N

N
N

HAL

open science

Gate automata-driven run-time enforcement
Ilaria Matteucci, G. Costa

» To cite this version:

Ilaria Matteucci, G. Costa. Gate automata-driven run-time enforcement. Computers & Mathematics

with Applications, 2012. hal-00661568

HAL Id: hal-00661568
https://inria.hal.science/hal-00661568

Submitted on 20 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00661568
https://hal.archives-ouvertes.fr

Gate automata-driven run-time enforcemeit

Gabriele Cost®, llaria Matteucct

aUniversit di Pisa
b|stituto di Informatica e Telematica-CNR
name.surname@iit.cnr.it

Abstract

Security and trust represent two different perspectivetherproblem of guaran-
teeing the correct interaction among software components.

Gate automatéhave been proposed as a formalism for the specification of
both security and trust policies in the scope of the SectoyContract-with-
Trust (SxCxT) framework. Indeed, they watch the execution of a targeg@m,
possibly modifying its behaviour, and produce a feedbackHe trust manage-
ment system. The level of trust changes the environmemngstby dynamically
activating/deactivating some of the defined gate automata.

The goal of this paper is to present gate automata and to sgateautomata-
driven strategy for the run-time enforcement in theGS<T.

Keywords: Security-by-Contract-with-Trust, gate automata, irdeef automata,
contract monitoring, run-time enforcement.
2010 MSC:68Q60, 68Q45

1. Introduction

In the last decades, the number of devices, used in our dehhas been
rapidly growing. Also, the computational capabilities oich devices have in-
creased over and over. Beyond the clear advantages fougmise.g, in terms
of reachability and connectivity, this trend also exposeddw vulnerabilities and
security threats. Often, the users try to mitigate thedes nising some informal,
trust-based evaluation for avoiding interactions withepially malicious agents.

Here we mainly focus on the Security-by-Contract-withskr(5xCxT) [6],

i.e., acontract-base@pproach able to manage the trust levels of the applications

YThis paper is an extended version of the paper [8] preseniéti@ 2011.
H0Work partially supported by EU-funded project FP7-23116@NRECT, by EU-funded
project FP7-257930 AIKETOS and EU-funded project FP7-256980 N ESS

Preprint submitted to Computers & Mathematics with Apgicas August 16, 2011

and guarantee the security requirements at run-time.

In this paper we show an implementation of theS«< T framework run-time
support usinggate automataWe advocate gate automata as a unique formalism
for dealing with security and trust [8]. In particular, weoshhow they can be used
for encoding both applications’ contracts and securitygues in the SKCxT im-
plementation. Roughly, after downloading an applicatiomt a remote provider,
according to its identity, we associate the code to a cetiast domain. The lower
is the level of trust the strongere., the more restrictive, is the security policy we
enforce on the application. While executing the appliegttbe run-time enforce-
ment support controls its behaviour. If a violation occues, the application tries
to perform an action that is not allowed by the current ségw@onfiguration, the
enforcement system reacts, possibly decreasing the léweist of the applica-
tion. Trust updating may lead to a reorganisation of thetmne enforcement
mechanism that may enforce a differesig, more restrictive, security policy.

This paper is organized as followSection 2 presents gate automata definition
and the ConSpec contract policy language by showing howetimastics of latter
can be given through the former. Section 3 shows the streictua S<Cx T im-
plementation using gate automata. Section 4 compares alrwith the other in
the literature and Section 5 concludes the paper with somsiderations about
the future research directions in this field.

2. Gate Automata

In this section we formally introducgate automatand their properties. We
also show theConSped1] language by recalling its syntax and by giving its se-
mantics in terms of gate automata.

Definition 2.1. A gate automato® is a 4-tuple(V,:, A, T") where: V' is a finite
set of states; € V' is the initial state;A is a set of actions (being the set of the
complementary actions of); T C V x (AUAU{A,V¥}) x Vis a set of labelled
transitions such that:

1. (v,a,u) €eTA(bw)eTNa=bs=u=w
2. V(v,a,u) €T.a € AU{A, ¥V} = Bbwb#aA (v,byw) €T

A gate automaton processes a sequence of actions possitifyimg it. The
transitions of the automaton can be labelled with inpuet,(« € A) or output
(i.e, @ € A) actions. An input action is generated by some actions soarg, a
running program, while output actions are fired by the automéself. Gate au-
tomata can also perform two special operatioRsand v, which, respectively,
increase and decrease the trust weight corresponding smthiee of the actions.

Where it improves the readability, we use-—~ w in place of(v, o, w) € T and
v A for pw . (v, a,w) € T.

2.1. Gate automata and interface automata

A gate automaton can be instantiated to a correspondingange automa-
ton [2]. Hence, we use interface automata for giving an dpmral semantics to
the security policies defined through our gate automata.

Definition 2.2. An instantiation of a gate automatghover a index:, denoted by
Gy, is an interface automatoft = (Vp, {1}, A%, A7, |, {A, ¥V}, Tp) where:

e Vp = V UV, is the finite set of states (wheWg, = {v%:v €V A v A
AVBE AU{A, V}o b))

o AZ = {(a,k): o € A} is the input alphabet;

o AP, ={(a,k+1):aec A} is the output alphabet;

e Tp is a set of transitions defined as:

Tp = {(v,{o,k),w): (v,a,w) € TU{(v,{a,k+1),w) : (v,a,w) € T}
U {(v,,0) - (0,) € TYU {(o, o k), 0) £ 06 € Via)
U {(Vid» <a k + >’U) zd € ‘/Zd}

where¢ € {A,V}

The semantics of an instantiati@, of a gate automatog is defined in terms
of reaction sequenceslntuitively, a reaction sequence is a trace of output and
internal actions fired by an interface automaton after readine input symbol.
We start by extending the definition execution fragmeri2] as follows.

Definition 2.3. An execution fragmenof an interface automato® is a possi-
bly infinite, alternating sequence of states and actiafgy, v1, a1, . . . such that
(vi, v, V1) € Tp.

Definition 2.4. Given an interface automatafl = (Vp, Vit AL A, A% Tp),
an actiona € A% and a statey € Vp, areaction sequende « in v is a possibly
infinite trace of actions = «ay, a1, . .. such that

o o; € AQU A%,

e v, vg,v1,... € Vp such thatv, a, vy, ag, v1, a1, . .. IS @an execution frag-
ment of P and

e if o has finite length thenv3 € AQ U A¥ . v, .

We say thaty is anactivatorof o in v and denote it withy == v, if ¢ is finite or

v == otherwise.
«

2.2. Trace validity

In this section we provide a formal definition of compliandeadrace with
respect to a gate automaton. Intuitively, we can imaginegisaquence of actions
is allowed by a gate automaton if, passing it as the input ef(thstantiation of
the) automaton, the output is the unchanged sequence. Walfgrdefine this
notion in terms of reactions sequences in the following way.

Definition 2.5. Given a finite trace of actions = «4, .. ., «,, and a gate automa-
tonGg = (V,1, A, T') we say that is weakly complianwith G, in symbolsr - G,
k+1 k41

if and only if for any instantiatiorG, of G we haver <01:Z> vy <"£z> v, Such
at, Qn

thato® ' = (B, k+ 1) ... (Bim,, b+ 1) and fo (ot .. oF+1) = o wheref,,,
is the function recursively defined as

fout(aal> = fout(a)fout(al> Jout({a, h)) = four((#, 1)) = -
being- the empty trace ané € {A, V}.

Beyond the technical definition, the weak compliance of eetnaith respect to
a gate automaton is quite intuitive. In particular, we caatbe weak compliance
as the dual ofransparency That is, a trace weakly complies with a gate automa-
ton if and only if an external observer cannot understandthérethe trace has
been processed by (the instantiation of) the automatontor no

Clearly, weak compliance does not correspond to a full prarency. Indeed,
the transitions of the automaton can introduce and deldtengcin such a way
that a trace is kept unchanged as a whole, but its prefixes @ddied. For char-
acterising sequences that are not modified at all by a gateratidbn we use the
notion ofstrong compliance

Definition 2.6. Given a finite trace of actions = a4, . . ., a,, and a gate automa-
tonG = (V,1, A, T') we say that is strongly compliantvith G, in symbols = G,
if and only if for any prefix’ of o holds thatr’ - G.

2.3. Gate Automata and ConSpec

The Contract Specification Languad#], ConSpedor short, has been pro-
posed as a formalism for defining both behavioural contraatissecurity policies.
Roughly, the syntax of ConSpec resembles to the statemiesmsmperative pro-
gramming language. Here we recall the syntax of ConSpec andhaw how
ConSpec specifications can be translated into correspgdite automata. Note
that, for simplicity, we omit few details of the original C8pec syntax irrelevant
for our purposes.

2.3.1. ConSpec syntax

Briefly, a ConSpec specification is composed by three blogka: preamble,
(i) a security state and (iii) a finite list of clauses. Theamble just declares
the range of values for the used variableBX|I NT andMAXLEN). The security
state is a list of variables declarations following the sohe x ::= v wherer €
{bool, int, string} is a type,x is a variable name andis a value of typer.
Note that here types are boundee,, they represent a finite number of values.
For instance, if we sé¢AXI NT to 3 then integer values range {9, 1, 2, 3}.

Each clause contains a parametric actidn y), activating the rule, and a list
of conditional instructions. Action names belong to a dearahle sef\, i.e., a €
A, and types are the same as for the security state. The lefositie conditional
instructions is a decidable, boolean guaxtkfining a property of the security state
and action parameter, while the right side is an updaterstate: (i.e., a possibly
empty block of variable assignments). We assume all thedguara single clause
to be pairwise disjointi.e., if ¢ and ¢’ belong to the same clause then it never
happens thay A ¢’ is verified. Figure 1 shows the syntax described above. The

MAXI NT n BEFCRlE 041(7'{191) PllERFCRM X
MAXLEN m g1 =2 Ut Gy T2 Uag
SECURI TY STATE BEFORE ok (7} yx) PERFORM

T1 X1 2= Vyq, -+ Ty Xy o= Vy, g{(-> u{(cee gﬁ}(-> U{\(/[K

Figure 1: The syntax of ConSpec preamble, security stétgdled clauses (right).

structure of the security clauses needs a further disgertdhdeed, comparing it
with the standard one [1], we see two main differences: (iowy have before-
event checksife., we do not use the keywordd=TER andEXCEPTI ONAL) and

(i) we use monadic actions. We claim that these simplifosaido not reduce the
expressive power of the ConSpec language. As a finite nuniilparameters can
be encoded in a single one, using monadic actions is notréctest. For instance,
we could use strings to encode n-arguments actiens ((” 3, msg, false”) for
a(3,”msg”, false)). For the sake of simplicity, we refer to this encoding in our
examples and we assume to have the functign®ar_7 : int X string — 7,

1The standard ConSpec syntax also contains statementsndefité scope of a policy,e.,
Sessi on, Mul ti sessi on andd obal . However, it is immaterial for our purposes and we
can simply neglect it.

such thayet Par_7 (i, s) returns the-th parameter (having type) encoded irs.
Also, we require all the variable and parameter names to mparand all the
clauses to be triggered by different actions.

Moreover, we can simulate the behaviour AFTER and EXCEPTI ONAL
clauses by introducing new actions. As a matter of fact, taedard syntax of
ConSpec is oriented to model the computations of objeetrted systems,e.,
passing through method invocations. Every method triggperslauses when it is
invoked, when it returns a result and, possibly, when rgisin exception. Then,
for each methoch we can define three actiond’, o' anda” representing the
method invocation, standard return and exceptional retespectively.

Example 2.1. Consider the policy saying “An application cannot open cecn
tions after reading local files”. We model the involved mekhthrough the actions
fopen(int mode) andcopen(string url). Wherenode € {0, 1,2, 3} is a two-
bits mask representing the access tyipe, (00 = none, 01 =read, 10 = write and
11 =read and write), andir | is a network address. The resulting policy is:

MAXI NT 3

MAXLEN O

SECURI TY STATE

bool accessed ::= fal se;

BEFORE f open(i nt node) PERFORM
(nmobde == 1) -> {accessed ::= true;}
(nmode == 3) -> {accessed ::= true;}
(mode == 0 || node == 2) -> {}
BEFORE copen(string url) PERFORM
laccessed -> {}

2.3.2. Gate automata interpretation of ConSpec

The semantics of ConSpec can be interpreted using gate ai#orGiven a
stateq and a guardy, we say thay is valid inq (¢ - g) if and only if replacing
the variable names af using the mapping defined hywe obtain a tautology.
Moreover, we say that an update blogldenotes a function, namely.], from
states to statese., [u] : Q — Q.

We obtain a gate automaton from a ConSpec specification lasviol
States. The set() of states is fully characterised by the security states had t
actions parameters. In particular, we define a sjate a mapping from variable
and parameter names to the lifted domain of possible val&esmally, given
a variable or parameter name thenqg(z) = v with v € Val U {L} (where
Val = int U bool U string). Moreover, to be valid a state must assign to each
variable a value different froml. and to at most one parameter a value that is
different from L. Hence,@ is the set of all the possible, valid combinations of

6

assignments. Note that, as ConSpec uses bounded typesinifsemof states is
always finite.
Initial state. The initial state: € @ is the set mapping the variables of the
security state to their initial values and the parameteteg¢aindefined,. value.
Alphabet. The set of eventsl that the automaton can read is the set of pairs
{{a,v) | « € A AN v e Val}. We usex(v) instead of(a, v) where unambiguous.
Transitions. We build the sef” of transitions in the following way. For each
ConSpec clause we take the triggering actign =) and we list all the states
q € @ suchthay(z) = L. Then we proceed as follows.

1. For each possible even{v) we add a transition frong aw, q', where
Yy # x.¢'(y) = q(z) andq'(z) = v.
2. For each conditional instruction — w of the clause and for each of the

freshly added transitions, if - g then we add a transitiogt o, [u](q).
3. For all the stateg such thatr = L and for all the eventa(?) such that

q ?ﬂ we add a transition LGN q.
We iterate these steps until every clause has been processed

Example 2.2. We create a gate automaton for the specification in Examgle 2.

fopen(1), fopen(3)

fopen(0), fopen(2)

accessed = false

fopen(0), fopen(2)

fopen(1), fopen(3)

fopen(1), fopen(3)

fopen(0), fopen(2) ;‘
fopen(0), fopen(2)

fopen(1), fopen(3)

accessed = true

url =" mode = 0/2 mode = 1/3

Figure 2: The conversion of a ConSpec specification into @ gatomaton.

Figure 2 shows the gate automaton produced by the proceds@ithed above.
Rows and columns denote the values of variables for the aitonstates, for in-
stance the top row contains the statesuch thatg(accessed) = false. The
leftmost column contains the states assigning no valudeetadtions parameters.

7

The unreachable state in positiancessed = true,url = ””, which would cor-
respond to a specification violation, has been removed., Algopairs of column,
i.e, mode = 0/2 andmode = 1/3, have been grouped as their states share the
same behaviour. Finally, we did not draw immaterial selfdep.e., representing
transitions that cannot take place.

Clearly, the procedure described above can be optimisezVeral wayse.qg,
removing unreachable states or collapsing groups of elgut/atates. Neverthe-
less, our purpose is to show that gate automata can be suitsétl to encode
ConSpec policies and contracts.

The following property ensures that gate automata cogrecttode ConSpec
specifications.

Property. Given a ConSpec specificatighand the gate automatdh obtained
through the procedure defined above, then a t,acemplies withS' if and only
if it also complies withg.

Proof. (Sketch) Intuitively, we build the ConSpec automaton $oas described
in [1]. Then, we show that there exists a bijective mappin@rgithe states and
the transitions of the ConSpec automaton and the those ajateeautomaton.
Finally, we proceed by induction on the lengthagfshowing that the outputs of
the two automata readingis the same. O

The previous property guarantees that gate automata cauritablg used for
implementing ConSpec-based security frameworks. In tRegeetion we exploit
this property for defining a security enforcement model.

3. Implementing the Sx C x T runtime through Gate Automata

The S<CxT has been originally presented in [6, 5] as a unique framkewor
for managing both security and trust in a computing envirenin It uses two
behavioural specifications: trentractof an application and thpolicy of the
hosting platform. Intuitively, a contract declares andaxdtively describes the
possible behaviours of an application. Instead, a polipyagents all the be-
haviours that the execution environment will accept asll&ggan a running pro-
gram. Usually, the application vendors provide the comsradile the platform
owners/administrators define the policies.

The S<CxT workflow, depicted in Figure 3, shows the two phases of the ap
plication deployment process: the trustworthiness evi@nand the assignment
to a security domain. When an application enters the depdoymprocedure,e.,
before its first execution, the trust module decides abautrtistworthiness of the
code provider. This amounts to accept the trustworthinefiseocontract and its
source.

If this check is not passede., the system rejects the vendor’s trustworthi-
ness, then the application runs in the scope opthleey enforcementechanism.
Otherwise, if the trust check successes, the system cheuokther the contract
complies with the security policy. In case of compliance, $lgstem executes the
application under @ontract monitoringsetting. While the policy enforcement
process prevents the security violations, the monitorangity keeps under con-
trol the possible contract violations. When a running pangriolates its contract,
i.e, it tries to behave in an undeclared way, the system reacatldnyging the trust
level of the application provider.

STEP 1 STEP 2

Match
Contract
& Policy

START MONITOR

CONTRACT

[7

ENFORCE

Y POLICY &
Trusted MONITOR [
Application | ﬁ¢47 CONTRACT

Figure 3: The Security-by-Contract-with-Trust Workflow.

RUNTIME

Here we introduce an implementation of the &xT runtime support using
gate automata. According to thex€xT standard model [5], applications run
in the scope of one of the two security domains describedablvvboth cases,
running programs are dynamically checked for compliandé waspect to their
contract {.e., contract monitoring process). Moreover, the applicatioatched
by the policies enforcement facility are checked for pdssiiolicy violations.

The platform owners declare their security policies thtoggte automata ei-
ther directly or translating ConSpec policies (see Se@i@®). Instead, we as-
sume that the contracts are always specified through ConSpec

Starting from a ConSpec contract, we build a correspondatg gutomaton
by following the procedure for policies presented in thevimes section. The
only difference is that here we replace the third step of thaesitions creation
procedure with

3. For all stateg s.t.z = L and for all events(v) s.t. ¢ ?ﬂ we add a fresh,
new statey* in (Q and a pair of transitiong iGN ¢ andg* 5 ¢inT.

In this way, as expected, a contract violation leads to & pasalty. This be-
haviour implements the>8Cx T reaction to the contract violations.

We use the gate automata specifications of policies andamstfor imple-
menting the S Cx T runtime environment. We consider a prograhas a source

9

of the security-relevant actions, which are the side effettthe programs’ exe-
cutions. Moreover, we assume the enforcement environrodre effectivej.e.,

R can be suspended before the actual execution of the ope@roesponding

to the ongoing action. For instance,/iftries to access a resource, So raising an
access action, it actually obtains the permission onlyr aftecking the security
settings.

The first component of the enforcement environment idrh& management
systen(TMS). This component handles the trust weights assoctatedch agent
and provides an implementation of the two internal actiarend v. While fol-
lowing the execution of its target, the enforcement envitent can perform one
or more actions of typa andv. The TMS receives these signals and increases
(decreases) the target trust level. Note that some TMSsfuser@haracterisation
of rewards and penaltiese., more than two actions. Nevertheless, this behaviour
is fully compatible with our model. Indeed, we can easilyeext the set of internal
actions or simulate it by adding more consecutive transstio

The enforcement environment also contains a set of gatenatg !, . . ., G"
composing theolicy pool (PP). The automata in the policy pool are associated
to a certain level of trush < ¢ < 1 on which they are inversely ordereic.,

1 <@ < j < nimpliesthatt; > ¢;. We also insert the gate automaton obtained
from the contract of? in PP. The level of trust of this automaton is always equal
to 1 and it is the first in the ordering.

When a targefz, having trust levet, starts its execution, the policy pool in-
stantiates all the gate automé&tasuch that; > ¢ to the corresponding interface
automataG’ (see Section 2). Then, the resulting interface automatecanposed
to create amnterface automata staakhich is applied taR. Note that the automa-
ton obtained from the contract &f is always in the first position of the stadle.,
the stack bottom.

The stack receives the actions performedibgnd processes them by passing
the reaction sequences of each automaton to the layer alldoee in detail,
assuming that the current state of each interface auton@fdas v;, every layer
of the stack follows this procedure:

1. G! receives a trace’ from the level below;
2. for each elements, i) of o execute the following sub steps:
(a) if e = A (V) then require the TMS to increase (decredse)

(b) otherwise, ife = o computey; ‘::+% v; and pass the control to the layer

above (by invoking this procedure);
3. return the control to the level below.

WhenR fires some action, the previous steps are executed starting from the first
layer, representing the contract®f with o' = («, 1). The output of the last layer

10

(after removing the indek) is a sequence of reactions that have been stimulated
by «, that is, the enforcement result.

As the actions pass through the stack levels, the TMS rexenst adjustment
signals. As a consequence, the TMS updatepossibly causing the system to
add or remove one or more automata in the stack.

4. Related Work

Some works about the integration between trust managemdrsegurity en-
forcement are presentin the literature. However, few aftleal with the mobile
applications. Koshutanski et al. [12] present an accesfr@osystem enhanc-
ing the Globus toolkit standard support. Their proposalesowith the perfor-
mances issues arising from the access rights managemeadrsop Globus for
shared resource in the Grid architecture. Along this lineesgarch [4] presents
an integrated architecture, extending the previous o, avi inference engine
managing reputation and trust credentials. This framewsodktended again in
[11] where a trust credentials negotiation module is inticetl to overcome some
scalability problems. In this way, the new framework guéeas the privacy cre-
dentials and the security policies of both users and prosidEven though the
application scenario and the implementation are differénat basic idea consists
of a trust-based metrics used for deciding about the rdilyaloif an application
provider.

The automata-based specification of security policies hasgstanding tra-
dition. In [16], the author advocates security automatadiefining security re-
quirements and for implementing the corresponding coletml We can observe
that gate automata extend the automata of [16] in two waysth@y can add
and remove actions from the target’s execution trace (rdtt@ simply halt it)
and (ii) they also use special actions for the trust managentfer this reason,
in [8] we showed that gate automata can be encoded wsiitcautomatg13].
Gate automata differ from edit automata mainly because thayage trust. In-
deed, they integrate the trust management process and fitreeanent mecha-
nism in a unique model. Moreover, they inherit the composdility properties of
interface automata [2]. Hence, reasoning about the cormposif gate automata
is generally simpler than for edit automata.

Also [3] proposes an automaton-based specificatien,usage automataof
security policiesi.e., usage policiesUsage automata slightly differ from security
automata. Roughly, an execution trace complies with a usaljgy iff it is not ac-
cepted as an input word by the corresponding usage autonmdtmeover, usage
policies are applied directly to the source code througlp@reyntactical opera-
tors that also causes the composition of policies throughesoesting. Again, the
main differences with respect to our automata are that dpesautomata do not
change the observed trace and (ii) they do not handle trusthé&rmore, in the

11

environment using gate automata the scope of a policy isxe fiut policies are
activated/deactivated according to the trust values.

In [14] the authors present a method for modelling secudtpmata through
process algebra operators. They extends some existirlgsresyprocess algebras
to the analysis, verification and synthesis of secure systeiso in [10, 15] a
process algebra-based language, narR€N.PA is used for policy specification
and enforcement. In general, process algebras are moressiyg than finite
state automata. However, these works propose no integraétween security
and trust.

5. Conclusion and Future Work

In this paper we presenteghte automatdor specifying integrated security
and trust policies. We also compared our proposal with Cen&howing that
gate automata can be suitably used for specifying both ipsliand contracts.
Finally, we proposed an implementation model for theCX T runtime support.

As future work, we aim at investigating model checking taghes for gate
automata. This will extend the present work with the stagéafication module
necessary for a full implementation of the«6xT. We are also interested in the
theoretical aspects of the parallel composition of gateraata. Indeed, the cur-
rent enforcement environment uses a stack-based congoslihis structure do
not take into account concurrency. Hence, we would like tiolysthe possibility
of composing two or more automata stacks for extending outaito concurrent
programming models.

The implementation of a prototype is currently under ingggton. In [5] we
presented simulation results showing the feasibility aftoust management stra-
tegy. In particular, we showed that our proposal implemtetaapidly converges
when some attacks take place. In [7] and [9] two enforcemmevit@nment using
ConSpec have been introduced. Both these implementateres dood perfor-
mances and guarantee the feasibility of the enforcemerttaded which we are
aligned. In our opinion, these results represent more tpamdstic premises for
our model.

References

[1] I. Aktug and K. Naliuka. ConSpec — a formal language foligyospecifica-
tion. Sci. Comput. Program74(1-2):2-12, 2008.

[2] L. de Alfaro and T.A. Henzinger. Interface automata. I6M, editor, Pro-
ceedings of the 8th European software engineering conéer@@01.

12

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Bartoletti. Usage automata. loint Workshop on Automated Reasoning
for Security Protocol Analysis and Issues in the Theory cli8g/, volume
5511 ofLNCS pages 52-69, 2009.

M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and Aaccarelli. Fine
grained access control with trust and reputation managefoeglobus. In
OTM Conferences (2pages 1505-1515, 2007.

G. Costa, N. Dragoni, V. Issarny, A. Lazouski, F. Martined=. Massacci,
I. Matteucci, and R. Saadi. Security-by-Contract-withusirfor mobile de-
vices.JOWUA 1(4):75-91, Dec. 2010.

G. Costa, N. Dragoni, A. Lazouski, F. Martinelli, F. Massi, and |. Mat-
teucci. Extending Security-by-Contract with quantitativust on mobile
devices. InProceedings of CISIS 201pages 872-877, 2010.

G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. WaltRuntime mon-
itoring for next generation Java ME platforn€omputers & SecurityJuly
20009.

G. Costa and |. Matteucci. Trust-driven policy enforaarhthrough gate
automata. IrProceeding of IMIS 2011Accepted for pubblication.

L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Phdgnts, F. Piessens,
and D. Vanoverberghe. The s3ms.net run time monitor: Toolarestration.
Electronic Notes in Theoretical Computer Sciere3(5):153-159, 2009.

N. Dragoni, F. Matrtinelli, F. Massacci, P. Mori, C. Sefer, T. Walter, and
E. Vetillard. Security-by-Contract (SxC) for software asefvices of mo-
bile systems. IrAt your service - Service-Oriented Computing from an EU
PerspectiveMIT Press, 2008.

H. Koshutanski, A. Lazouski, F. Martinelli, and P. MorEnhancing grid
security by fine-grained behavioral control and negotratased authoriza-
tion. Int. J. Inf. Sec.8(4):291-314, 2009.

H. Koshutanski, F. Martinelli, P. Mori, L. Borz, and A.a¢carelli. A fine
grained and x.509 based access control system for globu3Tkh Confer-
ences (2)pages 1336-1350. Springer, 2006.

J. Ligatti, L. Bauer, and D. Walker. Edit automata: ErciEment mechanisms
for run-time security policiesint. J. Inf. Secur.4(1-2), Feb. 2005.

F. Martinelli and I. Matteucci. Through modeling to $kesis of security
automataENTCS 179:31-46, 2007.

13

[15] F. Matrtinelli and P. Mori. On usage control for grid sgsts. In Future
Generation Computer Systems. Elsevier Sciep8€7):1032-1042, 2010.

[16] F. B. Schneider. Enforceable security polici@€M Transactions on Infor-
mation and System Securi8(1):30-50, 2000.

14

