., LNCS 4519, pages 356–370. Springer, 2007.

