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METRIC FORMULAE FOR NONCONVEX HAMILTON–JACOBI

EQUATIONS AND APPLICATIONS.

A. MARIGONDA AND A. SICONOLFI

Abstract. We consider the Hamilton-Jacobi equation H(x,Du) = 0 in Rn,
with H non enjoying any convexity properties in the second variable. Our

aim is to establish existence and nonexistence theorems for viscosity solu-
tions of associated Dirichlet problems, find representation formulae and prove
comparison principles. Our analysis is based on the introduction of a metric
intrinsically related to the 0–sublevels of the Hamiltonian, given by an inf-sup
game theoretic formula. We also study the case where the equation is critical,
i.e. H(x,Du) = −ε does not admit any viscosity subsolution, for ε > 0.

Keywords: nonconvex Hamilton-Jacobi equations, viscosity solutions, Aubry-
Mather theory.

MSC Classification: 49L25.

1. Introduction

The paper is devoted to the study of the Hamilton–Jacobi equation H(x,Du) =
0, posed on R

n or on open subsets of it, with H continuous in both arguments and
coercive in the second, but not enjoying any convexity property in the momentum
variable. The investigation takes place in the framework of viscosity solutions
theory, from now on the term (sub, super) solution must be understood in this sense.
The scope is to establish existence and nonexistence theorems for viscosity solutions
of related Dirichlet problems, find representation formulae and prove comparison
principles. The appeal of the topic is witnessed by some very recent contributions,
see [6], [12], but our approach follows more closely the line of thought of [10].

The study of nonconvex Hamilton–Jacobi equations is a quite unexplored fields
which is interesting from a theoretical point of view as well as in view of applica-
tions: for instance the time-dependent Hamilton–Jacobi equations with homoge-
neous Hamiltonians describe the geometric motion of interfaces which can be used
to modelize phenomena arising in combustion theory, and in some situations the
convexity assumption on the Hamiltonian seems not justified. Nonconvex Hamil-
tonians also arise in some neuronal–fiber tracking models, based on magnetic res-
onance imaging, where they are used to describe anisotropic diffusion of water
molecules along the neurons of the brain.

A more theoretically relevant research topic for nonconvex Hamiltonians is the
qualitative analysis of the critical equations which is related to homogenization
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2 A. MARIGONDA AND A. SICONOLFI

problems as well as to dynamical issues, at least when the Hamiltonian is sufficiently
regular. We will come back on this point later on.

Compared to the case of convex or quasiconvex equations, where a quite complete
body of results is available, very little is known on the subject, and the difficulty
of the analysis increases drastically in the nonconvex environment.

The main reason of such a gap is that when the 0–sublevels of the Hamiltonian
are convex, an intrinsic Finsler metric, denoted by L, can be defined on R

n through
minimization of some line integrals, containing the support function of the sublevels,
along the (Lipschitz–continuous) curves connecting two given points, see Definition
3.2 and [10].

The formula defining L is easy to handle and it turns out that the class of
viscosity (or equivalently a.e.) subsolution to H = 0 is singled out by the property
of being 1–Lipschitz continuous with respect to L, or, in other terms L(x, ·) is,
for any fixed x, the maximal subsolution vanishing at x, and consequently is also
solution in R

n \ {x}. In addition a Lax–type formula involving L and a datum
assigned on some compact subset K, say g, provides a solution to H = 0 outside
K taking the value g on K, provided that g satisfies some compatibility condition
with respect to L. We will come back on this issue later on.

If no convexity conditions are assumed on the 0–sublevels of H , it has been
proved in [10] that a related metric, indicated by S, can still be defined, and as in
the convex setup, the functions S(x, ·), for x ∈ R

n, make up a class of fundamental
solutions of H = 0, more precisely they are solutions in R

n \ {x} and subsolutions
in the whole space.

On the other hand, they do not enjoy any maximality property and no charac-
terization of the subsolutions to the equation in terms of Lipschitz–continuity with
respect to S is available. Furthermore S is represented by a rather involved inf-sup
formula of game–theoretic type, see Definition 3.1.

The metric counterpart of the lack of convexity lies in the fact that S is not of
Finsler type and not even a path metric, in the sense that the distance between
two points is not in general given by the infimum of the intrinsic length of curves
joining them, where the intrinsic length is the total variation of the the curve with
respect to S. This peculiarity adds a further complication in the analysis.

When the Hamiltonian is independent of the state variable, or more generally
when the convex hull of the 0–sublevels of H is constant, say C, then the nonconvex
metric coincides with the convex one supplied by C, see Proposition 3.3, more
precisely

S(x, y) = σC(y − x) for any x, y,

where σC stands for the support function of C. Part of the results contained in
[4], [6] can be understood taking into account this property. However, even in this
simple case, the Lax–type formula valid for quasiconvex Hamiltonian does not give
in general a solution to the Hamilton–Jacobi equation in a given open region of
R

n when a boundary datum g is assigned, as it is shown in Example 3.1. We
propose an appropriate adaptation of this formula to the nonconvex setting, see
(7) and Theorem 4.1, but then an interesting issue arises, namely to determine
compatibility conditions on g in order that the solution so obtained agrees with it
on the boundary and no boundary layers develop.

In the convex case a necessary and sufficient condition for this is the 1–Lipschitz
continuity of g with respect to the intrinsic metric L. In the absence of convexity
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properties this is not true any more, even if we replace L by the nonconvex metric
S. This is demonstrated for a class of affine boundary data in Proposition 5.1,
which slightly generalizes a result given in [4], and for a datum of different nature
in Example 5.2.

We do not know if in the nonconvex setting a not too involved characterization
of admissible boundary data can be detected. So far, we provide different sufficient
conditions for this in Section 5, in particular Proposition 5.4 should be compared
to Theorem 2.6 in [4] and Theorem 7 in [6]. A couple of uniqueness principles in
the case where the 0–sublevels of H are strictly star–shaped with respect to 0 are
established as well, see Propositions 5.7, 5.8.

In Section 6 we deal with the case where the equation H(x,Du) = 0 is critical,
i.e. it admits subsolution in R

n but no functions ψ satisfying H(x,Dψ) ≤ −ε
in the viscosity sense, can exist, for any positive ε. Such kind of equations are
relevant, for instance, in connection with homogenization problems, see [8]. When
the Hamiltonian is quasiconvex, a wide qualitative analysis of the critical equation
has been performed in [7] looking at the properties of the related intrinsic metric.

In this respect a crucial role is played by the so–called Aubry set A whose points
are characterized by two simultaneous properties, namely L(x, ·) is solution to the
equation on the whole R

n, and not just in R
n \ {x}, if x ∈ A, and the intrinsic

metric fails to be equivalent to the Euclidean one around x.
It is a relevant open problem in the field to understand if something similar can

be done for nonconvex critical Hamilton–Jacobi equations.
Our contribution is simply to point out, in the nonconvex case, through a couple

of examples, Examples 6.1, 6.2, the existence of points y for which S(y, ·) is solution
to the critical equation on the whole space but no degeneration of the intrinsic met-
ric takes place around them with respect to the Euclidean distance. Unfortunately,
this seems to indicate that the metric approach is not viable for the analysis of the
critical equation in the absence of convexity conditions on H .

The paper is divided into 6 sections. Section 2 is devoted to fix the notation and
give some preliminaries and results on nonsmooth analysis and viscosity solutions
theory. In Section 3 we introduce the basic object of our investigation, i.e. the
nonsymmetric metric related to the Hamilton–Jacobi equation. In Section 4 the
property of the metric are exploited to construct a solution for Dirichlet problems,
while in Section 5 are established sufficient conditions on the boundary datum in
order that such solution agrees with it on the boundary. Finally, in Section 6 it is
given some applications to the analysis of the critical equation in the nonconvex
setting.

Acknowledgements. − The first author has been partially supported by the
University of Roma ”La Sapienza” through the Ateneo program ”Metodi di vis-
cosità metrici e di teoria del controllo per EDP non lineari”. He appreciatively
acknowledges the hospitality and support of the Department of Mathematics of the
University of Roma ”La Sapienza”, where this research was initiated.

2. Preliminaries and notations

We consider, throughout the paper, Hamiltonians with state variables in the Eu-
clidean n-dimensional space R

n. Given x, y ∈ R
n, x = (x1, ..., xn), y = (y1, ..., yn),
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a subset A of Rn, r > 0, we denote by:

∂A, Ā, int(A) (the topological boundary, the closure

and the interior of A, respectively)

〈y, x〉 =
n∑

i=1

xiyi (the Euclidean scalar product ),

|y − x| =
√
〈y − x, y − x〉 (the Euclidean distance),

d(x,A) = inf
z∈A

|z − x| (the Euclidean distance of x from A),

πĀ(x) = {z ∈ Ā : d(x,A) = |x− z|} (the projection set of x on Ā),

d♯(x,A) = 2d(x,A)− d(x, ∂A) (the signed distance of x from A),

B(x, r) = {z ∈ R
n : |z − x| < r} (the Euclidean ball centered at x of radius r).

Definition 2.1. Let A be a subset of Rn and a ∈ A, we say that A is star–shaped
with respect to a if for every λ ∈ [0, 1], p ∈ A, λa + (1 − λ)p ∈ A. We say that A
is strictly star–shaped with respect to a if, in addition, λa+ (1− λ)p ∈ int(A) when
λ ∈ (0, 1).

We will denote by coA the convex hull of A, namely the intersection of all convex
subsets of Rn containing A. The support function σA(·) is defined by:

σA(q) = sup
p∈A

〈q, p〉.

Note that σA(·) = σcoA (·).
Definition 2.2. Let K be a closed subset, p0 ∈ K, q ∈ R

n, we say that q is a
proximal normal to K at p0 if there exists ρ = ρ(p0) > 0 with

〈q, p− p0〉 ≤ ρ |q| |p− p0|2 for every p ∈ K.

The proximal normals to K at p0 make up a convex (not necessarily closed) cone
that will be denoted by NP

K(p0) and called proximal normal cone. For a closed
convex set, say C, the proximal cone reduces to the usual cone of convex analysis,
given by

NC(p0) = {q ∈ R
n : 〈p, p− p0〉 ≤ 0 for all p ∈ C}.

We recall that it is, in addition, closed. Note that σC(q) = 〈p0, q〉 for some q ∈ R
n,

p0 ∈ C if and only if q ∈ NC(p0).
A p0 ∈ C is called an extreme point of C if p0 = λp1+(1−λ)p2 for some 0 < λ < 1,

p1, p2 ∈ C implies p1 = p2 = p0. We state for later use the Krein–Milman Theorem
about extreme points and a corollary.

Theorem 2.1. Every compact and convex subset C of Rn is the convex hull of its
extreme points. Conversely if C = co(K) with K compact subset of Rn, then every
extreme point of C belongs to ∂K.

See for the proof . [9, Corollary 18.5.1, p. 167] and [9, Corollary 18.3.1, p. 165].

Corollary 2.1. Let C ⊂ R
n be a compact convex set, assume that q ∈ NC(p) for

some p ∈ C. Then there exists an extreme point p̄ of C such that q ∈ NC(p̄).
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Proof. Define F := {p ∈ C : 〈q, p〉 = σC(q)} and notice that it is a compact
and convex subset of C. So it has at least an extreme point, say p̄, thanks to
Krein–Milman Theorem. We prove that p̄ is also an extreme point for C.

Assume, by contradiction, that there exist λ ∈ (0, 1), p1, p2 ∈ C \ {p̄} with
p̄ = λp1 + (1− λ)p2. Therefore at least one of the pi, i = 1, 2, is not in F since p̄ is
an extreme point of F , and so, for such an i, 〈q, pi〉 < σC(q). From this we find

σC(q) = 〈q, p̄〉 = λ〈q, p1〉+ (1 − λ)〈q, p2〉 < σC(q),

which is impossible. �

For these and other properties of convex sets, that will be used in what follows,
we refer to [9]. We proceed by giving some notions of generalized differentials.

Definition 2.3. For a continuous function u from R
n to R, we define:

D+u(x) =

{
p : lim sup

|v|→0

u(x+ v)− u(x)− 〈p, v〉
|v| ≤ 0

}
,

D−u(x) =

{
p : lim inf

|v|→0

u(x+ v)− u(x)− 〈p, v〉
|v| ≥ 0

}
,

they are called the (Fréchet or viscosity) superdifferential and subdifferential of u
at x, respectively. These sets are closed and convex, possibly empty.

A characterization of these objects can be given as follows: v ∈ D+u(x) (resp.
v ∈ D−u(x)) iff there exists a neighborhood V of x and a C1 function ϕ : V → R

such that u − ϕ attains its maximum (resp. minimum) in V at x and v = Dϕ(x).
Such ϕ will be called a super (resp. sub)tangent test function. We say that ϕ is
a strict super (resp. sub)tangent if, in addition, x is strict local maximizer (resp.
minimizer) of u− ϕ.

Definition 2.4. Given a locally Lipschitz–continuous function u defined in R
n,

and denoted by dom(Du) its differentiability set (which is of full measure by
Rademacher’s theorem) the Clarke’s generalized gradient of u at x is the compact
convex set:

∂u(x) := co
{
v ∈ R

n : ∃{xn}n∈N ⊂ dom(Du) with v = lim
n→∞

Du(xn)
}
.

We proceed by giving some notions from viscosity solutions theory. A detailed
account of this topic, with some applications, is given in [1]. We are interested in
the Hamilton–Jacobi equation

(1) H(x,Du) = 0, x ∈ R
n

in the unknown u. The Hamiltonian H is supposed to be continuous in both
arguments

Definition 2.5. A continuous function u from R
n to R is called a viscosity subso-

lution of (1) if

H(x, p) ≤ 0 for any x, p ∈ D+u(x).

A viscosity supersolution is defined by replacing in the above formula D+ by D−

and requiring H(x, p) ≥ 0. A viscosity solution is a function which enjoys the
property of being a sub and a supersolution at the same time.
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From now on the term (sub, super) solution must be understood in the previous
viscosity sense. A subsolution of equation (1) is called strict in some open subset
Ω if

H(x, p) ≤ −δ for any x ∈ Ω, p ∈ D+u(x), and for some δ > 0.

We say that 0 is the critical value of H or that (1) is a critical equation if the
equation H = −δ does not have subsolutions for any δ positive.

Definition 2.6. Let T > 0 be fixed and B1, B2 ⊆ BT := L∞((0, T ),Rn). A
nonanticipating strategy is a map γ : B1 → B2 such that if t ∈ (0, T ) and η1, η2 ∈ B1

are such that η1 = η2 a.e. in (0, t), then γ[η1] = γ[η2] a.e. in (0, t).

For every x, y, we define

BT
x,y :=

{
ζ ∈ BT : x+

∫ T

0

ζ(t) dt = y

}
,

and denote by ΓT ,ΓT
x,y the nonanticipating strategies from BT to BT and from BT

to BT
x,y, respectively. In the case where T = 1, we write B,Bx,y,Γ,Γx,y instead of

B1, B1
x,y,Γ

1,Γ1
x,y.

3. Metrics associated with Hamilton–Jacobi equations

Throughout the paper, we consider the equation (1) under the following assump-
tions:

(H1) H is continuous in both arguments,
(H2) H(x, 0) ≤ 0 for any x,
(H3) if H(x, 0) = 0 then int(Z(x)) = ∅, where Z(x) := {p ∈ R

n : H(x, p) ≤ 0}
(H4) lim

|p|→+∞
H(x, p) = +∞ locally uniformly in x,

(H5) if int(Z(x)) 6= ∅ then ∂{p ∈ R
n : H(x, p) < 0} = {p ∈ R

n : H(x, p) = 0}.
We set

(2) E = {x : intZ(x) = ∅}.
Note that if E is nonempty then the equation (1) is critical. The Hamiltonians to
which our setting applies include those of separated–variables form F (p) − f(x),
where the potential f is nonnegative and F has minimum 0 with minimizers making
up a set with empty interior containing 0. In this case the corresponding equation
is critical if and only min f = 0, and then E is the set of minimizers of f . We

will write Z, instead of Z(x), in the case where the Hamiltonian is independent of
x. The coercivity condition (H4) implies that the sublevels Z(x) are compact for
any x and that all subsolutions to (1) are locally Lipschitz–continuous. The map
x→ Z(x) is upper semicontinuous in the Hausdorff metric, and continuous at any
x where int(Z(x)) 6= ∅, see [10, Proposition 2.1].

Remark 3.1. Conversely, an Hamiltonian satisfying our assumptions can be con-
structed starting from any Hausdorff–continuous set valued function x 7→ Z(x),
satisfying

0 ∈ Z(x) for any x,

intZ(x) = ∅ whenever 0 ∈ ∂Z(x),

by setting H(x, p) = d#(p, Z(x)).
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Next we recall the definition of intrinsic distance associated with the equation
(1), see [10]. This generalizes the relationship between Euclidean metric and the
classical Eikonal equation |Du| = 1. The nonconvex character of the Hamiltonian
leads to more involved formulae. Let T > 0, η ∈ BT , γ ∈ ΓT , z ∈ R

n. We set

IT
z (η, γ) :=

∫ T

0

−〈γ[η](t), η(t)〉 − |γ[η](t)|d♯(η, Z(ξη,γz (t)) dt

where

ξη,γz (t) := z +

∫ t

0

γ[η](s) ds

is the integral curve of γ[η] starting from z. The superscript T will be omitted if
equal to 1.

Definition 3.1. For each pair of points x, y, we define the intrinsic metric as

S(y, x) = inf
γ∈Γx,y

sup
η∈B

Ix(η, γ).

The next proposition summarizes the main properties of S.

Proposition 3.1. Let x, y, z ∈ R
n, T > 0. The following properties hold:

i. S(y, x) = inf
γ∈ΓT

sup
η∈BT

{IT
x (η, γ) + S(y, ξη,γx (T ))}.

ii. S(y, x) ≥ 0 and S(x, x) = 0, if, in addition, E = ∅ then S(y, x) > 0
whenever x 6= y,

iii. S(y, x) ≤ S(y, z) + S(z, x),
iv. If E = ∅ then S is a metric locally equivalent to the Euclidean one,
v. For every subset compact K, there exists CK > 0 such that S(y0, x0) ≤
CK |y0 − x0| for all x0, y0 ∈ K.

Proof. i. See [10, Proposition 3.3].

ii. According to (H2), 0 ∈ Z(z) for all z, therefore for η̄(s) ≡ 0 we have

S(y, x) ≥ inf
γ∈Γx,y

Ix(η̄, γ) = inf
γ∈Γx,y

∫ 1

0

−|γ[η̄](t)|d♯(η̄, Z(ξη̄,γx (t)) dt ≥ 0.

In order to obtain the converse inequality when x = y, define the strategy
γ̄ : B → Bx,x by setting γ̄[η](t) ≡ 0, then

S(x, x) ≤ sup
η∈Bx,x

Ix(η, γ̄) = 0.

Finally, let x, y be two different points, we set η̄ ≡ 0 in [0, 1]. Since
γ[η̄](t) 6= 0 for t in a subset of [0, 1] with positive 1–dimensional Lebesgue
measure, for any γ ∈ Γx,y, and d

♯(0, Z(z)) < 0 for any z, we have

S(y, x) ≥ inf
γ∈Γx,y

∫ 1

0

−|γ[η̄]|d♯(η̄, Z(ξη̄,γx (t))) dt > 0

iii. According to items i. ii.

S(y, x) = inf
γ∈Γ

sup
η∈B

{IT
x (η, γ) + S(y, ξη,γx (T ))} ≤ inf

γ∈Γx,z

sup
η∈B

{IT
x (η, γ) + S(y, z)}

= S(y, z) + S(z, x)
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iv. and v. Define R = sup{|p| : p ∈ Z(x), x ∈ coK}. We assume y0 6= x0, otherwise
there is nothing to prove. We define a nonanticipating strategy γ̄ ∈ Γx0,y0

by setting γ̄[η] ≡ y0−x0, so that ξη,γ̄x0
(t) = x0+ t(y0−x0) ∈ coK, t ∈ [0, 1].

We have

S(y0, x0)

|y0 − x0|
≤ sup

η∈B

∫ 1

0

−〈 y0 − x0
|y0 − x0|

, η〉 − d♯(η, Z(ξη,γ̄x0
(t))) dt

= sup
η∈B

{∫

I+

−〈 y0 − x0
|y0 − x0|

, η〉 − d♯(η, Z(ξη,γ̄x0
(t))) dt+

+

∫

I−

−〈 y0 − x0
|y0 − x0|

, η〉 − d♯(η, Z(ξη,γ̄x0
(t))) dt

}
,

where I+ = {t ∈ [0, 1] : |η(t)| > R} and I− = [0, 1] \ I+. For t ∈ I−

−〈 y0 − x0
|y0 − x0|

, η(t)〉 − d♯(η(t), Z(ξη,γ̄x0
(t))) ≤ R+R = 2R.

For t ∈ I+, we have by (H2)

−〈 y0 − x0
|y0 − x0|

, η(t)〉−d♯(η(t), Z(ξη̄,γx (t))) ≤ |η(t)|−d♯(η(t), B(0, R)) = |η(t)|−|η(t)|+R = R.

Hence, summing up, we find S(y0, x0) ≤ 2R|y0 − x0|, as desired.
�

The item v. of the previous result together with the triangle inequality clearly im-
plies that for any fixed y0 the function x 7→ S(y0, x) is locally Lipschitz–continuous.
Such functions make up a class of fundamental subsolutions of the problemH(x,Du) =
0, as made precise in the next proposition.

Proposition 3.2. Let x0 be fixed. Then v(x) := S(x0, x) is a subsolution of (1) in
the whole space and a supersolution of (1) in the whole space except x0.

Proof. See [10, Theorem 4.1, Theorem 4.2]. �

It can be showed, see [10], that S is not, in general, a path metric in the sense
that the distance between two given points can be strictly less than the infimum
of the corresponding length of curves joining them. As already pointed put in the
Introduction, this is, in a sense, the metric counterpart of the lack of the convexity
of the Hamiltonian. Another nonsymmetric distance, related to the convex–valued
function x 7→ coZ(x) can be defined as follows:

Definition 3.2. Given x, y, we set

L(x, y) = inf

{∫ 1

0

σZ(ξ(t))(ξ̇(t)) dt : ξ Lipschitz–continuous curve defined in [0, 1]

joining x to y

}
.

Since the support function of a set and of its convex hull coincide, the metric L can
be analogously defined replacing in the previous formula σZ(ξ(t)) by σcoZ(ξ(t)).

L is a path metric, more precisely of Finsler type, locally equivalent to the
Euclidean metric (cfr. [10, Section §1]) in the case where E = ∅. In general
S(y, x) ≤ L(y, x), and S = L if the 0–sublevels of H are convex (cfr. [10, Theorem
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2.1]). Another case where the two metrics coincide is illustrated in the following
result.

Proposition 3.3. Assume that the set–valued map coZ(·) is constant, then S = L.

Proof. We denote by K the constant value assumed by coZ(·), which is clearly a
convex compact set. We have L(y0, x0) = σK(x0 − y0) for any x0, y0, which, in
turn, implies L(y0, x0) = 〈p0, x0 − y0〉, for some p0 ∈ K depending on x0 and y0.
We moreover know from Corollary 2.1 that p0 can be chosen as an extreme point
of K, so that p0 ∈ ∂Z(x) for any x by Theorem 2.1. We proceed by giving an
estimate from below of S(y0, x0); for η̄ ≡ p0 we get

S(y0, x0) ≥ inf
γ∈Γx0,y0

∫ 1

0

−〈p0, γ[η̄]〉 dt = 〈p0, x0 − y0〉 = L(y0, x0).

This concludes the proof, being the converse inequality always true, as already
pointed out. �

Even if L = S one cannot expect that representation formulae for solutions to
(1), based on the intrinsic distance, can be extended without variations from the
convex to the nonconvex case. We end the section by discussing an example of this
setup. We first recall

Proposition 3.4. Assume p 7→ H(x, p) to be convex. Let K be a compact set and
g a continuous datum on K satisfying g(y1) − g(y2) ≤ L(y2, y1) for any y1, y2 in
K, then

(3) min
y∈K

L(y, x) + g(y)

is a solution of (1) in R
n \K taking the value g on K.

As announced, we exhibit in the next example a nonconvex Hamiltonian, inde-
pendent of x, for which L and S coincide according to Proposition 3.3, but formula
(3), with g ≡ 0, does not give a solution of (1).

Example 3.1. The ground space is R2,K = ∂B((0, 0), 1). We take Z = B((0, 0), 1)\
B
(
(2, 0),

√
3
)
, H = H(p) = inf{λ > 0 : p/λ ∈ Z}, so that Z is the 1–sublevel of

H , and consider the equation H(p) = 1. Note that the boundaries of the two

balls defining Z intersect in the two points p0 = (12 ,
√
3
2 ) and p1 = (12 ,−

√
3
2 ). This

justifies the choice of the radius of the large ball. Accordingly

coZ = B((0, 0), 1) ∩ {(x1, x2) : x1 ≤ 1/2}.
Since H does not depend on x, S(x, y) = L(x, y) = σZ(y − x) = σcoZ(y − x). We
recall that, given any unit vector y, the relation

(4) σZ(y) = σcoZ(y) = 〈p, y〉,
for some p ∈ Z, is equivalent to p ∈ coZ and y ∈ NcoZ(p). Therefore such a p is
equal to y if y ∈ K ∩Z, if instead y ∈ K \Z, then a p satisfying (4) is given either

by x̄ := (1/2,
√
3/2) or by x := (1/2,−

√
3/2). If y is an unit vector belonging to

K \ Z, we get in polar coordinates y = (cos θ, sin θ) with |θ| < π
3 and

σZ(y) = max{〈x̄, y〉 , 〈x, y〉} = cos
(π
3
− |θ|

)
≥ 1

2
.
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x1

x2

b

p0

b

p1

b

1/2
b

1

Z

K

Figure 1. K and Z(x)

Altogether we find that σZ(y) ≥ 1
2 for every y ∈ K, in addition the infimum of σZ(·)

in K is attained at y = (1, 0) and equals 1/2. In other terms miny∈K L(y, 0) = 1
2 .

We proceed showing that L(K, ·) := miny∈K L(y, ·) is not a solution of H(Du) = 1
in R

2 \ K, to repeat: formula (3), with g ≡ 0, does not provide a solution of
H(Du) = 1 . Set

ψ(x) =
1

2

(
x1 +

√
1− x22

)
for x ∈ B((0, 0), 1),

note that if ψ(x) > 0 then

σZ((2ψ(x), 0)) = ψ(x),

and consequently

ψ(x) = L(x− 2(ψ(x), 0), x),

which implies ψ(x) ≥ L(K,x) since x − 2(ψ(x), 0) ∈ K. Taking into account
that ψ(x) is strictly positive in some neighborhood of (0, 0) and ψ(0, 0) = 1

2 , we
discover, in the end, that ψ is supertangent to L(K, ·) at x = (0, 0). However
Dψ(0, 0) = (1/2, 0) does not belong to Z. Actually it is in coZ.

4. The Dirichlet problem in the nonconvex case

In this section we aim to solve the Dirichlet problem

(5)

{
H(x,Du(x)) = 0 for x ∈ R

n \K
u(x) = g(x) for x ∈ K
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where K is a compact subset of Rn and g a continuous datum on K. A particular
case is

(6)

{
H(x,Du(x)) = 0 for x ∈ Ω

u(x) = g(x) for x ∈ ∂Ω

where Ω is an open bounded domain of Rn. We look for solutions attaining con-
tinuously the datum on K and ∂Ω, respectively. The issue at stake is to provide a
generalization of formula (3) which does not hold in the nonconvex setting, even if
S = L, as seen in Example 3.1.

In order to give representation formulae for solutions to (5) we define some new
families of strategies and velocities where K is involved.

Definition 4.1. We define

BT
x,K := {ζ ∈ L∞([0, T ],Rn) : x+

∫ T

0

ζ(s) ds ∈ K}

ΓT
x,K := {γ : BT → BT

x,K : γ is a nonanticipating strategy},

as usual the subscript T will be omitted whenever T = 1.

We set

w(x) = inf
γ∈Γx,K

sup
η∈B

{Ix(η, γ) + g(ξη,γx (1))}(7)

w0(x) = inf
y∈K

{g(y) + S(y, x)},(8)

for x ∈ R
n, and proceed by establishing some comparison results for w, w0 and g.

Proposition 4.1. Let w and w0 defined as in 4.1, then for every x, y ∈ R
n one

has

i. w(x) ≤ w0(x);
ii. w(x) − w(y) ≤ S(y, x) and so w is locally Lipschitz–continuous;
iii. w0(x)− w0(y) ≤ S(y, x) and so w0 is locally Lipschitz–continuous;
iv. w0 ≤ g on K.

Proof. i. By the continuity of g and S, there exists y0 ∈ K such that

w0(x) = S(y0, x) + g(y0) = inf
γ∈Γx,y0

sup
η∈B

{Ix(η, γ) + g(y0)} ≥ w(x).

ii. Given ε > 0, choose a ε-almost optimal strategy γ̄ ∈ Γ
1/2
x,y , i.e.

S(y, x) > sup
η∈B1/2

I1/2
x (η, γ̄)− ε,

then define

Γ̃ := {γ ∈ Γx,K : γ[η](s) = γ̄[η](s) for all η ∈ B, s ∈ [0, 1/2]}
We have

w(x) ≤ inf
γ∈Γ̃

sup
η∈B

{Ix(η, γ) + g(ξη,γx (1))}

= sup
η∈B1/2

I1/2
x (η, γ̄) + inf

γ∈Γ
1/2
y,K

sup
B1/2

{I1/2
y (η, γ) + g(ξη,γ̄x (1/2))}

≤ S(y, x) + ε+ w(y),
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which implies the result. Notice that we have exploited the invariance
properties of S under change of time parametrization.

iii. There exists y0 ∈ K such that

w0(x)− w0(y) ≤ S(y0, x) + g(y0)− S(y0, x)− g(y0) ≤ S(y, x).

v. Set γ̄ to be the null strategy, i.e. γ̄[η] ≡ 0 for all η ∈ B. Then for all x ∈ K

w(x) ≤ sup
η∈B

Ix(η, γ̄) + g(x) = g(x).

�

As done before for S, we state a dynamic programming principle for the function
w.

Proposition 4.2. For all x ∈ R
n, 0 < t < 1 it holds

w(x) = inf
α∈Γt

sup
η∈Bt

{
It
x(η, α) + w(ξη,αx (t))

}
,

where ξη,αx (s) = x+
∫ s

0 α[η] ds.

Proof. Fix t ∈ (0, 1) and set

A := inf
α∈Γt

sup
η∈Bt

{
It
x(η, α) + w(ξη,αx (t))

}
.

By the invariance of w by time parametrization and the fact that g(y) ≥ w(y) if
y ∈ K we have

w(x) = inf
γ∈Γt

x,K

sup
η∈Bt

{
It
x(η, γ) + g(ξη,γx (t))

}
≥ inf

γ∈Γt
x,K

sup
η∈Bt

{
It
x(η, γ) + w(ξη,γx (t))

}

≥ inf
γ∈Γt

sup
η∈Bt

{
It
x(η, γ) + w(ξη,γx (t))

}
= A.

It is left to prove w(x) ≤ A. For any given z ∈ K, denote by γz a nonanticipating
strategy

γz : B1−t → B1−t
z,K

such that
w(z) ≥ sup

η∈B1−t

{I1−t
z (η, γz) + g(ξη,γz

z (1− t))} − ε.

Let ᾱ : Bt → Bt be a nonanticipating strategy with

A ≥ sup
η∈Bt

{It
x(η, ᾱ) + w(ξη,ᾱx (t))} − ε.

Set ztη = ξη,ᾱx (t), we have

A ≥ sup
η∈Bt

{
It
x(η, ᾱ) + sup

ρ∈B1−t

{
I1−t
zt
η

(ρ, γzt
η
) + g

(
ξ
ρ,γztη

zt
η

(1− t)
)}}

− 2ε.

We define a nonanticipating strategy δ : B → B as follows

δ[η](s) :=

{
ᾱ
[
η|[0,t]

]
(s) for s ∈ [0, t]

γzt
η
[η̃] (s− t) for s ∈ [t, 1]

,

where η̃ ∈ B1−t is defined by η̃(s) = η(t+ s) for any s ∈ [0, 1− t].

Claim 1. δ[η] ∈ Bx,K for all η ∈ B.
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In fact, we have

x+

∫ 1

0

δ[η](s) ds = x+

∫ t

0

ᾱ[η|[0,t]|] ds+

∫ 1

t

γzt
η
[η̃](s− t) ds

= ztη +

∫ 1−t

0

γzt
η
[η̃](σ) dσ = ξ

η̃,γztη

zt
η

(1 − t) ∈ K

This ends the proof of Claim 1.
Define the following quantities

A1 := sup
η∈Bt

{
It
x(η, ᾱ) + sup

ρ∈B1−t

{
I1−t
zt
η

(ρ, γzt
η
) + g

(
ξ
ρ,γztη

zt
η

(1− t)
)}}

,

A2 := sup
η∈B

{Ix(η, δ) + g(ξη,δx (1))}.

Claim 2. A1 = A2.

In fact, we have that for every ε > 0 there exist τ0 ∈ Bt, ρ0 ∈ B1−t such that

A1 ≤ It
x(τ0, ᾱ) + sup

ρ∈B1−t

{
I1−t
zt
τ0

(ρ, γzt
τ0
) + g

(
ξ
ρ,γztτ0

zt
τ0

(1 − t)
)}

+ ε

≤ It
x(τ0, ᾱ) + I1−t

zt
τ0

(ρ0, γzt
τ0
) + g

(
ξ
ρ0,γztτ0

zt
τ0

(1− t)
)
+ 2ε

= Ix(τ̄ , δ) + g(ξτ̄ ,δx (1)) + 2ε ≤ A2 + 2ε

where τ̄ ∈ B is defined by juxtaposition of τ0 and ρ0, namely τ̄ (s) = τ0(s) for
s ∈ [0, t] and τ̄(s) = ρ0(s− t) if s ∈]t, 1].

On the other hand there exists η0 ∈ B such that

A2 ≤ Ix(η0, δ) + g(ξη0,δ
x (1)) + ε.

Denoting by η1 = η0|[0,t], η2 = η0|[t,1] and η̃2(s) = η2(t+s) for s ∈ [0, 1− t], we have

A2 ≤ It
x(η1, ᾱ) + I1−t

zt
η1

(η̃2, γzt
η1
) + g

(
ξ
η̃2,γztη1

zt
η1

(1− t)

)
+ ε

≤ sup
η∈Bt

{
It
x(η, ᾱ) + I1−t

zt
η

(η̃2, γzt
η
) + g

(
ξ
η̃2,γztη

zt
η

(1 − t)

)}
+ ε

≤ A1 + ε.

By letting ε→ 0 Claim 2 is proved.

To conclude the proof of the proposition, observe that by Claim 1 and Claim 2 we
have

A ≥ A1 − 2ε = A2 − 2ε ≥ inf
γ∈Γx,K

sup
η∈B

{Ix(η, γ) + g(ξη,γx (1))} − 2ε = w(x) − 2ε.

�

The main interest in the function w is given by the following result:

Theorem 4.1. The function w is a viscosity solution of (1) in R
n \K and subso-

lution on the whole R
n.

The proof is broken into two parts.



14 A. MARIGONDA AND A. SICONOLFI

Proposition 4.3. w is a subsolution of (1) in R
n.

Proof. The proof follows the same line of [10, Theorem 4.1]. We argue by contra-
diction, assuming that there exists a C1 supertangent ψ to w at x0 ∈ R

n such that
H(x0, Dψ(x0)) > 0, we can also assume without loosing generality that w and ψ
coincide at x0.
Let q0 be a fixed unit vector. Define a map f : Rn → R

n by

f(p) :=





p−Dψ(x0)

|p−Dψ(x0)|
if p 6= Dψ(x0)

q0 for p = Dψ(x0)
.

Taking into account the continuity of Dψ and d♯(·, Z(·)), we can find positive con-
stants θ and T0 with d♯(Dψ(x), Z(x)) > θ for x ∈ B(x0, T0). Set

R := sup{|p| : x ∈ B(x0, T0), p ∈ Z(x)},
M := sup{|Dψ(x)| : x ∈ B(x0, T0)},

ε := min

{
θ

2(M + θ +R)
,
1

2

}

We can select T ∈]0, T0] such that

w(x) ≤ ψ(x), |Dψ(x) −Dψ(y)| < θε

8

for all x, y ∈ B(x0, T ). For every η ∈ BT and t ∈ [0, T ], we define

ξη(t) = x0 +

∫ t

0

f(η(s)) ds.

Since |f | = 1, |ξη(t)− x0| ≤ t for all t ∈ [0, T ].

Claim. For any x ∈ B(x0, T ) and p ∈ R
n we have

(9) d♯(p, Z(x)) + 〈f(p), p−Dψ(x)〉 ≥ θ

2
.

Proof of the Claim. First assume |p −Dψ(x)| ≤ θ/4. This implies, by the very
definition of θ, that d♯(p, Z) > 0, consequently for every p′ ∈ πZ(p), we find

d♯(p, Z) = |p− p′| ≥ |p′ −Dψ(x)| − |p−Dψ(x)| ≥ 3

4
θ,

hence

d♯(p, Z) + 〈f(p), p−Dψ(x)〉 ≥ d♯(p, Z)− |p−Dψ(x)| ≥ θ

2
.

Assume now that |p −Dψ(x)| > θ/4. Then, according to the choice of T and the
definition of ε ≤ 1/2, we have

|p−Dψ(x0)| ≥ |p−Dψ(x)| − |Dψ(x) −Dψ(x0)| >
θ

8
.



METRIC FORMULAE FOR NONCONVEX HJ EQ. 15

So∣∣∣∣
p−Dψ(x)

|p−Dψ(x)| −
p−Dψ(x0)

|p−Dψ(x0)|

∣∣∣∣ =
8

θ

∣∣∣∣
θ

8

p−Dψ(x)

|p−Dψ(x)| −
θ

8

p−Dψ(x0)

|p−Dψ(x0)|

∣∣∣∣

=
8

θ

∣∣πB(0,θ/8)(p−Dψ(x)) − πB(0,θ/8)(p−Dψ(x0))
∣∣

≤ 8

θ
|(p−Dψ(x)) − (p−Dψ(x0))|

≤ 8

θ
|Dψ(x)−Dψ(x0)| ≤ ε

Since ε < 1, we have 〈f(p), p−Dψ(x)〉 > 0. We consider two further cases:

i. if |p−Dψ(x)| > θ/4 and |p| > R+ θ, we have

d♯(p, Z(x)) + 〈f(p), p−Dψ(x)〉 > d♯(p, Z(x)) > θ.

ii. if |p−Dψ(x)| > θ/4 and |p| ≤ R+ θ we have

θ ≤ d♯(Dψ(x), Z(x)) ≤ d♯(p, Z(x)) + |p−Dψ(x)|

≤ d♯(p, Z(x)) +

∣∣∣∣
p−Dψ(x)

|p−Dψ(x)| −
p−Dψ(x0)

|p−Dψ(x0)|

∣∣∣∣ |p−Dψ(x)|+

+〈f(p), p−Dψ(x)〉
≤ d♯(p, Z(x)) + ε(R+ θ +M) + 〈f(p), p−Dψ(x)〉

≤ d♯(p, Z(x)) +
θ

2
+ 〈f(p), p−Dψ(x)〉.

This fact concludes the proof of the Claim.

We define a nonanticipating strategy γ̄ ∈ ΓT by setting γ̄[η](t) = f(η(t)) for a.e.
t ∈ [0, T ]. According to the choice of T , we have that γ̄ : BT → BT , and w(ξη(t)) ≤
ψ(ξη(t)) for all t ∈ [0, T ]. Applying Proposition 4.2, we have

ψ(x0) = w(x0) ≤ sup
BT

{IT
x0
(η, γ̄) + w(ξη(T ))} ≤ sup

BT

{IT
x0
(η, γ̄) + ψ(ξη(T ))}.

Hence, we get

sup
η∈Bt

{∫ t

0

〈γ̄[η](s), Dψ(ξη(s)) − η(s)〉 − d♯(η(s), Z(ξη(s)))

}
≥ 0,

which contradicts the Claim. The proof is concluded. �

Proposition 4.4. w is a supersolution of (1) in R
n \K.

Proof. The argument is by contradiction. Assume there exist y0 ∈ R
n \ K and a

strict subtangent ϕ to w at y0, with w(y0) = ϕ(y0), such that

d♯(Dϕ(y0), Z(y0)) < 0.

Consequently

(10) h(y) := |Dϕ(y)−Dϕ(y0)|+ d♯(Dϕ(y0), Z(y)) < 0

in some neighborhood V of y0 with closure contained in R
n \K.

Set ε = min∂V (w − ϕ) > 0, and select a nonanticipating strategy γ̄ : B → By0,K

with

w(y0) ≥ sup
η∈B

Iy0
(η, γ̄) + g(ξ̄(1))− ε

2
.
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Set η̄ ≡ Dϕ(y0), since the closure of V is disjoint from K the trajectory ξ̄(t) :=
ξη̄,γ̄y0

(t) must intersect ∂V , we denote by t̄ the first time when such intersection takes

place. Note that here we are essentially exploiting that y0 6∈ K. Given σ ∈ B1−t̄,
we define

ησ(s) :=

{
Dϕ(y0) for s ∈ [0, t̄[
σ(s− t̄) for s ∈ [t̄, 1]

Thanks to the nonanticipating character of γ̄, we get a new nonanticipating strategy

δ : B1−t̄ → B1−t̄
ξ̄(t̄),K

by setting δ(σ(s)) = γ̄(ησ(s+ t̄)) for every σ ∈ B1−t̄. Therefore

w(y0) ≥ I t̄
y0
(η̄, γ̄) + sup

σ∈B1−t̄

{
I1−t̄
ξ̄(t̄)

(σ, δ) + g(ξ̂σ(1− t̄))− ε

2

}

≥ I t̄
y0
(η̄, γ̄) + w(ξ̄(t̄))− ε

2
≥ I t̄

y0
(η̄, γ̄) + ϕ(ξ̄(t̄)) +

ε

2
,

where ξ̂σ(t) = ξ̄(t̄) +
∫ t

0 δ[σ](s) ds for t ∈ [0, 1− t̄]. Finally

ε

2
≤

∫ t̄

0

〈γ̄[η̄], η̄ −Dϕ(ξ̄)〉+ |γ̄(η̄)|d♯(η, Z(ξ̄)) ds

≤
∫ t̄

0

|γ̄[η̄]|[|Dϕ(y0)−Dϕ(ξ̄)|+ d♯(η, Z(ξ̄))] ds

≤
∫ t̄

0

|γ̄[η̄]|h(ξ̄) ds.

This is impossible since ξ̄(t) ∈ V for all t ∈ [0, t̄[ and (10) holds. �

The inf–sup representation formula we have introduced possess a stability prop-
erty with respect to the uniform convergence, as specified by the following result.

Proposition 4.5. Set for any g ∈ C0(K)

(Tg)(x) = inf
γ∈Γx,K

sup
η∈B

{Ix(γ, η) + g(ξη,γx (1))},

for x ∈ R
n. If gn is a sequence of C0(K) uniformly converging to some g∞ then

Tgn → Tg∞ locally uniformly in R
n.

Proof. Set wn = Tgn, w∞ = Tg∞ and fix a compact subset C in R
n, by Proposition

4.1 wn and w∞ are equiLipschitz–continuous in C. We denote by M a common
Lipschitz constant for them. Fix ε > 0, by compactness of C there exist a positive
integer N and x1, ...., xN ∈ C such that

min{|xi − x| : i = 1...N} < ε for any x ∈ C.

Let n be such that ‖g − gn‖∞,K < ε, we can find strategies γ̄i ∈ Γxi,K such that

wn(xi) ≥ sup
η∈B

{Ixi(γ̄i, η) + gn(ξ
η,γ̄i
xi

(1))} − ε,

and η̄i ∈ B with

sup
η∈B

{Ixi(γ̄i, η) + g∞(ξη,γ̄i
xi

(1))} ≤ Ixi(γ̄i, η̄i) + g∞(ξη̄i,γ̄i
xi

(1)) + ε,
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for every i = 1...N . Given x ∈ C, we deduce for a suitable i

w∞(x) − wn(x) = w∞(x)− w∞(xi) + w∞(xi)− wn(xi) + wn(xi)− wn(x)

≤ 2M |x− xi|+ w∞(xi)− wn(xi)

≤ 2M ε+ sup
η∈B

{Ixi(γ̄i, η) + g∞(ξη,γ̄i
xi

(1))} − sup
η∈B

{Ixi(γ̄i, η) + gn(ξ
η,γ̄i
xi

(1))}+ ε

≤ 2M ε+ Ixi(γ̄i, η̄i) + g∞(ξη̄i,γ̄i
xi

(1)) + ε− Ixi(γ̄i, η̄i)− gn(ξ
η̄i,γ̄i
xi

(1)) + ε

≤ 2M ε+ ‖gn − g∞‖∞,K + 2ε < (2M + 3)ε.

Exchanging the role of wn and w∞, we obtain the same estimate of above for wn(x)−
w∞(x), hence the proof is concluded taking into account that ε is arbitrary. �

5. Compatibility conditions for the boundary data

Here we focus our attention to the Dirichlet problem (6). Thanks to the results
of the previous section, we know that the function w defined in (7) with ∂Ω in place
of K is a solution in Ω of equation (1).
To show that w actually solves (6), one has to introduce, as in the convex case,
compatibility requirements on the boundary datum ensuring that w agrees with it
on ∂Ω. We recall that in the case where the Hamiltonian is convex, a sufficient
condition for this is that g is 1 Lipschitz–continuous with respect to the distance
related to the Hamiltonian. This is not true any more if H is nonconvex. More
generally, we introduce in the next proposition a class of boundary data g satisfying

(11) g(x)− g(y) ≤ S(y, x) for x, y in ∂Ω,

for which the Dirichlet problem (6) does not admit any solution. This result gen-
eralizes Theorem 3.1 in [4], in the fact that we take Hamiltonians not necessarily
independent of state variable, but just with 0–sublevels possessing constant convex
hull. In addition our argument is definitely simpler than that used in [4].

Proposition 5.1. Let Ω be a bounded open domain of Rn. Assume the Hamiltonian
H such that its 0 sublevels satisfy coZ(·) =: C constant, and ∂C \ ∪x∈ΩZ(x) 6= ∅,
then there is p ∈ intC such that the problem (6) with boundary datum g(x) = 〈p, x〉
does not admit any solution.

Note that under the previous assumptions S = L by Proposition 3.3 and so the
linear datum, appearing in the statement, satisfies (11). Further we point out that
the argument we are going to use for proving Proposition 5.1 actually shows a more
general assertion, namely that if p0 ∈ ∂C \ ∪x∈ΩZ(x) then any boundary datum

obtained through suitably small perturbation of x 7→ 〈p0, x〉 in C0(∂Ω) gives rise
to a Dirichlet problem not admitting any solution.

Proof. First select p0 ∈ ∂C \ ∪x∈ΩZ(x) pn ∈ intC converging to p0, set gn(x) =
〈pn, x〉 and assume by contradiction that there is a solution un to (6) in Ω, with gn
in place of g. It must be

(12) un(x) < 〈pn, x〉 for any x ∈ Ω,

for n sufficiently large, otherwise 〈pn, ·〉 should be supertangent to u at some point
of Ω, which is impossible since un is a solution in Ω and pn 6∈ Z(x), when n is large
enough, for any x ∈ Ω, by the continuity properties of the set–valued function Z(·).
By the coercivity assumption (H4) on H the un are equiLipschitz–continuous with
respect the geodetic Euclidean distance in Ω, denoted by dΩ, and, bearing in mind
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that they take continuously the value gn on ∂Ω, we can invoke Ascoli Theorem to
derive that they locally uniformly converge, up to a subsequence, to some u in Ω,
which is locally Lipschitz–continuous in Ω. By straightforward stability properties
of viscosity solutions, see [1], u is solution of (1) in Ω, furthermore by (12)

lim sup
x→y

u(x) ≤ 〈p0, y〉 for any y ∈ ∂Ω,

and so we can argue as above, to deduce

(13) u(x) < 〈p0, x〉 for any x ∈ Ω.

We proceed by picking v 6= 0 in NC(p0), x in Ω with x + v ∈ ∂Ω and x + t v ∈ Ω
for t ∈ [0, 1). We set

I = {x+ t v : t ∈ [0, 1)},
since dΩ(x1, x2) = |x1 − x2| for x1, x2 in I, the un are equiLipschitz–continuous in
I and so they uniformly converge in I, up to further extraction of a subsequence, to
some Lipschitz–continuous function which must coincide with u. Therefore, since
un(x + v) = gn(x+ v) for any n

lim
t→1

u(x+ t v) = 〈p0, x+ v〉,

which implies

(14) 〈p0, x+ v〉 − u(x) =

∫ 1

0

d

dt
u(x+ tv) dt.

We know from [5] that

d

dt
u(x+ tv) = 〈p(t), v〉 for a.e. t ∈ (0, 1) and some p(t) ∈ ∂u(x+ t v),

since ∂u(x+ t v) ⊂ C for any t ∈ (0, 1), being u a solution (1) in Ω, and v ∈ NC(p0)
we deduce from (14)

〈p0, x+ v〉 − u(x) ≤ 〈p0, v〉
and, taking into account (13)

〈p0, x+ v〉 − 〈p0, x〉 < 〈p0, x+ v〉 − u(x) ≤ 〈p0, v〉,
which is impossible. �

The next example, which is a development of Example 3.1, shows a boundary datum
g of different nature with respect to those considered in the previous proposition,
satisfying (11), with g 6= w at some point of the boundary, where w is defined as
in (7). Sufficient conditions for w in order to take the value g on the boundary of
Ω will be presented later; according to Proposition 4.5 the compatible boundary
datum make up a closed subset in C0(∂Ω) with respect to the uniform convergence.

Example 5.1. Our ground space is R2. We set Ω′ = B((0, 0), 1), Ω = Ω′ \ {(0, 0)},
and define Z, H as in Example 3.1. Notice that ∂Ω = {(0, 0)} ∪ ∂Ω′. We consider
Dirichlet problem (5) in Ω with boundary datum

g ≡ 0 on ∂Ω′, g(0, 0) = 1/2.
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In order to show that (11) holds, we introduce a convex Hamiltonian, say H̄(p),
with co(Z) as 0–sublevel set and consider the auxiliary Dirichlet problem:

{
H̄(x,Dv) = 0 for x ∈ Ω′

u(x) = 0 for x ∈ ∂Ω′

The unique solution is given by

w0(x) := min{L(y, x) : y ∈ ∂Ω′}.
As shown in Example 3.1, w0 takes the value 1

2 at (0, 0), which actually shows the
validity of (11) taking into account that the intrinsic distances S and L coincide,
since the Hamiltonian is independent of x. Let w be defined as in (7). We claim
that w = g on ∂Ω′, but w(0, 0) < g(0, 0) = 1/2. Setting η̄ ≡ 0, we have

w(x) = inf
γ∈Γx,∂Ω

Ix(η̄, γ) + g(ξη̄,γx (1))

≥ inf
γ∈Γx,∂Ω

∫ 1

0

−|γ[η](t)|d♯(0, Z(ξη̄,γx (t))) dt+ g(ξη̄,γx (1)) ≥ 0,

which directly implies that w vanishes on ∂Ω′ being the inequality w ≤ g always
true.

We define w̃ via formula (7) with Ω′ and the null function in place of Ω and g.
We emphasize that the boundary datum for w̃ is set equal 0 at 0. Notice, further,
that w̃ ≤ w0 in Ω′. From Γx,∂Ω ⊇ Γx,(0,0) ∪ Γx,∂Ω′ , it follows

w(x) ≤ min{S((0, 0), x) + 1

2
, w̃(x)},

and so

w(0) ≤ min

{
1

2
, w̃(0, 0)

}
.

To prove the final part of our claim, it is then sufficient to show the strict inequality
w̃(0, 0) < 1/2 = w0(0, 0). For this, we recall that in Example 3.1, we have con-
structed a supertangent ψ to w0 at (0, 0) with Dψ(0, 0) ∈ co(Z)\Z. If w̃(0, 0) = 1

2 ,
then ψ should be also a supertangent to w̃ at (0, 0), which is impossible, since w̃ is
a solution to (1) in Ω′.

As announced, we proceed by presenting some results giving sufficient conditions
in order to ensure the equality w = g on ∂Ω under suitable assumptions on ∂Ω, the
boundary datum and the sublevels of the Hamiltonian. This clearly implies that
w solves the Dirichlet problem (5). Notice that, according to Proposition 4.1, it
is actually enough to prove that w ≥ g on ∂Ω. The strategy of the proofs can be
summarized as follows:

(1) we make some geometric global requirement on the datum, on the domain
Ω and on the sublevel Z.

(2) by taking, in the formula defining w, the covector curve η constant, we get
an estimate from below of w; notice that in this case the first term in the
integral expressing Ix(γ, η) is independent of the strategy.

In the first proposition we require a Lipschitz continuity of the boundary datum g
with respect to the metric L1 given by

L1(y, x) = inf

{∫ 1

0

|ξ̇ |d(0, ∂Z(ξ(t))) dt : ξ : [0, 1] → R
N Lipschitz–continuous , ξ(0) = y, ξ(1) = x

}
.
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for any x, y in R
n. Notice that L1 can be equivalently defined as L with the sup-

port function of B(0, d(0, ∂Z(·)) replacing that of Z(·). From this we see that
L1 is of Finsler type. Note that if the Hamiltonian is independent of x and
Z := {p : H(p) ≤ 0} then L1(y, x) = d(0, ∂Z) dΩ(y, x), for any x, y; if furthermore
Ω is convex, L1(y, x) = d(0, ∂Z) |y − x|.

Proposition 5.2. If g satisfies g(x) − g(y) ≤ L1(y, x) for all x, y ∈ ∂Ω, then the
function w defined in (7) takes the value g on ∂Ω, and so is a solution of the
Dirichlet problem (6).

Proof. In view of Proposition 4.1 it is enough to prove the inequality w ≥ u on ∂Ω.
For this set η̄ ≡ 0 and compute

w(x) ≥ inf
γ∈Γx,∂Ω

Ix(η̄, γ) + g(ξη̄,γx (1))

= inf
γ∈Γx,∂Ω

∫ 1

0

−|γ[η̄](t)|d♯(0, Z(ξη̄,γx (t))) dt + g(ξη̄,γx (1))

= inf
y∈∂Ω

L1(y, x) + g(y) = g(x).

�

The interesting point in the following propositions is that, in order to get the
equality w = g, we assume conditions on g and ∂Ω. Loosely speaking, they prevent
the points of the boundary giving a contribution to the determination of w(x) from
being too far from x. In the next proposition it is in particular assumed some
convexity on the boundary datum. The Hamiltonian is taken independent of the
state variable.

Proposition 5.3. Let H = H(p) and denote by Z its 0–sublevel. Assume that g
is the trace on ∂Ω of a convex function ḡ defined in R

n. If Z ∩ D−ḡ(x) 6= ∅, for
all x ∈ ∂Ω, then the function w, defined as in (7), agrees with g on ∂Ω, and so is
a solution of (6).

Proof. Let x be in ∂Ω, we denote by p an element of Z ∩D−ḡ(x). Since ḡ is convex

g(x) ≤ g(y)− 〈p, y − x〉 for all y ∈ ∂Ω.

Set η̄ ≡ p. We have

w(x) ≥ inf
Γx,∂Ω

{Ix(η̄, γ) + g(ξη̄,γx (1))} ≥ inf
Γx,∂Ω

{∫ 1

0

−〈γ[η̄](t), p〉 dt+ g(ξη̄,γx (1))

}

= inf
y∈∂Ω

{−〈p, y − x〉+ g(y)} = g(x)

�

If Ω is convex then any constant boundary datum is the trace of the convex
function ḡa,b := a d(·,Ω) + b for a suitable b and any a > 0. In this case the
condition NΩ(x) ∩ Z 6= ∅ for any x ∈ ∂Ω guarantees that w = g. This is in fact a
consequence of Proposition 5.2 since we are assuming 0 ∈ Z.

If Ω is convex and the boundary datum nonconstant, we have

Proposition 5.4. Let H, Z, w as in Proposition 5.3. Let Ω be convex and assume,
in addition, that for all x ∈ ∂Ω there exists p = p(x) ∈ NΩ(x)∩Z with d(p, ∂Z) ≥ L.
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If the boundary datum g is Lipschitz–continuous with Lipschitz constant L then
g = w on ∂Ω.

This proposition should be compared to Theorem 2.6 in [4] and Theorem 7. in
[6]. We will obtain it as a special case of the forthcoming Proposition 5.5, where
we will make use of the proximal normal cone to ∂Ω. Before doing that, we point
out in the following example that the Lipschitz estimates on the boundary datum
required in Propositions 5.2 and 5.4 to get the equality w = g can be very different.

Example 5.2. The ground space is R
2. Fix ε > 0, and set Ω = [−1, 1]× [−1, 1],

note that the geodetic distance dΩ coincides with the Euclidean one, being Ω convex.
Define

T1 = co{(0, 0), (2,±
√
3)} , T2 = co{(0, 0), (−2,±

√
3)}

T3 = co{(0, 0), (±
√
3, 2)} , T4 = co{(0, 0), (±

√
3,−2)}

and set

Z =
(
[−1, 1]× [−ε, ε]

)
∪
(
[−ε, ε]× [−1, 1]

)
∪

4⋃

k=1

Tk.

Notice that, for all x ∈ ∂Ω, NΩ(x) ∩ Z contains at least one vector among (±1, 0)
and (0,±1), and all these vectors stay at an Euclidean distance 1

2 from ∂Z. Proposi-
tion 5.4 then guarantees the equality w = g for any Lipschitz–continuous boundary
datum with Lipschitz constant greater than or equal to 1

2 . An application of Propo-

sition 5.2 allows to reach the same conclusion only if L ≤ d(0, ∂Ω) = ε
√
2, and ε

can be of course taken arbitrarily small.

Proposition 5.5. Let H be independent of x, w defined as in (7), and g Lipschitz–
continuous with Lipschitz constant L.

Assume that for every x ∈ ∂Ω there exists p = p(x) ∈ NP
∂Ω(x) ∩ Z with

|x− y|(d(p, ∂Z)− L) ≥ ρ |p| |y − x|2 for every y ∈ ∂Ω,

where ρ = ρ(p) is the positive constant appearing in the definition of proximal
normal (see Definition 2.2). Then w = g on ∂Ω.

Proof. Given x ∈ ∂Ω, and p enjoying the properties of the statement with respect
to x. We set η̄ ≡ p, we have

w(x) ≥ inf
γ∈Γx,∂Ω

{∫ 1

0

(−γ[η̄]p+ d(p, ∂Z)|γ[η̄]|) dt+ g
(
ξη̄,γx (1)

)}

≥ inf
y∈∂Ω

〈−p, y − x〉+ d(p, ∂Z) |y − x|+ g(y)

≥ inf
y∈∂Ω

{−ρ |p| |y − x|2 + d(p, ∂Z) |y − x|+ g(y)− g(x)}+ g(x)

≥ inf
y∈∂Ω

{−ρ |p| |y − x|2 + (d(p, ∂Z)− L) |y − x|}+ g(x) = g(x)

�
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Proposition 5.3 can be suitably generalized weakening the convexity condition
on g. We preliminary recall that a function f defined in R

n is called semiconvex if
f + α|x|2 is convex for some positive α. Note that in this case f +α|x− y|2 is also
convex for any y ∈ R

n. Such an α is named semiconvexity constant for f . For a
semiconvex function f , D−f(x) = ∂f(x) for all x, and

(15) f(y) ≥ f(x) + 〈p, y − x〉 − α|y − x|2 for any x, y, p ∈ D−f(x).

A function f is called semiconcave iff−f is semiconvex. We refer to [3] for properties
of semiconcave and semiconvex functions.

Proposition 5.6. Let H, Z, w be as in Proposition 5.3. Assume that g is the trace
on ∂Ω of a semiconvex function g̃, defined in R

n, with semiconvexity constant α.
If for all x ∈ ∂Ω there is p = p(x) ∈ Z ∩D−g̃(x) with α diam(Ω) ≤ d(p, ∂Z), then
w = g on ∂Ω, and therefore w is a solution of the Dirichlet problem (6).

Proof. We fix x ∈ ∂Ω, p = p(x) with the properties appearing in the statement and
set, as in the proof of Proposition 5.3, η̄ = p, we exploit the assumption and (15)
to get

w(x) ≥ inf
Γx,∂Ω

{∫ 1

0

−γ[η̄](t)p+ |γ[η̄](t)|d(p, ∂Z) dt+ g(ξη̄,γx (1))

}

≥ inf
y∈∂Ω

{−〈p, y − x〉+ d(p, ∂Z)|y − x|+ g(y)}

≥ inf
y∈∂Ω

{
−〈p, y − x〉+ α|y − x|2 + g(y)

}
≥ g(x).

This concludes the proof. �

Note that if the g̃ appearing in the previous statement is convex, then α = 0 and
we recognize that Proposition 5.3 is actually a special case of Proposition 5.6. We
end the section by stating and proving a couple of comparison principles.

Proposition 5.7. Let Ω be a bounded open subset of R
n. Assume Z(x) to be

strictly star–shaped with respect to 0 for every x ∈ Ω. Then if u, v are super and
subsolutions to H = 0 in Ω, respectively, lower and upper semicontinuous in Ω̄,
respectively, and u ≥ v on ∂Ω, then u ≥ v on the whole of Ω.

We note that, by the coerciveness of the Hamiltonian, the subsolution v is indeed
locally Lipschitz–continuous in Ω.

Proof. Assume by contradiction that the minimum of u−v in Ω̄ is strictly negative.
Taking into account that u− v is l.s.c., and nonnegative on ∂Ω by assumption, we
find a positive constant ρ such that any minimizer of u−v is at distance greater than
ρ from ∂Ω. Therefore there is an open set B compactly contained in Ω containing
all such minimizers. We select λ close to 1 for which the minimizers of u− λ v are
still contained in B. Because of star–shapedness of Z(x), continuity of H and the
fact that Ω is compact, the function vλ := λv satisfies

(16) H(x,Dvλ) ≤ −δ in the viscosity sense in Ω,

for some positive δ. For each n ∈ N, we consider the Moreau sup–convolution of
vλ(x)

vλ,n(x) = sup
y∈Ω̄

{
vλ(y)−

n

2
|x− y|2

}
,
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and the Moreau inf-convolution of u(x)

un(x) = inf
y∈Ω̄

{
u(y) +

n

2
|x− y|2

}
,

with x ∈ B. The functions vλ, u are the weak upper semilimit of vλ,n and the weak
lower semilimit of un in B, respectively, as n goes to infinity. This means:

vλ(x) = sup{lim sup
n

vλ,n(xn) : xn → x}

u(x) = inf{lim inf
n

un(xn) : xn → x}

We can therefore select n sufficiently large such that un − vλ,n has a minimizer x̄

in B belonging to B. By exploiting basic properties of sub(super)– convolution,
(16), and the continuous character of the Hamiltonian, we can also assume, without
loosing generality, that for such an n

H(x,Dun) ≥ − δ
3

, H(x,Dvλ,n) ≤ −δ/2 in the viscosity sense in B.

Since un, vλ,n are semiconcave and semiconvex, respectively, and so D−vλ,n(x̄) and
D+um(x̄) are nonempty, we deduce that such functions are both differentiable at
the minimizer x̄ with Dun(x̄) = Dvλ,n(x̄) =: p0. This implies the inequalities

H(x̄, p0) ≥ −δ/3 , H(x̄, p0) ≤ −δ/2,
which are contradictory. �

If some of the conditions ensuring that g and w, defined in (7) with ∂Ω in place
of K , agree on ∂Ω hold and we are in the setting of the previous proposition, then
we directly deduce that w is indeed the unique solution of (6).

Proposition 5.8. Let K, H be a compact subset of Rn and an Hamiltonian inde-
pendent of x with 0–sublevel Z strictly star–shaped with respect to 0, respectively.
Assume that u and v are super and subsolution of H = 0 in R

n \K , respectively,

lower and upper semicontinuous in Rn \K, respectively, with u ≥ v in ∂K and

lim
|x|→+∞

u(x) = lim
|x|→+∞

v(x) +∞.

Then u ≥ v on the whole R
n \K.

Proof. We denote by ρ the gauge function of Z, namely

ρ(p) = inf
{
λ > 0 :

p

λ
∈ Z

}
.

Due to the star–shapedness assumption on Z, it is continuous and clearly nonconvex
in general, moreover the equation H(Du) = 0 is equivalent to

(17) ρ(Du) = 1

in the sense that they have the same (sub,super)solutions. The advantage of ρ is
that it is positively homogeneous so that we can apply Kruzkov transform to prove
the result.

Assume by contradiction that

(18) v(x0) > u(x0) for some x0 ∈ R
n \K.

We set

v1 = 1− e−v(x) and u1 = 1− e−u(x);
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such functions are sub and supersolution of
{

ϕ+ ρ(Dϕ) = 1 in R
n \K

lim|x|→+∞ ϕ(x) = 1

and the inequality u1 ≥ v1 holds on ∂K. The argument to conclude is well known,
we just sketch it for reader’s convenience. We introduce a sequence of upper semi-
continuous auxiliary functions Φn : Rn × R

n → R, n ∈ N, defined by

Φn(x, y) = v1(x)− u1(y)− n |x− y|2.
We show that there is a sequence (xn, yn) of global maximizers of Fn in Rn \K ×
Rn \K and, because of (18), both xn and yn converge, up to a subsequence, to
some element of Rn \K. Therefore (xn, yn) ∈ R

n \K × R
n \K for n sufficiently

large and

(19) v1(xn)− u1(yn) ≥ Φn(xn, yn) ≥ v1(x0)− u1(y0) > 0

Now we observe that the functions

u1(yn) + n|x− yn|2
v1(xn)− n|xn − y|2

are supertangent to v1 at xn and subtangent to u1 at yn, respectively, and get

v1(xn) + ρ(2n(xn − yn)) ≤ 1

u1(yn) + ρ(2n(xn − yn)) ≥ 1.

By subtracting these two formulae, we finally reach a contradiction with (19). �

6. The critical case

In this section we exploit the metric formulae previously obtained to perform
some qualitative analysis of H(x,Du) = 0 in the case where 0 is the critical value
for H and the equilibria set E is nonempty. More precisely, we illustrate through
some examples how the metric setup is quite different from the convex case.

As explained in the Introduction, if the Hamiltonian is convex a crucial role
is played in the study of the critical equation by the so–called Aubry set, made
up by points around which the intrinsic distance related to the Hamiltonian fails
to be equivalent to the Euclidean metric. This can be expressed, more precisely,
comparing the intrinsic and the natural length of cycles, as follows.

Definition 6.1. Let H be convex with critical value 0 and 0–sublevels denoted by
Z(·), the Aubry set A is made up by points y such that there exists a sequence ξn
of cycles passing through y and defined in [0, 1] with

inf
n

∫ 1

0

σZ(ξn(t))(ξ̇n) dt = 0 , inf
n

∫ 1

0

|ξ̇n(s)| ds > 0

The Aubry set is nonempty for convex critical Hamilton–Jacobi equations posed
on compact space, for instance on the flat torus Tn. In this case the critical equation
H = 0 is the unique in the one parameter family of Hamilton–Jacobi equations
H(x,Du) = a admitting a solution on the whole T

n. This relevant property of the
critical value is also maintained in the nonconvex case, see [8] We recall, for later

use, some properties of the Aubry set for H convex with critical value 0:
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(1) y ∈ A iff L(y, ·) is a solution of H(x,Du) = 0 (in general it is only a
subsolution);

(2) if w is a subsolution of H = 0 and y ∈ A then D+w(y)∪D−w(y) ⊆ ∂Z(y);
(3) if y /∈ A then ∂Ly(y) = D−Ly(y) = Z(y), where Ly := L(y, ·).

In our setting, if H is convex, A coincides with the set of equilibria E , defined in
(2), as can be easily deduced, for instance, by the above items (1), (2). If H is not
convex it is an important open problem to understand if something similar to the
Aubry set can exist at the critical value and how it can be defined. In case of positive
answer to this question, it is sensible to hypothesize by what previously outlined
that, under our assumptions, such a set should coincide with or be contained in E .
We actually prove in the next result that item (1) in the previous list holds for E ;
on the other side we exhibit examples showing that no degeneration phenomena of
the intrinsic distance take place around the points of E and the equilibria do not
enjoy in general the properties (2), (3).

Proposition 6.1. Let 0 be the critical value of H then S(y, ·) is a solution of H = 0
on the whole R

n if and only if y ∈ E, and the function

u(x) = inf
γ∈Γx,E

sup
η∈B

{Ix(η, γ))}

is a critical solution vanishing on E.
Proof. We know from Proposition 3.2 that S(y, ·) is subsolution in R

n and solution
in R

n \ {y} for any y. If, in addition, y ∈ E then H(y, p) ≥ 0 for any p and so the
subtangent test for S(y, ·) is automatically satisfied at y.

Conversely, if y 6∈ E then 0 ∈ int(Z(y)) and so H(y, 0) < 0. Taking into account
that S(y, ·) is nonnegative by Proposition 3.1 ii. and vanishes at y, we see that the
null function is subtangent to S(y, ·) at y. Hence S(y, ·) is not a critical solution.

In the light of Theorem 4.1 and Proposition 5.2, we see that the function u
appearing in the statement is solution to H = 0 in R

n \ E and takes continuously
the value 0 on E . Arguing as in the first part of the proof, we also prove that
it is supersolution on E , moreover any equilibrium is a minimizer of u since u is
nonnegative on R

n. Therefore if D+u(y) 6= ∅ at some y ∈ E then u is differentiable
at y with Du(y) = 0. Since H(y, 0) = 0 we conclude that u is also subsolution on
E . �

Example 6.1. Consider the following family of closed subsets of R2, parametrized
by x ∈ R

2:

Z(x) := {p = (p1, p2) ∈ R
2 : |p1|+ |p2| ≤ 1}, for |x| ≥ 1,

Z(x) := {p = (p1, p2) ∈ R
2 : |p1||x| + |p2||x| ≤ 1}, for 0 < |x| ≤ 1,

Z(0) :=
(
[−1, 1]× {0}

)
∪
(
{0} × [−1, 1]

)
.

As usual we can associate to Z(·) a continuous Hamiltonian function H such
that Z(x) are the zero sublevels of H(x, ·) for any x. We notice that:

(1) if |x| ≥ 1, Z(x) is convex (it is the square with vertices at (±1, 0), (0,±1).
(2) if 0 ≤ |x| < 1, Z(x) is star-shaped, but not convex, and K := coZ(x) is the

square with vertices at (±1, 0), (0,±1). Such vertices are also the extreme
points for Z(x), for any x.

(3) Z(x) has empty interior iff x = 0 (so E = {0}).
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p1 p1 p1

p2 p2p2

Figure 2. Z(x) for x = 0, 0 ≤ |x| ≤ 1 and |x| ≥ 1 respectively.

In view of Proposition 3.3, the related metric S is given for any x = (x1, x2), y =
(y1, y2) by

S(x, y) = σK(y − x) = max{|y1 − x1|, |y2 − x2|},
hence S is locally equivalent to the Euclidean metric at all points of R2, moreover
S is invariant for translations. We consider the convex function x 7→ S0(x) :=
S(0, x) = max{|x1|, |x2|}.

We observe the following facts:

(1) Item (2) in the previous list does not hold: in factD−S0(0, 0) = co{(±1, 0), (0,±1)},
which is not contained in ∂Z(0).

(2) Since S(x, y) = S(x − y, 0), ∂Sy(y) = ∂S0(0) = D−S0(0, 0) = coZ(y) for
every y ∈ R

2, item (3) fails for |y| < 1, since the sublevels are not convex
for such points.

Another example is the following:

Example 6.2. We consider the Hamiltonian of Eikonal type Hf (x, p) = |p| − f(x)
on R

n, where the potential f is continuous nonnegative with minimum equal to 0
and f ≤ 1. For any x, the sublevels Zf (x) of Hf = 0 are the balls centered at 0
with radius f(x). It is clear that 0 is the critical value of Hf since the a–sublevels
of Hf become empty, for some x, if a < 0 and the null function is a subsolution
of Hf = 0. As well known, the corresponding Aubry set coincides with the set of
minimizers of f , which are, in turn equilibria for Hf , see (2). We denote it by Ef .
Further, we denote by Lf the associated intrinsic critical distance, note that it fails
to be equivalent to the Euclidean distance around any minimizer of f , see the item
iv. of Proposition 3.1.
We define the family of sets:

Z̃f (x) :=

n⋃

i=1

{λei : λ ∈ [−2, 2]} ∪ Zf (x),

where {ei : i = 1...n} is the canonical basis of Rn.

We denote by H̃f (x, p), S̃f an associated Hamiltonian, see Remark 3.1, and the

intrinsic nonconvexmetric for the equation H̃f = 0, respectively. Since int(Z̃f (x)) =
∅ if (and only if) x is a minimizer of f , we see, as before, that 0 is the critical value
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Figure 3. Z̃f (x)

also for H̃f . The relevant difference with the convex case is that no peculiar behav-

ior of the metric S̃f comes up around such minimizers. In fact the extreme points

of the sublevels Z̃f(x) does not depend on x, so that co(Z̃f (x)) = co{±2ei : i =
1...n} =: K is constant. This, in turn, implies that for every pair of points x, y in
R

n

S̃(y, x) = σK(y − x) = 2max{|xi − yi| : i = 1, ..., n}.
We also point out that there can be infinite different solutions of H̃f = 0 agreeing
on Ef . To see this, assume

(20) Ef = {xn = 0} ∩ R
n,

where xn = 〈x, en〉. The function

u(x) = min{Lf(y, x) : y ∈ Ef},
is a critical solution for both the equations Hf = 0 and H̃f = 0 since ∂Zf (x) ⊂
∂Z̃f(x) for any x, and it takes the value 0 on Ef . We have u(x) < |xn| since
0 ≤ f ≤ 1. In addition, for 1 < ρ < 2, the functions vρ(x) = ρ |xn| vanish on Ef
and are also solutions of the nonconvex problem, but not of the convex one. This
can be easily checked by direct computation.
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tions, 58, Birkhäuser Boston Inc., Boston, MA, 2004. MR2041617 (2005e:49001)

[4] P. Cardaliaguet, B. Dacorogna, W. Gangbo, and N. Georgy, Geometric restrictions for the
existence of viscosity solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 2,
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