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Abstract: Recent interest in complex networks has catalysed the development of numerous
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Generating Artificial Social Networks with Small
World and Scale Free Properties

Résumé : Recent interest in complex networks has catalysed the development
of numerous models to help artificially generate and understand these networks.
Watts and Strogatz presented a model [37] to explain how the two properties
of small world networks, high clustering coefficient and low average path length
appear in networks. Barabasi and Albert gave a model [I] to explain how
networks with power-law degree distribution arise in networks. From these two
ground breaking results, many researchers have introduced different models to
explain the appearance of networks with small world and scale free properties
in the real world.

In this paper, we focus on social networks and comparatively study the
structure of real world and artificially generated networks. The differences and
similarities of different models are highlighted and their shortcomings are iden-
tified. Further more, we present a new model which produces networks with
both small world and scale free properties which are structurally more similar
to real world social networks.

Mots-clés : Complex Networks, Social Networks, Network Generation Mod-
els, Scale Free Networks, Small World Networks
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1 Introduction

A social network can be defined as a set of people, or groups of people interacting
with each other [30, B5]. Graphically, a network is represented using a set of
nodes and edges, where nodes represent people and edges represent interaction
between people. An important aspect in the study of social networks is how
individuals interact to each other to form large and connected social networks.

Many researchers have studied different structural properties of these net-
works. Two important and revolutionary results were obtained by the discovery
of Small World [37] and Scale free [I] properties of networks. A small world
network is a network, when compared with a random graph of same node-edge
density, has higher clustering coefficient and the typical distance between any
two nodes scales as the logarithm of the number of nodes. The most popu-
lar manifestation of the concept of low average path length in social networks
is the ‘six degrees of separation’, uncovered by the social psychologist Stanley
Milgram, who concluded that there was a path of acquaintances with a typical
length of about six between most pairs of people in the United States [22] [32].
Another important characteristic of these networks is the average clustering co-
efficient of nodes [37], sometimes referred as Transitivity [24]. The concept is
very well known in social networks and can be described as the friend of your
friend is likely to be your friend. A scale free network [I] is a network in which
a few nodes have a very high number of connections (degree) and lots of nodes
are connected to a few nodes. These networks have no characteristic scales for
the degrees, hence they are called scale free networks [27].

Since the introduction of these two classes of networks, many researchers
have developed different models to explain the appearance of networks with
small world and scale free properties in the real world. Social networks also
exhibit these two properties at the same time. These models are developed to
create a profound understanding of real world networks. The goal is to mimic
the structural properties of real world networks which in turn can lead us to
models that are able to generate real networks artificially. These models can
facilitate experimental and empirical studies for various real world problems.

In this paper, we study a number of network generation models that produce
small world-scale free networks. Using a visual analytics method introduced
by the authors [38], we show that there are considerable structural differences
between networks generated artificially and real world social networks. We also
propose a new model to generate artificial social networks with small world and
scale free properties.

The rest of the paper is organized as follows: In section [2] we introduce
data sets that represent three real world and two hypothetical social networks.
In section [3] we discuss a number of different social properties and argue that
combining these concepts, we can understand the characteristics required for a
real world social network. In section [d] we present a visual analytics method
which we use in section[5]to analyze existing artificial models. We then present a
network generation model in section [6] which produces small world and scale free
networks which are structurally closer to real world social networks. In section|7]
we evaluate the proposed model as compared to other models. Next, in section
we present comparative results with real world networks to demonstrate the
correctness of the proposed model. Finally we conclude and give possible future
directions of our research in section
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4 Zaidi et al.

[Network | n | e [ ad | hd | cc | apl |
NetScience | 379 914 24 34 10714 | 6.0
Geometry 3621 9461 2.6 102 | 0.53 | 5.31
Imdb 7640 | 277029 | 36.26 | 1271 | 0.87 | 2.94

Table 1: n=nodes, e=edges, ad=average degree, hd=highest node degree,
cc=clustering coeflicient, apl= average path length

2 Data Sets

In order to compare and experiment, we discuss three real world social networks
which are described as follows:

NetScience Network is a co-authorship network of scientists working on
network theory and experiments, as compiled by M. Newman in May, 2006
[25]. The network was compiled from the bibliographies of two review articles
on networks, M. Newman, STAM Review and S. Boccaletti et al., Physics Re-
ports, with a few additional references added by hand. The biggest connected
component is considered for experimentation which contains 379 nodes and 914
edges.

Geometry Network is another collaboration network of authors in the field
of computational geometry. The network was produced from the BibTeX bib-
liography obtained from the Computational Geometry Database ‘geombib’; ver-
sion February 2002 (see http://www.math.utah.edu/ beebe/bibliographies.
html). Problems with different names referring to the same person are manu-
ally fixed and the data base is made available by Vladimir Batagelj and Andrej
Mrvar: Pajek datasets from the website http://vlado.fmf.uni-1j.si/pub/
networks/data/. Only the biggest connected component is considered contain-
ing 3621 nodes and 9461 edges.

Imdb Network is an actor network where nodes represent actors and two
actors are connected to each other if they have acted in a movie together. The
data set we use here is a subset taken from the IMDB database (http://www.
imdb.com/) of movies. This network contains 7640 nodes and 277029 edges.

We also consider two hypothetical networks from our everyday life which are
common and easy to comprehend.. Consider a person joining a new organization
as an employee and a person joining a sports club as a leisure activity. We refer
to these two networks as Employee and Club networks respectively throughout
this paper.

3 Structure of Social Networks

In this section, we discuss a number of concepts from the domain of sociology
in an attempt to better understand how social networks in the real world are
structured.

3.1 Social Ties

People in the real world are linked to each other through social ties. A wide
range of ties exist in the society and their study has attracted lots of research
activity [35]. The simplest form of a tie is Dyad [3I] where two people are
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linked to each other. This is considered as the unit of studying relationships
in a social network. Triads are relationships between three people and have
been the focus of many social network studies [35]. Groups of larger size are
also possible but since a variety of relationships can form in them, they are less
stable [31] and often less studied in sociology. They are often identified by their
dense connectivity and clear bounds forming a cluster.

Due to dense interconnectivity, these ties are termed as strong ties [19] where
nodes that are loosely connected to each other are said to have weak ties [11]. A
significant work to highlight the importance of these weak ties is by Granovet-
ter [II] where he concludes that effective social coordination does not arise from
dense interlocking but from the presence of weak ties. Each of us in the society
has these weak ties along with strong relationships. These weak ties or acquain-
tances are important for developing new relationships and possibly joining new
social communities. There is a fine mix of both these weak and strong ties
that exist in our society and both should be considered to develop a model to
generate artificial social networks.

3.2 Homophily

An important human characteristic is homophily, tendency of actors or entities
to associate with other actors or entities of similar type [28, 29]. Homophily
helps to explain why you know the people that you do, because you all have
something in common, but one might also wonder how people you know at
present determine the people you will know in the future. This also introduces
the idea of dynamics in triadic closures. Two people who have a mutual friend
will tend to become acquainted in time [28]. A model based on these ideas
was proposed by Rapoport who called it Random Biased Nets. The idea was
to modify the traditional random model of networks such that it incorporates
social behaviors. Rapoport also concluded that we occasionally do things that
are derived entirely from our intrinsic preferences and characteristics, and these
actions may lead us to meet new people who have no connections to our previous
friends at all. Although these actions might appear to be random, but can be
justified as having strong social background with logical explanations. We limit
our study to address this characteristic and refer it as random connectivity
pattern. In the light of homophily and social dynamics, we can conclude that
new connections between people are formed based on two properties, random
connectivity and homophily.

3.3 Extraversion-Introversion

It is interesting to note that in our society, we come across people that are
well known and famous, and then there are people who have very few friends
and contacts. These ideas are the direct implication of the human trait of
extraversion-introversion [I7]. Extroverts, who are open to meeting new people
and developing new relationships are expected to have high degree of connectiv-
ity in a social network as compared to Introverts, who tend to be more reserved,
less outgoing, and less sociable.

An important use of this human characteristic is to explain the scale free
degree behavior of social networks. A famous person is likely to become more
famous as compared to a person who is not well known in the social community.

RR n° 7861
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Termed as the principle of Preferential Attachment [I], it explains the growth
behavior of networks with power law degree distribution. The idea is that in real
world networks, nodes having high degree, have a high probability of attracting
more connections as compared to nodes with low connectivity. Thus new social
connections have to take this property into consideration as well.

3.4 Observations and Inferences

In our society, we do not form individual relations with people, but with groups
of people. These relations are defined by particular circumstances, interests or
some context like our school, work place, family [29] [I1] and can be explained
by homophily. Since these groups are densely connected to each other, often
forming cliques, their social ties are considered as strong ties. Since our society
is built using these cliques, we call them ‘Building Blocks’ of our society.

Each of these ‘building block’ or ‘group’ is like a small cluster joined to
each other by people belonging to more than one group [36]. When these small
clusters have many connections to each other, they form bigger size clusters.
The size of clusters in a network, vary to a large extent, and so does the number
of clusters. Both these parameters depend largely on how the individuals and
their ties evolve in a society, how new connections are formed and older ones
maintained or destroyed.

Let us consider the example of the actor network. When an actor acts in
a movie, the social interactions will take place within the entire cast of the
movie and form new ties between actors if they do not exist previously. These
interactions will be represented with a clique where all the nodes representing the
actors will be connected to each other. The authorship network is no different
as people co-authoring an artifact will form a clique. Similarly in the real
world, usually groups of larger size are formed. Considering the two hypothetical
examples, a new employee will most likely interact with different colleagues in
the same organization who work together on the same project or with whom a
person shares an office for example. For a person joining a sports club, he will
interact with people sharing similar activities instead of just one or two other
people. This is to highlight the idea that a person not necessarily interacts with
only one or two other people, but more than two people and this is the reason
why we obtain cliques of larger sizes in social networks.

Addressing the principle of Preferential Attachment, we argue that for every
node in a group (or Clique), few nodes have higher connectivity with other
nodes. For example, in a group representing the actors playing in the same
movie, the famous actors will have many connections with others as they would
have played a role in many movies, and the actors who are starting their career,
or are not so well known will have only a few connections. Similarly, in the
authorship network, an experienced researcher would have published an artifact
with many other researchers and thus would have a high number of connections.

Finally, we look at the society on the whole where we consider the average
path length of the networks. One way to have low average path lengths in a
network is by random connectivity of nodes, where Watts and Strogatz [37] used
this method to have low average path lengths in small world networks.

Combining all these principles, we can conclude that the important elements
to capture in the structure of a social network are:

Inria
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1. Social networks consists of many small groups that are densely connected
within themselves forming cliques.

2. These groups overlap due to individuals having multiple affiliations.

3. Some groups have many overlaps which creates large size communities or
clusters. to many different groups.

4. A certain degree of randomness exists where we occasionally do things
that are derived entirely from our intrinsic preferences and characteristics.
These actions lead us to meet new people who have no connections to our
previous friends at all.

5. The random connectivity pattern and the presence of high degree nodes
is responsible for the low distances between any two people on average.

6. Every group of people has a few Extroverts and many Introverts, where ex-
troverts are responsible for interconnecting people from different domains
and the society at large.

We incorporate all these principles in the proposed model. We discuss the
details of the proposed model in section [0}

4 Topological Decomposition

In this section, we present a visual analytics method introduced by [38] to
analyze networks. The method is based on a decomposition technique which
exploits the fact that nodes having high degree are responsible for keeping large
size networks as a single connected component. Once, these high degree nodes
are removed, the network breaks into smaller components. We visualize these
components using graph drawing algorithms. Since the method is based on the
topology of the network, we call it ‘Topological Decomposition’.

To decompose the network into several components, we use the idea of Max4-
Degree Induced Subgraphs (Max4-DIS) [38] where Max4-DIS is an induced sub-
graph constructed by considering only the nodes having degree at most d in
graph G. Mathematically for a graph G(V, E) where V is a set of nodes and
E is a set of edges, the Max,4-DIS is defined as an induced subgraph G'(V’, E')
such that V' C V and Vu € V', degg(u) < d where d can have values from 0 to
the maximum node degree possible for the network under consideration.

Consider the example of the Geometry Author network shown in Fig.[I] The
graphs are drawn using Fast Multipole Multilevel Method (FM?) [14] which is
a force directed algorithm. These algorithms put nodes densely connected to
each other closer in the layout and pushes nodes that are not connected away
from each other.

The entire network is shown in Fig. a), where as Fig. b) shows a small
portion being focused where the encircled nodes represent densely connected
nodes or more precisely cliques. Fig. c) and (d) show portions of the Maxs-
DIS and Max5-DIS. In these figures, it is quite easy to visually detect the cliques
or the densely connected nodes.

We refer back to section [B.4] where we enumerated a number of obser-
vations about social networks. The first observation can easily be verified
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Figure 1: Geometry Co-Authorship Network (a) Entire Network (b) Focus on
a Small Portion (¢) Part of Max3-DIS (d) Part of Maxs-DIS
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from Fig. (c,d) with the presence of cliques in the Geometry network. From
Fig. b,d), we can also notice the overlap of cliques to form larger size con-
nected components. As high degree nodes are introduced in this network, the
disconnected components start to connect to each other forming one big giant
component as shown in Fig. a,b).

The low average path lengths of the three social networks is presented in
Table [ These low values are due to two properties described earlier in sec-
tion [3.4] These are the random connectivity of nodes which reduces the overall
average path length [37] and the presence of very high degree nodes which [38].
Both these can clearly observed when we draw Maxio-DIS and Max;5-DIS.

5 Related work

In this section, we review a number of network generation models proposed
in the literature having small world and scale free properties. A comparative
summary of these models is presented in Table

As a general classification, these different models can be grouped into two
categories; Evolving models and Static models. Evolving models are the models
that explain the evolution of complex networks as a function of time where the
idea is to model the growth behavior of these networks. A good example is the
Barabéasi and Albert model for scale free networks. Nodes are introduced con-
tinuously in the network and following the principle of preferential attachment,
power-law degree distribution appears. Static models are the models that are
concerned with how networks are structured so that certain properties of com-
plex networks are present. Here, the term structure means the arrangement of
nodes and edges, and how they connect to each other. The Watts and Strogatz
model is such an example, as the model starts with a certain number of nodes
and edges, that do not increase with the passage of time but explain how high
clustering coefficient and low average path lengths appear in a network through
rewiring of edges.

Both evolving and static models are of interest as they serve different pur-
poses. Evolving models try to identify the principles that govern the evolution
of the physical systems around us. Static models propose methods to under-
stand the structure and formation of networks. Both these types of models can
be used to construct artificial networks with properties similar to real world
networks to facilitate experimental and empirical studies.

There are two important and common aspects to these networks with a
couple of exceptions. The first is that they all use preferential attachment to
obtain a scale free behavior for the degree distribution, and the other is that
they force the formation of triads in the networks, as a result of which, the
clustering coefficient increases as compared to any random network. The triad
formation step, results in graphs with high clustering coefficient but cliques of
bigger sizes are abscent from these networks as shown in Fig. [4]

Before we review different models to generate small world and scale free
networks at the same time, we first present the models to generate only small
world and only scale free networks.

Lets have a look at the small world model proposed by Watts and Strogatz.
We start with a ring of n vertices in which each vertex is connected to its k
nearest neighbors, for a given k. This forms a regular graph as shown in Fig-
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Figure 2: Geometry Co-Authorship Network (a) Max;o-DIS (b) Max;5-DIS.
With the introduction of high degree nodes, small disconnected components
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Regular Small World Random
(a) (b) (c)
p=0 p=I

Figure 3: From a Regular network to a Random Network, where random
rewiring of few edges in a regular network produces a small world network
with high clustering coefficient and low average path length.

ure a). Then, each edge is rewired with a given probability p by choosing
randomly a new vertex to connect. In a regular graph, since neighbors are con-
nected to each other, the overall clustering coefficient is very high. On the other
hand, the average path length is very low as vertices are only connected to their
neighbors. Randomly rewiring a few nodes introduces edges connecting nodes
lying at long distances, which in turn, reduces the overall average path length.
Since many vertices are connected to their neighbors, the overall clustering co-
efficient remains high whereas the average path length is reduced, giving us the
properties of a small world network (see Figure [3|(b)). If the process of random
rewiring continues, we eventually end up rewiring every node which results in
a random graph as vertices no longer share common neighbors. It is important
to note that networks produced using this model do not have scale free degree
distribution. Since every vertex in the network initially has a fix k& degree, ran-
dom rewiring of only a few vertices does not effect the overall behavior of the
degree distribution. More formal studies of this model have been conducted
with interesting results [5].

Barabasi and Albert explained how scale free networks emerge in real world
networks through another model. To begin, there are n vertices and no edges
connecting them. At every time step ¢, a new vertex v with m edges is added to
the network. These edges are connected to existing vertices with the probability
proportional to the degree of the nodes in the network. Obviously, at the begin-
ning, when there are no edges, the probability of connection of all the vertices is
the same. As the network grows, gradually few nodes begin to have higher node
degree and thus higher probability of connecting to newly introduced nodes in
the network. This preferential bias in the connectivity is termed as preferential
attachment as new nodes prefer to attach to high degree nodes. Mathematical
results for scale free graphs have been studied by several researchers such as
12 3].

Turning towards the models that produce small world and scale free net-
works, both at the same time.

Holme and Kim [I5] modified the well known Barabasi and Albert model [I]
to obtain graphs that are small world as well as scale free. The idea is pretty
simple and effective. A Triad formation step is added after the preferential
attachment step where every node introduced in the network, connects not only

RR n° 7861
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to node w, but also to a randomly chosen neighbor of w thus resulting in a
triad formation. This results in the formation of lots of triads in the network
increasing the overall clustering coefficient. A parameter mg is used to decide
the initial number of vertices with no edges. Another parameter m is used
to decide the number of edges a newly added node will have in the network.
This parameter can be used to control the node-edge density of the network.
The newly added vertex connects to m different nodes based on the probability
which is proportional to their degree. As a result, every new node introduced in
the network will form a triad with the highest degree node, which results in lots
of triads around high degree nodes. But since the m vertices are chosen solely
on the basis of their degree, no clear community structure appears. Another
drawback of this model is that it does not generate cliques of larger size as it
only forces the presence of triads. We show Max;5-DIS of the network generated
using this model in Fig. ] The parameters are set to generate a network of
approximately the same size as that of NetScience network.

The idea of Holme and Kim is similar to another model separately proposed
by Dorogovtsev et al. [6] in the same year where every new node added to the
network is connected to both ends of a randomly chosen link where one of the
nodes of this link is selected through preferential attachment. Similar behavior
is obtained in terms of connectivity as lots of triads are created and the absence
of large size cliques remains a drawback. Moreover no other criteria is used to
enforce the presence of community structures in the network.

These models inspired Jian-Guo et al. to introduce another similar model [21].
The network starts with a triangle and at each time step, a new node is added to
the network with two edges. The first edge would choose a node to connect pref-
erentially, and the second edge will choose a node connected to the first node,
again based on preferential attachment. This is different from the previous two
models where the second node is randomly chosen. No structural changes occur
with this modification in terms of cluster formation, the clustering coefficient is
increased by the presence of triads but bigger size cliques are still missing and
nodes do not attach to each other based on their domain or surroundings but
only on their degree.

Wang et al. [34] proposed a model to generate random pseudofractal net-
works with small world-scale free properties. The model starts with two nodes
connected through an edge. At each time step, a new node is added with two
edges. The new node is connected to the two ends of an edge and the process
is repeated for every existing edge in the network. There is obviously no com-
munity structure present in the network. We show the evolution of the network
in Fig.

Fu and Liao [I0] proposed another extension to the Barabasi and Albert
model which they called the Relatively Preferential Attachment method. At
each time step, the newly introduced node in the network connects to a node
w with preferential attachment, the nodes in the immediate neighborhood of w
have higher probability of connecting to this new node as compared to other
nodes. The only difference in this model with the already proposed models
is that the new node can have m edges instead of two edges where the value
of m is chosen as an initial parameter which remains constant throughout the
execution of the algorithm. As a result, cliques of variable sizes do not appear
in the network. For values of m greater than 2, triads appear in the network
increasing the overall clustering coefficient.

Inria
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Figure 4: Max;5-DIS of a network generated using Holme-Kim model with
mo = 5 and m = 1, which gives a network of size approximately equal to the
NetScience network. Higher degree cliques are clearly missing. The subgraph
contains 373 nodes and 584 edges as compared to the entire network with 379
nodes and 757 edges.

L ADND DD

=0

Figure 5: Network generated using Wang et al. model for random pseudofractal
networks. We see how the network evolves from ¢ = 0 to ¢ = 5.

xR A A

(2) () (4) (5)

Figure 6: Network generated using Klemm and Eguiluz model.(1) Network
starts with m = 4 (2) A new node (red) is added connecting to all existing
nodes (3) A node is disactivated (black) based on probability proportional to
its degree (4) Another node is added (red) (5) Another nodes is disactivated.
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14 Zaidi et al.

Klemm and Eguiluz [18] also proposed a model, where each node of the
network is assigned a state variable. A newly generated node is in the active
state and keeps attaching links until eventually deactivated. At each time step,
a new node is added to the network by attaching a link to each of the z active
nodes. The new node is set as active. One of the existing nodes is deactivated
where the probability of a node being deactivated is inversely proportional to
its degree i.e lower the degree, higher the probability of deactivation. To reduce
the average path length of the entire graph, at every step, for each link of the
newly added node, it is decided randomly whether the link connects to the active
node or it connects to a random node. Fig. [6] shows the evolution of network
and the way new nodes are connected to existing nodes. Again the model does
not impose any other constraint so as to form community structures. Fig. a)
and (b) show the Maxs-DIS and Max1o-DIS of the network generated using this
model where the size is approximately equal to that of the NetScience network.
We can easily observe that cliques are absent from these subgraphs and the
higher clustering coefficient is due to the presence of triads in the network.

Catanzaro et al. [4] present a model taking into consideration the assortativ-
ity of social networks. At every step, a new node is added to the network based
on preferential attachment and a new edge is added between two existing nodes.
These existing nodes are chosen on the basis of their degree thus forcing links
between similar degree nodes. The model is innovative as it allows addition of
new links between old nodes. Since the addition of new nodes is only based on
node degrees, nodes of similar degree connect to each other randomly and no
clear community structure appears.

Newman et al. [26] study models of the structure of social networks with
arbitrary degree distributions. The proposed model can also be used to generate
networks with scale free degree distribution. The authors introduce the idea
to generate affiliation networks similar to co-authorship networks using random
bipartite graphs. This idea is used by Guillaume and Latapy [I2] as they identify
bipartite graph structure as a fundamental model of complex networks by giving
real world examples. The two disjoint sets of a bipartite graph are called bottom
and top. At each step, a new top node is added and its degree d is sampled from
a prescribed distribution. For each of the d edges of the new vertex, either a
new bottom vertex is added or one is picked among the pre-existing ones using
preferential attachment.

A more generalized model based on similar principles was proposed by Bu
et al. where instead of using the bipartite structure, a network can contain ¢
disjoint sets (instead of just two sets, as is the case of the bipartite graph). In
the paper, they discuss the example of sexual web [20] which is based on the
bipartite structure. A sexual web is a network where nodes represent men and
women having relationships to opposite sex, and similar nodes do not interact
with each other. At each time step, a new node and m new edges are added
to the network with the sum of the probabilities equal to 1. The preferential
attachment rule is followed as the new node links with the existing nodes with
a probability proportional to the degree of the nodes.

Wang and Rong [33] proposed a slightly different model, which is still a mod-
ified form of the preferential attachment model. Instead of adding one node at a
time, the model proposes to add n nodes at each time step which are connected
in a ring formation. Any two nodes in the n new nodes are connected to the
existing network where these connections are determined through preferential
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Figure 7: Network generated using Klemm and Eguiluz Model where size is
approx. equal to the NetScience network. Figure (a) and (b) show the Maxs-
DIS and Maxi(-DIS respectively. The absence of cliques and the presence of
giant component are clearly observable.
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Figure 8: Network generated using Wang and Rong Model where size is approx.
equal to the NetScience network. (a) Max;-DIS: shows the presence of cliques of
different sizes (b) Maxyo-DIS: shows the uniform distribution of these cliques in
the network and cliques rarely overlap. Cliques are connected to each other by
edges as compared to real social networks where these small social communities
overlap to form our society.

attachment. The network breaks into cliques of different sizes but since there is
no biased connectivity among the nodes, the cliques are spread uniformly over
the network and we cannot find any densely connected set of nodes. Fig. a)
and (b) show the the Maxs-DIS and Maxg-DIS respectively. Again the network
is generated to be equivalent to the size of the NetScience network. Fig. a)
shows the presence of cliques of different sizes and Fig. b) shows the uniform
distribution of these cliques in the network without any clear community struc-
ture and cliques are connected to each other through edges. As compared to our
society, where people belonging to multiple groups connect these small groups
forming our connected society at large.

Guo and Kraines [13] proposed a model to study how the clustering coeffi-
cient affects the formation of a giant component. The model generates a random
social network with finely tunable clustering coeflicient. The generator is com-
posed of three steps: first, a degree sequence is generated following a power law.
Next, the generator constructs a random network using the algorithm of Molloy
and Reed [23]. Finally, the network connections are modified to achieve the
desired clustering coefficient. The model is a static one, as it adds all the nodes
initially to the network following a prescribed degree distribution. Next, the
network is modified to introduce triangles which increases the overall clustering
coefficient.

Comparing the different network generation models (See Table , the first
five models are quite similar to each other, as they try to force the triad for-
mation step, one way or the other. Another common aspect in the first five
models is that in every step, only one node and two edges are added to the net-
work. The only other taxonomical grouping possible is the three models where
the bipartite and n-partite structures are used as the fundamental property of
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real world networks. The model of Wang and Rong is slightly different as it
allows the addition of m new nodes at every time step. The idea of Klemm and
Eguiluz, Catanzaro et al. are quite original and provide another way to look at
the evolution and structure of complex networks.

6 Proposed Model

As described earlier, the proposed model generates a static network. There are
three basic steps in the model which are discussed below.

In the first step, we introduce what we call building blocks in the network.
As described in the previous sections, our society is composed of many small
groups. So, instead of adding one node at a time, we add cliques of various sizes
representing these small groups of the real world. This results in the network
having high clustering coefficient. In comparison to various models described
earlier, where one node at a time is added to the network. These cliques repre-
sent the building blocks of our society as described earlier in section [3.3

The next step is to join these cliques to form a connected society. These
cliques are connected to each other because people belong to multiple groups.
From the property of Extraversion-Introversion, we know that there are people
with many social contacts as well as people with only a few contacts. These
ideas lead us to define for every entity, the number of groups, it belongs to.
For a node belonging to two different groups, we simply merge two nodes from
different groups, as a result, two cliques are combined with a single node being
part of the two cliques as shown in Fig.

To achieve this, we associate a possible connectivity attribute drawn from a
degree distribution following power law. Few nodes when being part of many
groups, will end up having many social contacts and represent the extroverts in
the society.

For each node, this connectivity attribute, called Open connections (OC)
determines the number of merges for each node. Note that the number of
merges are directly proportional to the final node degree. If a few nodes are
merged with many nodes, these nodes will end up with many connections and
thus the scale free degree distribution will appear in the network. This attribute
is an integer between [1,P] where P is some constant value and represents the
maximum node degree a node can have in the network.

Finally, based on these number of merges which represent open connections
of nodes (OC), we merge two nodes to build a connected network. We do this
by randomly selecting two nodes from the network with open connections (OC).
These nodes are merged together. In case, where two nodes of different building
blocks are selected and that are already connected to each other by some other
node, multiple overlaps appear. This results in small groups connected by more
that one node. This represents the phenomena of the real world networks where
two small groups are connected to each other by more than two people.

As the network is built from cliques and the connections are directed by scale
free degree distribution, we get a network with high clustering coefficient and
degree distribution following power law. The average path length of the overall
network remains low due to two connectivity patterns, the random connections
and the scale free degree distribution. The random connectivity of nodes has
been shown to be one of the reasons for low average path lengths by [7l [§].

RR n° 7861



18 Zaidi et al.
Comparative Summary of Existing Network Generation Models

Model, Year H n \ m \ Innovation

Holme and Kim, || 1 | m | Triad formation step, forcing a new node to connect to

2002 the neighbors of the first node it links to, in order to have
triangles and increase the clustering coefficient.

Dorogovtsev et || 1 | 2 | Randomly chose an edge and attach both ends of this edge

al., 2002 with the new node where the probability of choosing an
edge is based on the degree of the nodes at its ends.

Jian-Guo et al., || 1 | 2 | Each new node attaches to existing node with preferential

2005 attachment and choses one of its neighbors again based on
preferential attachment (and not randomly as compared to
Holme and Kim).

Wang et al, || 1 | 2 | For each edge, a new node with two edges is added, which is

2006 attached to both end nodes of the edge. Produces Fractals
rather than a random graph.

Fu and Liao, || 1 | m | Once a new node attaches to a node, its neighborhood has

2006 a higher probability of connecting to the new node.

Klemm and || 1 | m | Activate and deactivate nodes based on node degree where

Eguiluz, 2002 nodes having low degree have a high probability of getting
deactivated.

Catanzaro et al., || 1 | m | Assortativity &

2004 Allows growth in old nodes by allowing new edges.

Newman et al., || 1 | m | Random network following a prescribed degree distribution

2002 is generated. Bipartite graphs are used to generate affilia-
tion networks and obtain high clustering coefficient.

Guillaume and || 1 | m | Bipartite Structure identified as a fundamental characteris-

Latapy, 2004 tic for real world graphs (similar to Newman et al., 2002).

Bu et al., 2007 1 | m | n-partite Structure, where nodes do not connect to similar
node types.

Wang and Rong, || n | m | Add m new nodes and any two nodes in the m new nodes

2008 link together from each other and they link to existing
nodes based on preferential attachment.

Guo and || - | - | Static model that generates a random network with scale

Kraines, 2009 free degree distribution for n nodes. Next, the connections
are modified to achieve the desired clustering coefficient.

Table 2: Comparing and Summarizing different Artificial Network Generation
Models existing in the literature. n=nodes, m=edges
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We explain the details of the proposed algorithm below. The following math-
ematical notations are used throughout the explanation: G(V, E) represents an
undirected multigraph where V is a set of n nodes and FE is a set of e edges. The
graph G is initially empty and the nodes and edges are added as the algorithm
progresses. C represents a set of cliques such that C = {C},Cs,---,Cy} are
different cliques each comprising of several nodes.

6.1 Step 1: Building Blocks

In contrast to existing network generation models, instead of adding one node or
triad at a time, to generate the network, we start by adding cliques of variable
sizes to G. Recall from section [3.4] we identified cliques as one of the fundamen-
tal patterns present in networks and the Author and Actor network considered
as examples here have cliques by construction.

The algorithm takes as parameter, the number of cliques to be generated
(k), the minimum (minSize) and the maximum size (maxSize) of the cliques to
be generated. A random number is generated between these two limits and for
each random number, a clique C; is added to the graph G such that nodes and
edges of the clique become members of V' and FE respectively. As a result, G
contains nodes that are well connected to each other as a clique, and nodes from
different cliques are not connected to each other. G becomes a graph comprising
of C = {C1,C4,---,Cy} as shown in Fig. @

If we use a random number generator, for large values of k, the distribution
will be equally spread and we will have the same number of cliques for all
possible size values. In real networks, this might not be the case as often,
cliques of large sizes are rare compared to cliques of small sizes. To take the
correct decision, it is important to understand what type of network we are
trying to generate. If the network to be generated is expected to have cliques
of varying sizes equally distributed, the random generation will serve well our
purpose. On the other hand, if we expect that all the cliques will have the exact
same size, the minSize and maxSize parameters can be set to that exact value
to have all the cliques of the exact same size. And in the case where we expect
a non-uniform distribution of different sizes, we can draw the different sizes of
cliques using the type of distribution we require our final network to follow.
The parameters minSize and maxSize can also be used to control the node edge
density. If the values of these parameters are set as 1 and 5 respectively, the
cliques generated will have nodes of degree 0 and 1, which in turn, will reduce
the overall node edge density. On the other hand, if we want to increase the
node/edge density, we can set high values of minSize and maxSize which will
generate dense group of nodes and increase the overall node/edge density.

The real networks that we are using for analysis do not have a uniform
distribution of cliques. Since these real networks contain many nodes with
degree between 1 and 4. While generating networks of equivalent size, we take
this information into account and ensure the increased presence of these small
degree cliques. For every iteration, whenever a random number is generated
having a low degree, another one is added of the same size. Thus for every
random number generated between 1 and 4, we add two cliques instead of one.
Experimental results show that this method is effective as we get networks
similar to real world networks.
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Figure 9: Step 1: Network after execution of step 1 with minSize=1, maxSize=5
and k=10.
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We consider the example of co-authorship network and explain how these
values effect the algorithm. We use & = 10, minSize=1 and maxSize=5 and a
random generation for the size of the cliques. After the execution of this step,
we get a network as shown in Fig. 0] The idea of introducing cliques, comes
from the work of [26], 2] where affiliation networks and the bipartite structure
was identified as an important structural property of the way, the Author and
the Actor networks are constructed in the real world. People interact to co-
author an artifact, as a result we get cliques representing an artifact. The idea
is equally applicable to the Actor network, where the cast of every movie forms
a clique. This phenomena was explained in detail in section [3earlier and equally
holds for the Employee and Club network.

Note that the size of the cliques can be forced to be exactly 3, in which
case we would have forced the presence of only triads just as the other network
generation models presented in section |5} Due to the presence of cliques (or tri-
ads), the average clustering coefficient of the entire graph increases as compared
to a random graph which is a fundamental property to identify a small world
network.

6.2 Step 2: Determine Number of Merges

Since our goal is to control the frequencies of the node degrees, we want to
enforce a certain degree distribution. In order to have the degree distribution of
G follow a scale free behavior, we generate a scale free degree distribution using
a power law function. We associate this distribution on the nodes of graph G
as an attribute and call this as open connections OC'. This attribute is used to
determine how the nodes are interconnected to each other in the next step.

An important variation to this step can be the assignment of an equal value
to all nodes. As a result, the network produced will have only small world prop-
erties, i.e. high clustering coefficient and small average path length. The equal
value assignment will ensure that the degree of all the nodes is approximately
equal and thus the final degree distribution will not follow a power law, rather
a Poisson distribution.
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Figure 10: Merging two nodes from two different cliques so that a node becomes
part of two cliques.

6.3 Step 3: Merge Nodes

Two cliques can be combined by considering that one or more than one common
authors are part of the two cliques, and these nodes play the role of combining
these cliques (see Fig.[I0). This is true for other real world networks as discussed
earlier in section

Merging two nodes creates connections between previously disconnected
cliques. Moreover, the merged node plays the role of a bridge between the
two small clusters. In terms of the degree, the node gets many new connections.
The more the node is merged with other nodes, the more it gets connections and
higher would be its node degree. This is the reason why we draw the number
of merges from a power law function, as a result, the final degree distribution
follows a power law.

An important decision while merging two nodes say n; and ne with OC' val-
ues ocy and ocs is, how to decide the oc,, for the new node n,,. We experimented
with the following different methods:

e Max: Assign the new node the maximum of the two OC values oc,, =
Mazx(ocy, oc)

e Min: Assign the new node the minimum of the two OC values oc, =
Min(ocy, 0ca)

e Avg: Assign the new node the average of the two OC values oc, =
Avg(ocy, 0cs)

e Rand: Assign the new node one of the two OC' values randomly oc,, =
Rand(ocy, 0c3)

Assigning maximum value forces the degree distribution of the network to
take a more linear decay as most of the low degree nodes disappear quickly from
the network and lots of high degree nodes are left for connectivity. On the other
hand, assigning minimum value removes the few nodes with very high degree
and the characteristic long tail in the degree distribution disappears from the
network. As similar behavior is observed with the average assignment as the
long tail disappears and the average node degree increases with this assignment.
The best results are obtained by a random assignment as nodes with high and
low degree are equally removed and thus the overall degree distribution follows
scale free behavior. We show the experimental results using the random method
in section Bl
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7 Evaluating Generated Networks

The proposed model is very close to the model proposed by Guillaume and Lat-
apy [12] or that of Newman [26]. Although our approach is slightly different
from these two models. We differentiate between the connectivity within group
and connectivity in the society. The connectivity within group depends on the
building blocks, which in this case are cliques. Connectivity in the society de-
pends on the human trait of Extraversion and Introversion. The connectivity
within group is responsible for the high clustering coefficient, as opposed to
many other models where forcing triads raises the over all clustering coefficient.
The connectivity with the society is responsible for the overall degree distribu-
tion following power-law. These steps can be modified in the model to obtain
networks with different properties. For example, if we modify the number of
merges drawn from the scale free behavior to follow a Poisson distribution, the
model will produce networks which are only small world and not scale free. On
the other hand, if we modify the building blocks by replacing the cliques by
a star-like structure, where one node is connected to many nodes, we will get
networks with only scale free properties with low clustering coefficient.

Thus, as compared to the model of Guillaume-Latapy [12] and Newman [26],
from the proposed model, we are able to capture the principles of the bi-partite
structure of many real world networks by introducing a different approach.
Moreover the same model can be used to generate scale free networks with
a simple modification to the network. We leave the proof of this variation as
part of future work.

Next, we evaluate the networks generated by the proposed model using the
Max4-DIS decomposition. Fig. (a) shows the entire network generated where
the network has size similar to NetScience network. Fig. b) shows the Maxs-
DIS of the network where the network breaks into small connected components
just as the co-author networks in Fig. 2] and Fig.

Similar observations can be made about the network generated equivalent in
size to the Geometry network. Fig. [12{a) shows the Maxs-DIS of the network
where the network breaks into small connected components just as the geometry
network studied in section Fig. b) shows the Maxio-DIS of the network
with the appearance of the giant component. Since the model is based on
cliques as the building blocks to construct the entire network, it is obvious
that using the topological decomposition, we find the presence of these small
densely connected group of nodes. As the node degree is increased, in the case
of Fig. (b) where Max1o-DIS contains nodes of at most degree equal to 10,
we find a similar behavior in the connectivity of nodes just as we analyzed in
sectiond] a phase shift take place and a single giant [16, 9] connected component
appears.

Fig. [I3] shows the degree distribution of the networks generated using the
proposed model. We have generated networks of size equivalent to three social
networks, the NetScience, Geometry and Imdb network. The degree distribution
clearly shows that the networks generated follow the power law.
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Figure 11: Network generated using proposed network model where the size is
approx. equal to NetScience network. cliques=200 minSize=1, maxSize=7 (a)
Entire network (b) Maxs-DIS.
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Figure 12: Network generated using proposed network model where the size is
approx. equal to Geometry network. cliques=3000 minSize=1, maxSize=9 (a)
Maxs-DIS (b) Max;,-DIS.
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Figure 13: Degree Distribution of equivalent size networks generated using the

proposed Model.

Log-Log plot of the Frequency-Degree distribution.

Comparison between NetScience and Other Network Models

Model \ Nodes H Edges \ APL \ ccC \ HD
NetScience 379 914 6.04 | 0.74 34
Random Graph 379 914 3.94 | 0.01 11
Zaidi et al. 364 935 4.7 | 0.65 22
Holme and Kim 379 757 4.86 | 0.77 42
Fu and Liao 379 744 4.03 | 0.75 31
Klemm and Eguiluz | 379 755 6.40 | 0.5 24
Catanzaro et al. 379 898 2.42 | 0.58 197
Guillaume & Latapy | 379 5315 | 2.30 | 0.54 109
Bu et al. 379 755 3.05 | 0.37 80
Wang and Rong 379 943 4.32 | 0.37 14

(a,c,e) Represent the bar charts and (b,d,f) represent the

Table 3: Comparing different models with the Collaboration Network of Sci-
entists from the NetScience data. APL=Average Path length, CC=Clustering
Coeflicient, HD=Highest Node Degree
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Comparison between Geometry and Other Network Models
Model \ Nodes H Edges \ APL \ CcC \ HD
Geometry 3621 9461 5.31 | 0.53 102
Random Graph 3621 9461 5.15 | 0.001 15
Zaidi et al. 3682 10928 | 5.71 | 0.65 67
Holme and Kim 3621 7241 7.3 0.79 90
Fu and Liao 3621 10662 | 4.22 | 0.72 101
Klemm and Eguiluz | 3621 10857 | 2.27 | 0.72 197
Catanzaro et al. 3621 8896 247 | 048 1720
Guillaume & Latapy | 3621 528499 * * 1275
Bu et al. 3621 10856 | 3.13 | 0.24 607
Wang and Rong 3621 10828 4.6 0.10 30

Table 4: Comparing different models with the Collaboration Network of Sci-
entists from the Computational Geometry data. APL=Average Path length,
CC=Clustering Coefficient, HD=Highest Node Degree

Comparison between Actor and Other Network Models
Model | Nodes || Edges | APL | CC | HD
Imdb 7640 277029 | 294 | 0.87 | 1271
Random Graph 7640 277029 | 2.48 | 0.009 102
Zaidi et al. 7413 244905 3.1 0.98 352
Holme and Kim 7640 274865 | 2.35 | 0.09 | 2303
Fu and Liao 7640 29972 4.00 | 0.76 163
Klemm and Eguiluz | 7640 274374 | 1.99 | 0.97 | 7627
Catanzaro et al. 7640 28127 1.99 | 0.78 7639
Guillaume & Latapy | 7640 2378281 * * 2614
Bu et al. 7640 274935 | 1.99 | 0.83 | 12151
Wang and Rong 7640 273355 | 3.28 | 0.94 83

Table 5: Comparing different models with the Imdb network from the IMDB
dataset. APL=Average Path length, CC=Clustering Coeflicient, HD=Highest
Node Degree
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8 Results and Discussion

We have used the NetScience, Geometry and Imdb data sets for a comparative
study. These are well studied examples of social networks and have been used
by several researchers for empirical and experimental studies.

We calculate a number of statistics using various Network generation models
and compare them with the real world networks of equal sizes. The results are
shown in Table [3] Table [4] and Table 5] We have included the statistics for
a random network for the three data sets. In some cases, the models are not
parameterized and thus the node-edge density could not be controlled. We tried
to generate models of similar size in terms of number of nodes, and where possi-
ble, similar number of edges. An important observation about these networks is
that since all of them use the preferential attachment to produce the scale free
property, the degree distribution for all the models follow a power law. To the
best of our knowledge, there is no metric which tries to identify the presence
of communities in a network by analyzing the graph on the whole in a global
perspective, thus the presence of community structure in the proposed model is
only justified by construction.

Looking at some individual results for the various models in comparison to
the real world networks. For example, graphs generated using the model of
Guillaume and Latapy, the node-edge density in every case is very high and
could not be controlled. The model of Fu and Liao, in all the three examples,
have a very low clustering coefficient as compared to the respective real world
network and thus could not really be classified as generating similar networks to
the real world networks used as examples in our study. Looking at the clustering
coefficient of the model by Wang and Rong in Table 4] it is quite clear that the
model fails to generate a high clustering coefficient for a similar size network.
An observation about the model of Holme and Kim, In Table[5] where the node-
edge density of the network is comparatively high to other two networks but
the the network has a large size, the clustering coefficient drops considerably.
The model of Klemm and Eguiluz scales well in terms of clustering coefficient,
and the average path length can controlled through a parameter (see Table
which gives a good approximate result. Also, from Table [5 the average path
length in case of a number of models is 1.99, which is a direct implication of a
node having a very high degree. As a result, most of the nodes are connected
to this high degree node and thus have a low average path length of the entire
network.

From the above examples, one obvious problem that can be inferred is that
these models have problems with scalability, as the node edge density is varied
for a network, the models are not able to reproduce comparative values with real
world networks for various statistics. On the other hand, the proposed model
in this paper has the ability to control the size of cliques as the starting point,
which helps us to control the density and at the same time, generate small world
and scale free networks. The values are quite close to the ones expected and
thus the proposed model is quite flexible.
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9 Conclusion and Future Research

In this paper, we have studied the concepts of homophily, triads and preferential
attachment as important properties for the structure of social networks. We use
these concepts to present a model to generate artificial social networks. We
evaluated a number of network generation models that successfully generated
small world and scale free networks but produced structurally different networks
as compared to real world networks. Results show that the proposed model
indeed generates networks that are topologically similar to real world networks
as compared to the other existing models.

We intend to extend our study to other types of networks such as biological
and technology networks. Although these networks have small world and scale
free properties but they are again structurally different from social networks
and thus we need to modify the proposed model to mimic the behavior of these
other types of networks.
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