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Abstract

Probabilistic graphical models for continu-
ous variables can be built out of either para-
metric or nonparametric conditional density
estimators. While several research efforts
have been focusing on parametric approaches
(such as Gaussian models), kernel-based es-
timators are still the only viable and well-
understood option for nonparametric density
estimation. This paper develops a semipara-
metric estimator of probability density func-
tions based on the nonparanormal transfor-
mation, which has been recently proposed for
mapping arbitrarily distributed data samples
onto normally distributed datasets. Point-
wise and uniform consistency properties are
established for the developed method. The
resulting density model is then applied to
pseudo-likelihood estimation in Markov ran-
dom fields. An experimental evaluation on
data distributed according to a variety of
density functions indicates that such semi-
parametric Markov random field models sig-
nificantly outperform both their Gaussian
and kernel-based alternatives in terms of pre-
diction accuracy.

1 Introduction

When dealing with continuous-valued variables, learn-
ing the parameters of probabilistic graphical models
from data is much more challenging than in discrete
domains. In fact, while the multinomial distribution
is an usually adequate choice for estimating condi-
tional probability distributions in the discrete setting,
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choosing a suitable kind of estimator for (continuous)
conditional density functions requires either to assume
that the form of the modeled density is known, lead-
ing to parametric techniques, or to relax such a para-
metric assumption, opting for a nonparametric tech-
nique [Duda et al., 2001]. The parametric assumption
is often limiting, because in real-world applications the
true form of the probability density function (pdf) can
be rarely assessed a priori. On the other hand, non-
parametric techniques only make a much weaker as-
sumption concerning the smoothness of the pdf.

While a lot of research has been devoted to parametric
graphical models in the machine learning community
[Bishop, 2006, Koller and Friedman, 2009], only a few
efforts have been devoted to nonparametric (or semi-
parametric) models. In Bayesian networks (BNs) and
Markov random fields (MRFs), nonparametric condi-
tional density estimators (based on kernel methods
[Parzen, 1962, Rosenblatt, 1969]) are used for the first
time by Hofmann and Tresp [1995, 1997]. A nonpara-
metric technique for learning the structure of BNs is
also developed in Margaritis [2005]. However, that
method is only aimed at inferring the conditional inde-
pendencies from data, rather than at learning the over-
all density function. A semiparametric technique for
learning undirected graphs, leading to so-called ‘non-
paranormal’ MRFs (NPMRFs), is proposed by Liu
et al. [2009]. The nonparanormal approach consists
in mapping the original data points (which are not as-
sumed to satisfy any given distributional form) onto
a different set of points, which are assumed to fol-
low a multivariate normal distribution. The graph
is then estimated from the transformed dataset using
the graphical lasso algorithm [Friedman et al., 2008],
which is both computationally efficient and theoret-
ically sound for Gaussian distributions [Ravikumar
et al., 2008]. However, the original nonparanormal
approach only allows to estimate undirected graphs
(rather than densities in the strict sense), i.e. it is not
suitable for computing explicitly probability density
functions [Liu et al., 2009]. Overcoming such a lim-
itation is the main contribution of this paper, so as
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to provide a full-fledged semiparametric (conditional)
density estimator. Another attempt of mapping the
original dataset into a feature space where data are
assumed to be normally distributed is also made by
Bach and Jordan [2002], using Mercer kernels.

This paper introduces a semiparametric MRF model
for pseudo-likelihood estimation in continuous-valued
domains, by developing a novel density estimator
based on the nonparanormal mapping. Sec. 2 de-
scribes the general statistical framework that the pro-
posed technique is embedded into for the purposes of
our application. The nonparanormal density estima-
tor is then presented and analyzed in Sec. 3, proving
its asymptotic consistency. In Sec. 4 the estimator is
evaluated experimentally on a number of benchmarks.
Finally, Sec. 5 summarizes the main contributions of
this work and sketches a couple of directions for fur-
ther research.

2 Pseudo-Likelihood and the

Quotient-Shape Approach to

Conditional Density Estimation

One widely used approach to probabilistic modeling in
Markov random fields resorts to the pseudo-likelihood
function [Besag, 1975], which has proved to be an
efficient yet accurate surrogate for likelihood in the
strict sense (which is computationally intractable) in
a wide variety of probabilistic models [Strauss and
Ikeda, 1990, Hofmann and Tresp, 1997, Richardson
and Domingos, 2006, Neville and Jensen, 2007, Freno
et al., 2009]. Given the random variables X1, . . . , Xd,
the pseudo-likelihood p∗ of any state x1, . . . , xd of
those variables is measured as follows:

p∗(x1, . . . , xd) =
d∏

i=1

p(xi | x1, . . . , xi−1, xi+1, . . . , xd)

(1)
One convenient property of the pseudo-likelihood mea-
sure for application to graphical models (and Markov
random fields in particular) is that, as defined by Eq. 1,
it reduces to the following function:

p∗(x1, . . . , xd) =

n∏

i=1

p (xi | mb(Xi)) (2)

where mb(Xi) denotes the state of the Markov blanket
of Xi [Koller and Friedman, 2009].

In order to exploit the pseudo-likelihood function, we
need to specify a technique for estimating the condi-
tional densities involved in the right-hand side of Eq. 2.
As a basic rule of probability theory, the conditional
density of a (continuous) random variable X given the

random variable Y can be derived from a pair of un-
conditional density functions as follows:

p(X | Y ) =
p(X, Y )

p(Y )
(3)

This means that any problem in conditional density
estimation can be straightforwardly reduced to a pair
of unconditional pdf estimation problems. There-
fore, if our goal is to estimate the conditional den-
sity p(X | Y ), we can address this task by estimating
first the (unconditional) density functions p(X, Y ) and
p(Y ), and then by computing their quotient. This ap-
proach (which is called the quotient-shape approach to
conditional density estimation) is the one we adopt
in this paper for designing a (semiparametric) con-
ditional density estimation technique, which we use
within undirected graphical models, but which is ap-
plicable to virtually any kind of probabilistic graphical
model [Hofmann and Tresp, 1995, 1997]. Some at-
tempts have also been made in the relevant literature
to devise different approaches [Faugeras, 2009], which
are currently an active investigation area in multivari-
ate statistics.

3 Nonparametric Normal Estimation

of Probability Density Functions

This section presents a semiparametric method for es-
timating (conditional) density functions. This tech-
nique, which is referred to as nonparametric normal
(or nonparanormal), was introduced by Liu et al.
[2009] for learning the structure of (sparse) undirected
graphs. However, the main contribution of this pa-
per is to show how the nonparanormal approach can
be turned into a general-purpose density estimation
method. While the main ideas underlying the non-
paranormal method are reviewed in Sec. 3.1, the prob-
lem of extending that method to density estimation
tasks is addressed in Sec. 3.2. Pointwise and uniform
consistency properties of the proposed estimator are
then investigated in Sec. 3.3.

3.1 Background

In order to present the nonparanormal approach, we
first need to recall an important lemma from multivari-
ate calculus, which is commonly known as the change
of variables theorem:

Lemma 1. Consider two random vectors X and Y ,
with domains X ⊆ R

d and Y ⊆ R
d respectively. Sup-

pose that f : X → Y is a one-to-one, differentiable
function from X onto Y. Then, if X and Y are
distributed according to density functions pX(x) and
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pY (y) respectively, it follows that

pY (y) = pX(x)

∣∣∣∣det
∂x

∂y

∣∣∣∣ (4)

where f−1 : Y → X is the inverse of f , x = f−1(y),
and ∂x

∂y
denotes the Jacobian matrix of f−1.

Proof. See e.g. Kaplan [1984].

The nonparanormal (or nonparametric normal) ap-
proach is a recently introduced technique for estimat-
ing the structure of undirected graphs, based on a
Gaussian model, without making any parametric as-
sumption concerning the form of the modeled density
[Liu et al., 2009]. Although the previous statement
may seem paradoxical, the idea underlying the non-
paranormal approach is to map a set of data points
(which are not known to be normally distributed) onto
a set of data points that can be assumed to follow a
normal distribution. Once the density of the normal
sample has been estimated using a standard Gaussian
model, the density of the points in the original space
can then be recovered by applying the change of vari-
ables theorem.

First of all, let us define the concept of nonparanormal
density:

Definition 1. A random vector X = (X1, . . . , Xd)
with mean µ is said to be nonparanormally distributed
if there exists a function f such that:

1. f(X) = (f1(X1), . . . , fd(Xd)), where fi(Xi) is
one-to-one and differentiable (for 1 ≤ i ≤ d);

2. the random vector Y = f(X) is distributed nor-
mally with mean µ and covariance matrix Σ.

Given Definition 1, we can prove the following lemma
(which is stated by Liu et al. [2009] without proof):

Lemma 2. If the distribution of a random vector X =
(X1, . . . , Xd) is nonparanormal with mapping f(X) =
(f1(X1), . . . , fd(Xd)), then the density of X is given
by

pX(x) =
e−

1

2
(y−µ)⊺

Σ
−1(y−µ)

(2π)d/2 det(Σ)1/2

d∏

i=1

∣∣∣∣
d

d xi
fi(xi)

∣∣∣∣ (5)

where y = f(x), µ is the mean vector of both X and
Y , and Σ is the covariance matrix of Y .

Proof. Let pY denote the (normal) density function of
Y . Then, Lemma 1 implies that

pX(x) = pY (y)

∣∣∣∣det
∂y

∂x

∣∣∣∣

=
e−

1

2
(y−µ)⊺

Σ
−1(y−µ)

(2π)d/2 det(Σ)1/2

∣∣∣∣det
∂y

∂x

∣∣∣∣

(6)

Since the value of each fi only depends on xi, the Ja-
cobian matrix ∂y

∂x
is diagonal. Therefore, the absolute

value of the Jacobian determinant is given by

∣∣∣∣det
∂y

∂x

∣∣∣∣ =
d∏

i=1

∣∣∣∣
d

d xi
fi(xi)

∣∣∣∣ (7)

Based on Lemma 2, the crucial problem for the non-
paranormal approach is how to estimate the functions
f1(X1), . . . , fd(Xd). The technique developed by Liu
et al. [2009] prescribes to estimate the value of each fi

as
f̂i(x) = µ̂i + σ̂iĥi(x) (8)

where µ̂i and σ̂i are the sample mean and standard de-
viation of variable Xi, and ĥi(x) is defined as follows:

ĥi(x) = Φ−1(F̂i(x)) (9)

In Eq. 9, Φ−1 is the inverse of the standard normal
cumulative distribution function (cdf) Φ, given by

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
(10)

where erf(x) = 2√
π

∫ x

0
e−t2 d t. On the other hand, F̂i

is the so-called truncated estimator of the empirical
cdf FE

i of Xi [Dixon, 1960]. Let n be the number of
data points and δn be a truncation parameter. The
truncated estimator of FE

i is then defined as

F̂i(x) =






δn if FE
i (x) < δn

FE
i (x) if δn ≤ FE

i (x) ≤ 1 − δn

1 − δn if 1 − δn < FE
i (x)

(11)

where, if Θ denotes the Heaviside step function, the
value of FE(x) is given by

FE(x) =
1

n

n∑

j=1

Θ(x − xj) (12)

The suggested setting for the truncation parameter is
given by

δn =
1

4n1/4
√

π log n
(13)

The choice specified in Eq. 13 is reported to result in
a generally satisfying behavior of the nonparanormal
estimator, especially in the high-dimensional setting
[Liu et al., 2009].

As defined in Eq. 11, the truncated estimator F̂i(x) is
discontinuous. This prevents us from computing the
derivatives contained in Eq. 5. In other words, the
approach described thus far is not yet suitable as a
thorough density estimation technique. On the other
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hand, it is sufficient instead for estimating the struc-
ture of the undirected graph underlying the density
pY , as this structure is conveyed by the precision ma-
trix Ω = Σ−1. In fact, if Ωi j = 0, then the nodes Xi

and Xj will not be adjacent in the graph of a MRF
representing pY [Lauritzen, 1996]. Now, one key re-
sult proved by [Liu et al., 2009] establishes that, if X

is nonparanormal with mapping Y = f(X), then Xi is
independent of Xj given a subset SX of {X1, . . . , Xd}
if and only if Yi is independent of Yj given the set
SY = {Yk : Xk ∈ SX}. This result can be used for
learning the structure of MRFs. To this aim, the guid-
ing idea is that the precision matrix Ω of the random
vector Y fixes not only the graph of a MRF for pY ,
but also the graph of a MRF for pX . However, since
our interest lies in exploiting the nonparanormal ap-
proach for the sake of (conditional) density estimation,
we move beyond the strategy presented above, trying
to fit the approach to our overall goal.

3.2 Multilogistic Estimation of Cumulative
Distribution Functions

A differentiable approximation F ∗
i (x) of FE

i (x) can be
obtained by using the logistic function:

F ∗
i (x) =

1

n

n∑

j=1

1

1 + exp
(
−x−xj

h

) (14)

where h is a parameter controlling the logistic smooth-
ness. The approximation is justified by the fact that
the Heaviside step function (employed in Eq. 12) can
be defined as follows:

Θ(x) = lim
h→0

1

1 + exp
(
− x

h

) (15)

We refer to the cdf estimator defined in Eq. 14 as
the multilogistic estimator of (univariate) distribution
functions. Given the multilogistic estimator, we re-
place ĥi(x) by ĥ∗

i (x):

ĥ∗
i (x) = Φ−1

(
F ∗

i (x)
)

(16)

An approximate value of the derivatives referred to in
Eq. 5 is then given by:

d

d x
f̂i(x) =

=
σ̂i

√
2π

n h e− erf−1(2 F∗

i (x)−1)
2

n∑

j=1

e−
x−xj

h

(
1 + e−

x−xj

h

)2

(17)

If the value specified in Eq. 17 (which is derived in
the Appendix) is substituted into Eq. 5, the result-
ing model can be straightforwardly used as a condi-
tional density estimator based on the quotient-shape
approach.

3.3 Consistency Results

Before establishing consistency results for the pro-
posed density estimation technique, it is useful to re-
call an important theoretical property of the nonpara-
normal mapping. One lemma proved by Liu et al.
[2009] shows that, if each function fi is monotone and
differentiable, then the nonparanormal is a Gaussian
copula [Sklar, 1959, Nelsen, 2006] such that the den-
sity of the (nonparanormally distributed) vector X is
given by Eq. 5. This means that, in order to esti-
mate a multivariate nonparanormal distribution, the
crucial problem is to estimate the univariate cumula-
tive distribution functions of the variables X1, . . . , Xd.
Therefore, the key to understanding the consistency
properties of the proposed density estimator is to elu-
cidate the consistency properties of each (univariate)
estimator F ∗

i .

A preliminary result we are going to prove is that,
given a random variable X , the multilogistic estimator
F ∗ of the cumulative distribution function of X (as
defined by Eq. 14) results in a kernel estimate p̂ of the
pdf of X , as explained by the following lemma:

Lemma 3. If X is a random variable with probability
density function p and cumulative distribution func-
tion F , then the multilogistic estimator F ∗ of F is
equivalent to a kernel estimator p̂ of p with bandwidth
h.

Proof. Since p(x) = d
d x F (x), the density p̂(x) corre-

sponding to the estimate F ∗(x) can be expressed as
follows (as shown in derivation 23):

p̂(x) =
d

d x
F ∗(x)

=
1

n h

n∑

j=1

exp
(
−x−xj

h

)
(
1 + exp

(
−x−xj

h

))2

=
1

n h

n∑

j=1

K

(
x − xj

h

)
(18)

where K is defined as:

K(t) =
e−t

(1 + e−t)2
(19)

This means that F ∗(x) amounts to a kernel estimator
p̂(x) of the density of X , with kernel function K and
bandwidth h (where h is exactly the parameter con-
trolling the smoothness of the logistic functions em-
ployed in F ∗).

The importance of this result lies in the fact that,
based on Lemma 3, the multilogistic estimator devel-
oped in this paper inherits in a straightforward manner
the consistency properties of kernel density estimators.
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We first establish a pointwise consistency property for
the proposed estimator:

Theorem 1. Let X be a random variable with prob-
ability density function p and cumulative distribution
function F , and let p̂(x) be the kernel density esti-
mate resulting from a multilogistic estimator F ∗ of
F . Then, if the bandwidth h of the estimator is such
that h → 0 and n h → ∞ as n → ∞, it follows that
d

d xF ∗(x) → d
d xF (x) in probability as n → ∞.

Proof. It is shown by Parzen [1962] that, for any den-
sity function p which is continuous at x, if a ker-
nel estimate p̂(x) with kernel function K is such that
h → 0 and n h → ∞ as n → ∞, then p̂(x) → p(x) in
probability as n → ∞ provided that K is a bounded
Borel function satisfying the following conditions: (i)∫ ∞
−∞|K(t)| d t < ∞; (ii)

∫ ∞
−∞K(t) d t = 1; (iii)

|t K(t)| → 0 as |t| → ∞. Such conditions are satisfied
by the kernel function defined in Eq. 19 (as they are
by a wide variety of kernels [Silverman, 1986]). Based
on Lemma 3, this means that, if h → 0 and n h → ∞
as n → ∞, then d

d xF ∗(x) → d
d xF (x) in probability as

n → ∞.

Uniform consistency also holds for the multilogis-
tic estimator, under conditions that are only slightly
stronger than the ones required for pointwise consis-
tency:

Theorem 2. Let X be a random variable with prob-
ability density function p and cumulative distribution
function F , and let p̂ be the kernel density estima-
tor resulting from a multilogistic estimator F ∗ of F .
Then, if the bandwidth h of the estimator is such that
h → 0 and (n h)−1 log n → 0 as n → ∞, it follows
that supx

∣∣ d
d xF ∗(x) − d

d xF (x)
∣∣ → 0 almost surely as

n → ∞.

Proof. It is shown by Bertrand-Retali [1978] and Sil-
verman [1978, 1980] that, for any density function
p which is uniformly continuous on (−∞,∞), if a
kernel estimate p̂(x) with kernel function K is such
that h → 0 and (n h)−1 log n → 0 as n → ∞,
then supx |p̂(x) − p(x)| → 0 almost surely as n →
∞ provided that K is a (bounded) function with
bounded variation satisfying the following conditions:
(i)

∫ ∞
−∞|K(t)| d t < ∞; (ii)

∫ ∞
−∞K(t) d t = 1; (iii)

the set of discontinuities of K has Lebesgue measure
zero. Again, such conditions are satisfied by the kernel
function defined in Eq. 19 (as well as by many other
kernels [Silverman, 1978]). Therefore, Lemma 3 im-
plies that, if h → 0 and (n h)−1 log n → 0 as n → ∞,
then supx

∣∣ d
d xF ∗(x) − d

d xF (x)
∣∣ → 0 almost surely as

n → ∞.

As a consequence of Theorem 2, we can state the fol-
lowing corollary:

Corollary 1. Let X be a random variable with cumu-
lative distribution function F , and let F ∗ be a multilo-
gistic estimator of F . Then, if the bandwidth h of the
estimator is such that h → 0 and (n h)−1 log n → 0 as
n → ∞, it follows that supx |F ∗(x)−F (x)| → 0 almost
surely as n → ∞.

Proof. The corollary follows straightforwardly from
Theorem 2.

4 Experimental Evaluation

The aim of this section is to evaluate the accuracy of
the semiparametric pseudo-likelihood estimation tech-
nique presented thus far at modeling the distribution
of (multivariate) data featuring nonlinear dependen-
cies between the variables plus non-Gaussian random
noise. In particular, the idea is to sample a number
of datasets from synthetic distributions, where the lat-
ter are generated in such a way as to make it unlikely
that any particular parametric assumption (such as
normality) may be satisfied. We can then exploit the
produced data for pattern classification, so as to com-
pare the prediction accuracy of semiparametric (non-
paranormal) MRFs both to parametric (Gaussian) and
nonparametric (kernel-based) MRFs, respectively. Af-
ter briefly summarizing the main ideas underlying the
data generation process, Sec. 4.1 states the basic prop-
erties of the used datasets, while the results of the ex-
periments are reported in Sec. 4.2.

4.1 Datasets

In order to sample pattern-classification datasets fea-
turing nonlinear correlations between pairs of variables
in each class, suitable distributions are defined by gen-
erating random BNs. The BN is created by generat-
ing (i) a random (directed acyclic) graph, (ii) a set of
functions (with random parameters) characterizing the
dependence of every node on each one of its parents
in the graph, and (iii) a set of functions (with ran-
domly assigned parameters) defining the probability
density of each node. While a complete description of
the data generation technique is given by Freno et al.
[2010], Fig. 1 provides some examples of the distribu-
tions that can be generated using such method. In the
plotted examples, the underlying distributions (featur-
ing cubic correlation functions and beta densities) are
organized in a DAG (V , E) such that V = {X, Y } and
E = {(X, Y )}. Notice how the beta function asso-
ciated with variable Y produces nearly uniform den-
sity over the support of the distribution for Fig. 1a,
while it generates noise which is peaked toward the
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lower/higher extreme in Fig. 1b/1c, or toward both
extremes in Fig. 1d. On the other hand, the parame-
ters of the polynomial functions are able to determine
nearly-quadratic dependencies (Figs. 1a, 1b), cubic de-
pendencies (Fig. 1c), and nearly-linear dependencies
(class 2 in Figs. 1d–1f). The employed data genera-
tion technique is capable of producing a relatively wide
variety of pattern classification problems: easy prob-
lems, where the classes are linearly separable (such as
in Fig. 1f); moderately difficult tasks, where the classes
overlap to a significant extent but a linear separation
might be settled for with relatively good results (such
as in Fig. 1a); fairly hard problems, where patterns
drawn from different classes are neither linearly sepa-
rable nor belonging to neatly separated regions of the
feature space (such as in Figs. 1b–1e).

The described data generation technique is applied
to the present experimental setting in the following
way: (i) four datasets (CB1 through CB4) are gen-
erated using random cubic functions for the variable
correlations and random beta densities for the variable
distributions; (ii) four datasets (SE1 through SE4)
are generated using random logistic functions for the
variable correlations and random exponential densities
for the variable distributions; (iii) four datasets (LG1
through LG4) are generated using random linear func-
tions for the variable correlations and random Gaus-
sian densities for the variable distributions. While
datasets CB1–CB4 and SE1–SE4 offer a benchmark
featuring a wide range of nonlinear variable correla-
tions and non-Gaussian probability densities, datasets
LG1–LG4 provide instead a baseline for evaluating two
important issues. First, we want to verify whether the
nonparanormal technique proposed in this paper can
be expected to be at least as accurate as a given para-
metric technique whenever the latter makes the correct
assumption concerning the form of the modeled distri-
bution, which is the case for Gaussian MRFs (GM-
RFs) with the LG1–LG4 datasets. Second, we want
to assess how significant the loss of prediction accu-
racy is for GMRFs (with respect to nonparanormal
and kernel-based MRFs) whenever the related para-
metric assumption is instead violated by the data, as
compared to the accuracy achieved when the normal-
ity assumption is satisfied. All datasets used in the
experiments contain a total number of 500 patterns,
equally split into two classes. Table 1 summarizes the
main properties of each dataset, also indicating the
dimensionality of each one.

4.2 Results

The prediction accuracy of the NPMRF model de-
veloped in this paper is compared to the accuracy
achieved by GMRFs [Koller and Friedman, 2009] and

Table 1: General properties of the synthetic datasets
used in the experimental evaluation (where d is the
number of random variables).

Dataset Correlations Densities d

CB1 cubic beta 12
CB2 cubic beta 14
CB3 cubic beta 17
CB4 cubic beta 18
SE1 logistic exponential 11
SE2 logistic exponential 12
SE3 logistic exponential 13
SE4 logistic exponential 14
LG1 linear Gaussian 7
LG2 linear Gaussian 13
LG3 linear Gaussian 16
LG4 linear Gaussian 17

kernel-based MRFs (KMRFs) [Hofmann and Tresp,
1997]. In KMRFs, the graph is estimated using
the structure learning algorithm proposed by Hof-
mann and Tresp [1997], based on a maximum pseudo-
likelihood strategy. In GMRFs and NPMRFs, struc-
ture learning is performed instead by means of the
graphical lasso technique [Friedman et al., 2008, Liu
et al., 2009], while conditional densities are modeled
for the resulting graphical structures by Gaussian and
nonparanormal estimators respectively. To the best of
our knowledge, the learning algorithms considered for
GMRFs, KMRFs, and NPMRFs are the state of the
art emerging from the literature on continuous MRFs.

In order to exploit the models for pattern classifica-
tion, we take for each dataset D the two subsets D1

and D2, where all patterns in Di belong to class ωi.
For each model, we learn two class-specific versions,
training each version on the respective set of data
points. Patterns in the test set are then classified as
follows. For each ωi, we estimate the posterior proba-
bility P (ωi | x) that a pattern x belongs to class ωi:

P (ωi | x) =
p(x | ωi)P (ωi)

p(x)
(20)

where p(x | ωi) is the pseudo-likelihood of the model
learned for ωi given x, P (ωi) is the prior probability

of class ωi (estimated as |Di|
|D| ), and p(x) =

∑
j p(x |

ωj)P (ωj). Given the posterior probability of each
class, we attach to x the label with the highest proba-
bility, based on a maximum a posteriori strategy. The
results of the experiments are reported in Table 2,
where values are averaged by 5-fold cross-validation.
In order to assess the statistical significance of the re-
sults, Table 2 also provides p-values for the paired t-
test between NPMRFs and each one of the other two



Antonino Freno

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Class 1
Class 2

(f)

Figure 1: Randomly generated bivariate distributions for pattern classification tasks. X and Y are distributed
according to random beta densities, while the dependence of Y on X is shaped by a random cubic function.

models.

Table 2 supports the following interpretation. First,
when the normality assumption happens to be satis-
fied, NPMRFs are generally equivalent to GMRFs in
terms of prediction accuracy. On the contrary, in these
cases KMRFs are relatively unreliable, since their ac-
curacy is often lower than the accuracy achieved by
GMRFs and NPMRFs. Second, whenever the involved
parametric assumption is violated by the given distri-
bution (CB1–CB4 and SE1–SE4 datasets), semipara-
metric MRFs are dramatically superior to parametric
MRFs. Moreover, although in such cases KMRFs are
usually more accurate than GMRFs, NPMRFs reg-
ularly outperform their kernel-based alternative to a
significant extent. Since the multilogistic cdf estima-
tor employed in the nonparanormal model reveals a
very tight connection with kernel density estimation
(as explained in Sec. 3.3), one plausible reason for the
advantage of NPMRFs over KMRFs is given by the
fact that the Gaussian copula allows the nonparanor-
mal approach to break down a multivariate estima-
tion problem into its univariate counterparts, which
are generally easier to be dealt with. Overall, the re-

sults suggest that the semiparametric MRF model de-
veloped in this paper is a much more flexible pseudo-
likelihood estimation technique than its Gaussian and
kernel-based alternatives.

5 Conclusions and Future Work

In this paper, a novel semiparametric technique for
estimating probability density functions has been in-
troduced, based on complementing the nonparanormal
framework with the multilogistic cdf estimator. On
the one hand, pointwise and uniform consistency re-
sults have been proved for the multilogistic estimator.
On the other hand, the developed technique has been
successfully applied to the problem of learning Markov
random fields from data, using the pseudo-likelihood
approach. In particular, a number of pattern classi-
fication benchmarks show that semiparametric MRFs
are a generally accurate and flexible model for data
distributed according to a variety of density functions,
featuring both linear and nonlinear variable correla-
tions.

While the proposed technique overcomes one limita-
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Table 2: Recognition accuracy (average ± standard deviation) measured by 5-fold cross-validation on the CB1–
CB4, SE1–SE4, and LG1–LG4 datasets for GMRFs, KMRFs, and NPMRFs respectively. For GMRFs and
KMRFs, p-values from the paired t-test against NPMRFs are reported in brackets (with bold font indicating
that the p-value is less than 0.05).

Recognition Accuracy (%)
Dataset GMRF KMRF NPMRF

CB1 70.6 ± 4.27 (0.001) 79.0 ± 2.68 (0.002) 87.6 ± 3.00
CB2 91.6 ± 3.13 (0.098) 88.8 ± 1.32 (0.002) 95.8 ± 1.16
CB3 50.6 ± 1.35 (0.001) 55.8 ± 3.96 (0.030) 64.8 ± 4.48
CB4 53.6 ± 2.72 (0.001) 62.2 ± 5.91 (0.111) 66.4 ± 2.93
SE1 66.6 ± 5.31 (0.861) 71.6 ± 5.85 (0.355) 67.2 ± 7.30
SE2 59.4 ± 3.66 (0.000) 56.8 ± 3.96 (0.014) 67.4 ± 3.38
SE3 63.6 ± 3.97 (0.029) 62.4 ± 7.55 (0.089) 73.0 ± 6.06
SE4 63.6 ± 6.56 (0.004) 72.6 ± 6.40 (0.016) 80.8 ± 3.54
LG1 84.6 ± 2.33 (0.099) 59.0 ± 3.52 (0.000) 83.8 ± 2.31
LG2 90.6 ± 4.49 (0.085) 90.6 ± 1.95 (0.001) 82.2 ± 3.12
LG3 97.8 ± 1.72 (0.541) 79.2 ± 5.41 (0.001) 97.4 ± 1.85
LG4 79.0 ± 1.41 (0.000) 71.2 ± 5.19 (0.016) 81.8 ± 1.60

tion of the original nonparanormal approach, which
was only suitable for estimating undirected graphs
(rather than providing a full model of density func-
tions), one challenge for future research is to evalu-
ate how the developed density estimator compares to
kernel-based estimators outside the specific setting of
pseudo-likelihood estimation, and of graphical models
in general. In fact, while the collected evidence sug-
gests that NPMRFs are generally more accurate than
GMRFs and KMRFs, an interesting question is how
the developed semiparametric estimator would behave
if plugged into other kinds of graphical models, or if
used as a standalone density estimation technique.
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Appendix

The value of d
d x f̂i(x) is given by:

d

dx
f̂i(x) =

d

d x

(
µ̂i + σ̂iĥ

∗
i (x)

)

= σ̂i
d

d x
ĥ∗

i (x)

= σ̂i
d

d x
Φ−1

(
F ∗

i (x)
)

= σ̂i
d

d F ∗
i (x)

Φ−1
(
F ∗

i (x)
) d

d x
F ∗

i (x)

(21)

We first derive Φ−1
(
F ∗

i (x)
)

with respect to F ∗
i (x):

d

d F ∗
i (x)

Φ−1(F ∗
i (x)) =

1
d
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i
(x))

Φ (Φ−1(F ∗
i (x)))

=
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2π

exp

(
− 1

2
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=

√
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(x)−1))

2

2
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=

√
2π

exp
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i (x) − 1
)2

)

(22)

We also derive F ∗
i (x) with respect to x:

d

d x
F ∗

i (x) =
d

d x



 1

n

n∑

j=1

1

1 + exp
(
−x−xj
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
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(23)

Given Eqs. 22–23, Eq. 17 follows immediately.
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tique de L’Université de Paris, 8:229–231, 1959.

David Strauss and Michael Ikeda. Pseudolilkelihood
Estimation for Social Networks. Journal of the
American Statistical Association, 85:204–212, 1990.


