
HAL Id: hal-00661572
https://inria.hal.science/hal-00661572

Submitted on 20 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trust-Driven Policy Enforcement through Gate
Automata

G. Costa, Ilaria Matteucci

To cite this version:
G. Costa, Ilaria Matteucci. Trust-Driven Policy Enforcement through Gate Automata. Fifth Inter-
national Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Jul 2011,
Seoul, Korea, South Korea. �hal-00661572�

https://inria.hal.science/hal-00661572
https://hal.archives-ouvertes.fr


Trust-Driven Policy Enforcement through Gate Automata

Gabriele Costa

Università di Pisa

and IIT-CNR

costa@di.unipi.it

Ilaria Matteucci

IIT-CNR

ilaria.matteucci@iit.cnr.it

Abstract—In this paper we introduce the notion of gate au-
tomata for describing security policies. This new kind of
automata aim at defining a model for the specification of both
security and trust policies.

The main novelty of our proposal is a unified framework for
the integration of security enforcement and trust monitoring.
Indeed, gate automata watch the execution of a target program,
possibly modifying its behaviour, and produce a feedback for
the trust management system. The level of trust changes the
environment settings by dynamically activating/deactivating
some of the defined gate automata.

Keyword: Gate automata, interface automata, security

automata, run-time enforcement, Security-by-Contract-with-

Trust.

I. INTRODUCTION

The influence of the digital devices on our everyday life is

increasing over and over. From a merely technological point

of view, the new generation mobile devices are reducing

the gap with the personal computers. They are becoming

the main access point for the network and their standard

software equipment can be easily extended by downloading

and running new applications. Hence, the importance of

protecting the mobile devices in the same way we protect

our personal computer arises.

In the last few years a lot of work has been done

for defining run-time enforcement mechanisms for securing

applications coming from untrusted software providers, e.g.,

[10], [15], [18]. However, at the best of our knowledge, few

works deal with the full integration of trust management

and policy enforcement for mobile code. Nevertheless, some

work about policy enforcement environment extended with

trust management module exists, e.g., see [4], [11].

In this work, we refer to the Security-by-Contract-with-

Trust paradigm (S×C×T) [8], [9] as run-time enforcement

mechanism based on both security and trust notion. In

particular, we propose a novel strategy for enforcing se-

curity properties. To do this, we introduce the notion of

gate automata, a novel category of security automata that

combines several well-known features. Indeed, the automata-

based specification makes it simpler to reason about security

Work partially supported by EU-funded project FP7-231167 CONNECT,
by EU-funded project FP7-257930 ANIKETOS and EU-funded project FP7-
256980 NESSOS.

requirements. For instance, security automata [17] are a

major proposal for the specification of safety properties. A

wider class of security properties can be modelled by passing

to an enforcement environment that also edits the behaviour

of its target, e.g., see [13].

Furthermore, we present how gate automata can replace

the enforcement mechanism of the S×C×T obtaining an

optimization of the enforcement process based on trust

levels. Basically, we show that this class of automata works

as edit automata [13] for guaranteeing security properties

and handles the trust levels of the applications. In this way,

the users can customise their security requirements and the

management of the trust levels in their systems.

Hence gate automata represent an integrated formalism

for defining security and trust policies in an intuitive way.

Indeed, gate automata allow to specify security policies that

also affect the trust levels of the system. When we download

an application, according to the provider identity, we asso-

ciate it to a certain level of trust. The smaller is the level

of trust the stronger, i.e., the more restrictive, is the security

policy we enforce on the application. While the application

is executed, the run-time enforcement mechanism controls

its behaviour. If a violation occurs, i.e., the application tries

to perform an action that is not allowed by the current

security policy, the enforcement system reacts, possibly de-

creasing the level of trust of the application. This may lead to

an automatic update of the run-time enforcement mechanism

that, after the reconfiguration, enforces a different, e.g., more

restrictive, security policy.

This paper is organized as follows: in the next section we

recall the Security-by-Contract-with-Trust paradigm. Sec-

tion III formally introduces gate automata and compares

them with other automata-based specifications. Section IV

shows the novel run-time enforcement strategy obtained by

using gate automata. Section V compares our approach with

already existing related works and Section VI leads to the

conclusion of the paper and provides some future research

directions.

II. SECURITY-BY-CONTRACT-WITH-TRUST

The Security-by-Contract-with-Trust paradigm, S×C×T

for short, has been introduced in [8], [9] as a unique frame-

work for managing both security and trust at application



execution time. As in its previous version without trust,

the S×C [6], it is based on the two concept of contract

of an application and policy of a platform. Intuitively, the

contract is associated with an application and consists in

the description of the behaviour of the application itself.

On the other hand, the policy is set on the platform that is

in charge to run applications and it is a description of all

possible application’s behaviours allowed by the platform.

It can be written by the owner of the platform or by the

vendor.

The Security-by-Contract-with-Trust workflow is depicted

in Figure 1. The basic idea is the following one: let us con-

EPMC

Scenario 

STEP 2STEP 1

START

Y

N

N

Y

Application

Trusted

& Policy

Contract

Match Scenario 

MC

CONTRACT

MONITOR

ENFORCE
POLICY &
MONITOR

CONTRACT

E
X

E
C

U
T

E
 A

P
P

L
IC

A
T

IO
N

Figure 1: The Security-by-Contract-with-Trust Workflow.

sider to have a platform, e.g., a desktop, a laptop, a mobile

phone, and so on, and we want to run on it an application,

developed by others, possible unknown, developers, in a

secure way. We assume that this application is accompanied

by its contract provided by its developer and, according to

[3], [5], we also assume that both contracts and policies

are specified through the same formalism. The application

lifecycle consists in the following steps:

Step 1. Once an application is downloaded on the platform,

before executing it, the trust module decides if the applica-

tion satisfies its contract according to a fixed trust threshold.

Step 2. According to this trust measure, the security module

defines if just monitoring the contract or both enforce the

policy and monitoring the contract going into one on the

two scenarios described below. As a result of a contract

monitoring strategy, the level of trust of the provider is

updated. Our system penalizes the provider more when the

contract does not specify application’s behaviour correctly,

rather when the application itself contradicts user’s security

policy. The two scenario we have works as follows:

Scenario MC. The contract satisfies the policy. The moni-

toring/enforcement infrastructure is required to monitor only

the application contract. Indeed, under these conditions,

contract adherence also implies policy compliance. If no

violation is detected then the application worked as expected.

Otherwise, we discovered that a trusted party provided us

with a fake contract. More in detail, the contract monitoring

works according to the following strategy depicted in Figure

2a: the contract monitoring receives event signals from the

executing code. The execution trace is kept in memory.

When a signal arrives, its consistency with respect to the

monitored contract is checked. If the contract is respected

then its internal monitoring state is updated and the operation

is allowed, and a good behaviour is logged (i.e., contract

respected). Otherwise, if a violation attempt happens, a

security error occurs, and a bad feedback is trigged (i.e.,

contract violation), and the system switches from contract

monitoring to policy enforcement configuration in order

to guarantee that the security policy is satisfied. Since an

instance of the policy is always present, this operation does

not imply a serious computational overhead.

Scenario EPMC. The contract does not satisfy the policy.

Since the contract declares some potentially undesired be-

haviour, policy enforcement is turned on. Similarly to a

pure enforcement framework, our system guarantees that

executions are policy-compliant. However, monitoring con-

tract during these executions can provide a useful feedback

for better tuning the trust vector. Hence, in this scenario,

both the policy enforcement and the contract monitoring

are active. Indeed, the contract monitoring receives event

signals from the executing code and keeps trace of the

execution trace. When a signal arrives, its consistency with

respect to the monitored contract is checked. If the contract

is respected then its internal monitoring state is updated and

the operation is allowed, and a good behaviour is logged

(i.e., contract respected). Otherwise, if a violation attempt

happens, a security error occurs and a violation feedback

is logged for the trust module. The policy enforcer is only

in charge to following the execution of the application and

whenever it attempts to violate the security policy of the

device the enforcement mechanism halts the execution in

such a way the security policy is satisfied. This configuration

is activated on a statistical base (Figure 2b).

Summing up, both execution scenarios check contract

violations through the contract monitoring strategy described

above and update providers’ trust level according to the

contract monitoring feedback.

The goal of this paper is to propose a novel strategy for

the two scenarios MC and EPMC based on a particular class

of finite state automata, hereafter called Gate automata.

The basic idea is to define an integrated formalism for

defining security and trust policies in a compositional and

intuitive way. The main advantages of the proposed approach

are the possibility of customizing the trust management

and an optimization of the behaviours of both contract

monitoring and policy enforcement.



Check
Contract
Violation

Capture
Event

Update
Monitor
State

Enforce
Policy

Check
Policy

ViolationRAISE
SECURITY

EXCEPTION

Continue
Execution

R
U

N
N

IN
G

 A
P

P
L
IC

A
T

IO
N

UPDATE

N

Y

TRUST

Y

N

STEP 3 STEP 4

(a) Scenario MC

Check
Contract
Violation

Capture
Event

Update
Monitor
State

Check
Policy

Violation RAISE
SECURITY

EXCEPTION

Continue
Execution

R
U

N
N

IN
G

 A
P

P
L
IC

A
T

IO
N

UPDATE

N

Y

TRUST

Y

N

STEP 4 STEP 3

(b) Scenario EPMC

Figure 2: The contract monitoring configurations

III. GATE AUTOMATA

In this section we formally introduce gate automata and

their properties. Moreover, we shall provide the reader with

several examples showing how gate automata can be suitably

used for specifying security policies.

A. Structure of the gate automata

We start by giving the formal definition of gate automata.

Definition 1. A gate automaton G is a 4-tuple 〈V, ı, A, T 〉
where:

• V is a finite set of states;

• ı ∈ V is the initial state;

• A is a set of actions;

• T ⊆ V × (A ∪ Ā ∪ {N,H}) × V is a set of labelled

transitions such that:

1) (v, a, u) ∈ T ∧ (v, b, w) ∈ T ∧ a = b ⇐⇒ u = w

2) ∀(v, a, u) ∈ T.a ∈ Ā ∪ {N,H} =⇒ ∄ b, w.b 6=
a ∧ (v, b, w) ∈ T

Basically, a gate automaton slightly differs from a deter-

ministic, finite state automaton. A gate automaton processes

a sequence of actions possibly modifying it. The transitions

of the automata can be labelled with input (i.e., α ∈ A) or

output (i.e., ᾱ ∈ Ā) actions. An input action is generated by

some actions source, e.g., a running program, while output

actions are fired by the automaton itself. Moreover, gate au-

tomata can perform two special operations, i.e., N and H,

that increase and decrease the trust weight corresponding to

the source of the actions. Where it improves the readability

we use v
α
−→ w in place of (v, α, w) ∈ T and v 6

α
−→ for

∄w . (v, α, w) ∈ T .

Example 1. Imagine a file access policy ϕFA saying “never

read a file if it is not open”. Intuitively, the gate automaton

of Figure 3 represents ϕFA.

read open

close

read

openopen close

close

Figure 3: A gate automaton for file access.

Indeed, whenever an action read is going to be performed,

i.e., it is taken as input of the gate automata, the automaton

inserts an action open before (and a close after) it, i.e., it

insert an open and a close as output actions. Instead, if an

action open is performed, the automaton propagates it and

moves to a state having no transitions labelled with read.
This means that every read is left unchanged. The automaton

leaves this state if it receives a close action.

Example 2. Imagine a Chinese Wall policy ϕCW saying

“never send network messages while accessing the file

system”.

We implement this policy though the gate automaton of

Figure 4. The target can either open a file or send data.

However, if the program tries to do both the operations,

the second one is cancelled, the application’s trust level is

decreased (H) and the automaton reaches one of the looping

states, i.e., pit states. The pit allows all the actions but open
(send, respectively).



send send

openopen

open

H
open

send

H

send

Figure 4: A gate automaton for the Chinese Wall policy.

Example 3. The security of mobile devices is based on

software certification. Basically, an application is signed

with a certificate provided by some trusted entity, i.e., a cer-

tification authority. At install time, the signature is verified

and, if it is valid, the application receives all the required

access privileges. If the signature is corrupted or absent, the

application has no access rights to security critical operations

and every decision is delegated, time by time, to the user.

Users allow or deny permissions to each single operation. If

the user consider a program to be harmless, i.e., she trusts

the application, she can decide to always permit the action.

Symmetrically, if the application is not trusted, the user can

decide to never allow the access.

no

open

yes

never

ask

open

open

always open

Figure 5: A gate automaton for the ask user policy.

The gate automaton of Figure 5 implements the policy that

asks the user to decide whether to permit once (yes), always
permit (always), deny once (no) or never permit (never) the
open action.

B. From gate automata to interface automata

In this section we introduce the relation between gate au-

tomata and interface automata. Basically, a gate automaton

can be instantiated to a corresponding interface automaton

through a simple transformation. Hence, we use interface

automata for giving an operational semantics to the security

policies defined through our gate automata.

Definition 2. An instantiation of a gate automaton G over

a index k, denoted by Gk, is an interface automaton P =
〈VP ∪ Vid, {ı}, A

I
k , A

O
k+1, {N,H}, TP 〉 where:

• VP = V ∪ Vid is the finite set of states (where Vid =

{vαid : v ∈ V ∧ v 6
α
−→ ∧ ∀β ∈ Ā ∪ {N,H}.v 6

β
−→})

• AI
k = {〈α, k〉 : α ∈ A} is the input alphabet;

• AO
k+1 = {〈α, k + 1〉 : α ∈ A} is the output alphabet;

• TP is a set of transitions defined as:

TP = {(v, 〈α, k〉, w) : (v, α, w) ∈ T }
∪ {(v, 〈α, k + 1〉, w) : (v, ᾱ, w) ∈ T }
∪ {(v,�, w) : (v,�, w) ∈ T }
∪ {(v, 〈α, k〉, vαid) : v

α
id ∈ Vid}

∪ {(vαid, 〈α, k + 1〉, v) : vαid ∈ Vid}

where � ∈ {N,H}

Example 4. Consider the gate automaton of Example 1.

We instantiate it with index k and we obtain the interface

automaton of Figure 6.

read open

open? read? close?

open! read! close!

open!

close!

open?

read? read!

close!

close open! close?

Figure 6: The instantiation of the gate automaton of Fig. 3.

For the sake of simplicity, we use α? and α! in place of

αk and αk+1. Self loops labelled with an action α are a

compact notation for the couple of transitions (v, α?, vαid)
and (vαid, α!, v), where vαid is the small black state in the

loop. In the following, we apply this notation in order to

have a more readable representation of the automata.

For what concerns the semantics of an instantiation Gk

of a gate automaton G, we define it in terms of reaction

sequences. Intuitively, a reaction sequence is a trace of

output and internal actions fired by an interface automaton

after reading one input symbol. We start by extending the

definition of execution fragment in the following way.

Definition 3. An execution fragment of an interface automa-

ton P is a possibly infinite, alternating sequence of states

and actions v0, α0, v1, α1, . . . such that (vi, αi, vi+1) ∈ TP .

Definition 4. Given an interface automaton P =
〈VP , V

init
P , AI

P , A
O
P , A

H
P , TP 〉, an action α ∈ AI

P and a state

v ∈ VP , a reaction sequence to α in v is a possibly infinite

trace of actions σ = α0, α1, . . . such that

• αi ∈ AO
P ∪ AH

P ,

• ∃v, v0, v1, . . . ∈ VP such that v, α, v0, α0, v1, α1, . . . is

an execution fragment of P and

• if σ has finite length n then ∀β ∈ AO
P ∪ AH

P . vn 6
β
−→.



We say that α is an activator of σ in v and denote in with

v
σ

=⇒
α

vn if σ is finite or v
σ

=⇒
α

↑ otherwise.

C. Trace validity

In this section we provide a formal definition of compli-

ance of a trace with respect to a gate automaton. Intuitively,

we can imagine that a sequence of actions is allowed by a

gate automaton if, passing it as the input of the (instantiation

of the) automaton, the output is the unchanged sequence. We

formally define this notion in terms of reactions sequences

in the following way.

Definition 5. Given a finite trace of actions σ = α1, . . . , αn

and a gate automaton G = 〈V, ı, A, T 〉 we say that σ is

weakly compliant with G, in symbols σ ⊢ G, if and only if

for any instantiation Gk of G we have

ı
σk+1

1=⇒
〈α1,k〉

v1 . . .
σk+1
n=⇒

〈αn,k〉
vn

such that σk+1
i = 〈βi,1, k + 1〉 . . . 〈βi,mi

, k + 1〉 and

fout(σ
k+1
1 . . . σk+1

n ) = σ

where fout is the function recursively defined as

fout(σσ
′) = fout(σ)fout(σ

′)

fout(〈α, h〉) = α fout(〈�, h〉) = ·

being · the empty trace and � ∈ {N,H}.

Beyond the technical definition, the weak compliance of

a trace with respect to a gate automaton is quite intuitive.

In particular, we can see the weak compliance as the dual

of transparency. That is, a trace weakly complies with a

gate automaton if and only if an external observer cannot

understand whether the trace has been processed by (the

instantiation of) the automaton or not.

Example 5. Imagine a policy ϕRC saying “all files must be

closed after reading”. We represent this policy through the

4-states gate automaton G depicted below.

read read close

close

read

ı u v w

Basically, the G allows a read action and immediately

enqueues a close reaching the rightmost state w. From this

state two branches are possible. If the next action is a close,
the automaton cancels it and returns to the initial state ı.

Instead, if it receives a read action, it loops on the second

state u and repeats the first behaviour.

Consider now the trace σ = read, close. It is easy to

verify that interface automaton obtained instantiating the

gate automaton for ϕRC reacts to σ in the following way:

ı
read!,close!

=⇒
read?

w
·

=⇒
close?

ı

where we used the notation of Example 4 for input and

output actions.

Since fout(read!, close!) = σ, the trace is weakly com-

pliant with G, i.e. σ ⊢ G.

Clearly, weak compliance does not correspond to a full

transparency. Indeed, the transitions of the automaton can

introduce and delete actions in such a way that a trace is

kept unchanged as a whole, but its prefixes are modified. For

instance this can happen when the automaton anticipates an

action, e.g., close in the previous example, or postpones it.

For characterising sequences that are not modified at all

by a gate automaton we use the notion of strong compliance.

Definition 6. Given a finite trace of actions σ = α1, . . . , αn

and a gate automaton G = 〈V, ı, A, T 〉 we say that σ is

strongly compliant with G, in symbols σ |= G, if and only

if for any prefix σ′ of σ holds that σ′ ⊢ G.

Example 6. Consider again the gate automaton G of Ex-

ample 5. We already discussed the weak compliance of the

trace σ = read, close with respect to G. However, we also

observed that

ı
read!,close!

=⇒
read?

w

and fout(read!, close!) 6= read. Hence, σ is not strongly

compliant with G.

D. Comparing gate automata with Edit automata

Ligatti et al. [13], extending the definition of security

automaton given by Schneider in [17], have defined a new

category of deterministic security automata, namely edit

automata.

An edit automaton is defined as (Q, q0, δ, γ, ω), where
δ : A×Q → Q is the transition function, γ : A×Q → A×Q
specifies the insertion of an action into the program actions

sequence and ω : A × Q → {−,+} indicates whether or

not the action in question must be suppressed (-) or emitted

(+). The functions ω and δ have the same domain, while the

domains of γ and δ are disjoint. Note that this conditions

guarantee the resulting automaton to be deterministic, as

stated by the following rules.

if σ = a;σ′ and δ(a, q) = q′ and ω(a, q) = +

(σ, q)
a

−→E (σ′, q′) (E-StepA)

if σ = a;σ′ and δ(a, q) = q′ and ω(a, q) = −

(σ, q)
τ

−→E (σ′, q′) (E-StepS)

if σ = a;σ′ and γ(a, q) = (b, q′)

(σ, q)
b

−→E (σ, q′) (E-Ins)

otherwise

(σ, q)
·

−→E (·, q) (E-Stop)



Also note that the single-step rules can be generalised to

sequences of actions by computing the transitive closure of

the above transitions.

We can observe that the class of security properties

defined through gate automata can be mapped into edit

policies.

Proposition 1. For each gate automaton G there exists an

edit automaton EG enforcing the same property of G.

Proof. (Sketch) Starting from a gate automaton G we can

build a corresponding edit automaton EG . Then we observe

that for each input trace σ the two automata produce two

outputs that share every finite prefix1.

IV. RUNTIME ENFORCEMENT

In this section we present the enforcement environment

based on our gate automata. Basically, we describe how

gate automata drive the enforcement mechanism in a security

framework based on S×C×T. This approach represents an

extension of the original S×C×T model [9] in which the

policy enforcement is limited to target truncation. Moreover,

we improve S×C×T, where the trust management is trig-

gered only through contract violations, by integrating trust-

oriented actions in the policies specification.

We saw in Section III that a gate automata are instanti-

ated to corresponding interface automata. We use interface

automata to drive the enforcement process of a target. For

our purposes, a target R can be seen as a generic agent that

fires security-relevant actions as side effects of its execution.

Often, we refer to the target as a running program. However,

a similar reasoning also applies to other scenarios, e.g.,

users. Moreover, we assume the enforcement environment

to be effective, that is R can be suspended (or asked to wait)

before the actual execution of the operation corresponding to

the guarded action. For instance, R tries to access a resource,

so generating a corresponding action, but it actually obtains

the permission only after checking its privileges.

Figure 7 shows the schematic representation of an en-

forcement environment using gate automata. The first com-

ponent of the enforcement environment is the trust man-

agement system (TMS). This component handles the trust

weights associated to each agent and provides an implemen-

tation of the two internal actions N and H. While following

the execution of its target, the enforcement environment

can perform one or more actions of type N and H. The

TMS receives these signals and increases (decreases) the

target trust level. Note that some trust management systems

use a finer characterisation of rewards and penalties, i.e.,

more than two actions. Nevertheless, this behaviour is fully

compatible with our model. Indeed, we can extend the set

of internal actions or simulate it by adding new consecutive

transitions.

1The complete technical proof of Proposition 1 can be found in [16].

push/pop

PPTMS

R

...

G
k

k

G
1
1

N,H

N,H

...

...

tk+1

tk

tn

t1

〈α, 1〉

tR

fout(σ
k+1)

: G1

: Gk

: Gk+1

: Gn

Figure 7: The enforcement environment based on gate au-

tomata.

The enforcement environment also contains a set of

gate automata G1, . . . ,Gn composing the policy pool (PP).

The automata in the policy pool are associated to a certain

level of trust 0 6 t 6 1 on which they are inversely

ordered, i.e., 1 6 i < j 6 n implies that ti > tj . When

a target R, having trust level tR, interacts with the system

the policy pool instantiates all the gate automata Gi such that

ti > tR to a corresponding interface automaton G
i
i. Then,

the resulting interface automata are composed to create a

interface automata stack that is applied to R.

The stack receives the actions performed by R and

processes them by passing the reaction sequences of each

automaton to the layer above. More in detail, assuming that

the current state of each interface automaton G
i
i is vi, every

layer of the stack follows this procedure:

1) receives a trace σi from the level below;

2) for each element 〈•, i〉 of σi executes the following

sub steps:

a) if • = N (H) then requires the TMS to increase

(decrease) tR.

b) otherwise, if • = α computes vi
σi+1

=⇒
〈α,i〉

v′i and

passes the control to the layer above (by invoking

this procedure);

3) returns the control to the level below.

When R fires some action α, the previous steps are

executed starting from the first layer, where σ1 = 〈α, 1〉.
The output of the last layer is a sequence or reactions traces

that have been stimulated by the action α. Finally, the system

evaluates the trust feedbacks contained in these traces, i.e.,

by passing them to the TMS, and emits the other actions

(after removing the index k).

As the actions pass through the stack, the TMS can receive

trust adjustment signals. As a consequence, the system can



decide to add or remove one or more automata from the

stack. The following example can clarify this behaviour.

Example 7. Consider a policy pool containing {0.5 :
G1, 0.2 : G2} where G1 and G2 are the gate automata of

Example 2 and 3, respectively. According to our model, a

program R such that tR = 0.3 is monitored using a stack

containing only G
1
1, i.e., the instantiation of G1. In other

words, R is in the scope of a Chinese Wall policy. Imagine

now that R tries to fire the actions trace open; send; open.
At the first step, the stack, i.e., only G

1
1, receives the

action 〈open, 1〉 and returns fout(〈open, 2〉) = open. When

processing send the automaton reacts by suppressing it,

decreasing the trust level of R, e.g., tR = 0.1, and moving

to the pit state (see Figure 4). Then, as a consequence

of the trust level reduction, the system instantiates G2 and

pushes it on the stack. Since there are no actions that the

new interface automaton can evaluate, the execution of R

continues. Now R tries to perform the second open. Having
G1 no transitions for this action in the current state, the

output of G1
1 is σ2 = 〈open, 2〉. Finally, G2

2 suppresses the

action and generates the final output ask.

V. RELATED WORK

In [17], security automata have been introduced for ex-

pressing security requirements and for enforcing them on

a target execution. A security automaton processes possible

infinite execution traces. It enforces a policy by stopping

the target execution whenever it attempts to violate the

corresponding policy, i.e., whenever the target is going to

perform an action that is not allowed by the automaton.

The enforcement strategy of gate automata not only halts

the execution of the target if something goes wrong but

is also able to add and suppress actions for correcting the

target behaviour when possible. For this reason, as we have

underlined in Section III-D, their behaviour is comparable to

edit automata [13]. Gate automata differ from edit automata

mainly because they manage trust. Moreover, the trust man-

agement process is integrated in the enforcement strategy as

it automatically drives the monitoring environment.

Also [2] advocates an automaton-based specification of

security policies, namely usage automata. Usage automata

slightly differ from security automata. Roughly, an execution

trace complies with a usage policy if and only if it is not

accepted as an input word by the corresponding automaton.

Moreover, usage policies are applied directly to the source

code through proper syntactical operators that also allows

for composing the policies in a natural way via scope

nesting. The main differences with respect to our automata

are that usage automata do not change their target behaviour

and they do not consider trust at all. Furthermore, in the

environment using gate automata the scope of a policy is

not predetermined but is activated/deactivated according to

the trust values.

In [14] the authors present how security automata can

be modelled through process algebra operators. This allows

compositionality and permits to application of existing re-

sults on process algebras to the analysis, verification and

synthesis of secure systems. In general, process algebras are

more expressive than gate automata. However, we propose

gate automata as a novel strategy for the enforcement

mechanism of the S×C×Tparadigm. Indeed, in literature,

several work deal with automata-based specifications of

enforcement strategy, e.g., [17], [13]. Gate automata allow to

represent and enforce a wide class of properties of interest.

Moreover, in addition to security automata, they are directly

composable since they are a particular class of interface

automata [1].

Referring to interface automata [1], at the best of our

knowledge, there are no proposals for applying them to

the specification of security or trust properties. Instead,

our approach allows for managing in an unique way both

security and trust.

The integration between trust management and security

enforcement is still an open issue. In [11] the authors

propose an access control system that enhances the Globus

toolkit with a number of features. In particular, their proposal

deals with the integration of access control policies and

access rights management in a Grid architecture. Along this

line of research, Colombo et al. [4] present an integrated

architecture, extending the previous one, with an infer-

ence engine that manages reputation and trust credentials.

This framework is also extended in [12] a mechanism

for trust negotiating credential is introduced to overcome

scalability problems. In this way the framework preserves

privacy credentials and security policy of both users and

providers. Even if these works are deeply biased to the

Grid architecture, the basic idea consists of considering the

trust as a metrics for deciding the reliability of a resources

provider. Nevertheless, these proposals rely on a monitoring

environment that simply halts the execution when something

wrong happens. In this sense, our model allows for defining

edit properties instead of just truncation ones.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced gate automata for specifying

security and trust policies. Then, we presented a monitoring

framework that implements the trust-driven enforcement of

security policies in a S×C×T fashion. In this way, we have

defined an integrated framework for defining and applying

edit policies also dealing with the trust management issues in

a intuitive way. During the monitoring process, the policy

enforcement provides a feedback to the trust management

system while the trust level modifies the enforcement set-

tings by adding/removing security restrictions.

Several directions can be followed as future work. Firstly,

we aim at investigating the expressive power of gate au-

tomata. In particular, we would like to point out which is



the class of security properties that can be expressed through

them.

Another possible research stream is the study of different

compositional strategies for the gate automata. Indeed, in

this paper we showed how to compose them vertically

in order to obtain a stack that defines the enforcement

environment. However, as their semantics is defined through

interface automata, gate automata can be also composed in a

horizontal way. Horizontal composition, consists of pairing

and composing the layers of two different automata stack.

In this way we can model the composition of the security

policies defined by different entities, e.g., two or more parties

involved in a unique computation.

REFERENCES

[1] Luca de Alfaro and T.A. Henzinger. Interface automata. In
ACM, editor, ESEC/FSE, 2001.

[2] Massimo Bartoletti. Usage automata. In Joint Workshop
on Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security, volume 5511 of Lecture
Notes in Computer Science, pages 52–69, March 2009.

[3] Alessandro Castrucci, Fabio Martinelli, Paolo Mori, and
Francesco Roperti. Enhancing Java ME security support with
resource usage monitoring. In ICICS, pages 256–266, 2008.

[4] Maurizio Colombo, Fabio Martinelli, Paolo Mori, Marinella
Petrocchi, and Anna Vaccarelli. Fine grained access control
with trust and reputation management for globus. In OTM
Conferences (2), pages 1505–1515, 2007.

[5] Gabriele Costa, Fabio Martinelli, Paolo Mori, Christian
Schaefer, and Thomas Walter. Runtime monitoring for next
generation Java ME platform. Computers & Security, July
2009.

[6] N. Dragoni, F. Martinelli, F. Massacci, P. Mori, C. Schaefer,
T. Walter, and E. Vetillard. Security-by-Contract (SxC) for
software and services of mobile systems. In At your service
- Service-Oriented Computing from an EU Perspective. MIT
Press, 2008.

[7] N. Dragoni, F. Massacci, T. Walter, and C. Schaefer. What
the heck is this application doing? - a Security-by-Contract
architecture for pervasive services. To appear in Computers
& Security, Elsevier.

[8] A. Lazouski F. Martinelli F. Massacci G. Costa, N. Dragoni
and I. Matteucci. Extending Security-by-Contract with quan-
titative trust on mobile devices. In Proceeding of CISIS 2010,
The Fourth International Conference on Complex, Intelligent
and Software Intensive Systems, pages 872–877, 2010.

[9] V. Issarny A. Lazouski F. Martinelli F. Massacci I. Matteucci
G. Costa, N. Dragoni and R. Saadi. Security-by-Contract-
with-Trust for mobile devices. Journal of Wireless Mobile
Networks, Ubiquitous Computing and Dependable Applica-
tions, 2010. To appear.

[10] Li Gong. Java Security: Present and Near Future. IEEE
Micro, 17(3):14–19, 1997.

[11] H. Koshutanski, F. Martinelli, P. Mori, L. Borz, and A. Vac-
carelli. A fine grained and x.509 based access control system
for globus. In OTM, pages 1336–1350. Springer, 2006.

[12] Hristo Koshutanski, Aliaksandr Lazouski, Fabio Martinelli,
and Paolo Mori. Enhancing grid security by fine-grained
behavioral control and negotiation-based authorization. Int.
J. Inf. Sec., 8(4):291–314, 2009.

[13] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata:
Enforcement mechanisms for run-time security policies. In-
ternational Journal of Information Security, 4(1–2), February
2005.

[14] Fabio Martinelli and Ilaria Matteucci. Through modeling to
synthesis of security automata. Electr. Notes Theor. Comput.
Sci., 179:31–46, 2007.

[15] George C. Necula. Proof-carrying code. In Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Langauges (POPL ’97), pages 106–119,
January 1997.

[16] Gabriele Costa’s Web Page. www.di.unipi.it/∼costa, 2010.

[17] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security, 3(1):30–
50, 2000.

[18] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep
Bhatkar, and Daniel C. DuVarney. Model-carrying code: a
practical approach for safe execution of untrusted applica-
tions. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 15–28,
2003.


