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Abstract—Learning to rank from examples is an important
task in modern Information Retrieval systems like Web search
engines, where the large number of available features makes
hard to manually devise high-performing ranking functions. This
paper presents a novel approach to learning-to-rank, whichcan
natively integrate any target metric with no modifications. The
target metric is optimized via maximum-likelihood estimation of
a probability distribution over the ranks, which are assumed
to follow a Boltzmann distribution. Unlike other approaches in
the literature like BoltzRank, this approach does not rely on
maximizing the expected value of the target score as a proxy
of the optimization of target metric. This has both theoretical
and performance advantages as the expected value can not
be computed both accurately and efficiently. Furthermore, our
model employs the pseudo-likelihood as an accurate surrogate
of the likelihood, so as to avoid to explicitly compute the
normalization factor of the Boltzmann distribution, which is
intractable in this context. The experimental results showthat the
approach provides state-of-the-art results on various benchmarks
and on a dataset built from the logs of a commercial search
engine.

I. I NTRODUCTION

Modern Information Retrieval systems like Web search
engines have available hundreds of features to represent each
document while answering users’ queries. These features range
from query-independent signals like PageRank to others mea-
suring the match between the query and a document. This high
number of ranking signals, which can be strongly correlated,
makes hard to manually design ranking functions achieving
results that are close to optimality.

In the last few years, learning to rank from examples
has emerged as a more flexible approach to design ranking
functions. Learning-to-rank approaches have been proved to
significantly outperform hand-tuned solutions [1].

Ranking algorithms can be assigned to three classes: point-
wise, pairwise and listwise. A pointwise approach [2] takes
document/score pairs as training examples to learn a document
scoring function. Documents returned for a query are then
sorted by score. Pairwise methods like [3] take a set of
pairs of documents as input to the training. The training
process consists in learning to order the pairs. This is generally
preferable to pointwise methods, because it does not impose
specific scores to the learning algorithm, leaving it the freedom
to select the score range in which to work. Finally, listwise
methods [4], [5] get a set of lists of ranked documents as
training examples, and the optimization is performed usinga
loss function over the entire list of documents.

A recent trend in learning to rank approaches is to attempt a

direct optimization of the target metrics [6][7], which typically
are eitherMean Average Precision (MAP) for ranks having
two relevance scores orNormalized Discounted Cumulative
Gain (NDCG) when there is an arbitrary number of relevance
scores. This class of approaches falls in the listwise category
as the target metrics are functions of ranked lists and not of
individual pairs. Those approaches are generally considered to
outperform pairwise methods as they can direct the learning
toward what’s most important with regard to the optimization
of the target metric. However, direct optimization of the
target metrics is typically difficult, because all the commonly
employed metrics, such as NDCG and MAP, are not expressed
in terms of the scoring functions but in terms of the document
ranks (which then depend on the functions). This makes the
resulting loss function either constant or not differentiable in
any point with respect of the training parameters. Most learn-
ing approaches solve this issue by employing a continuous
approximation of the target metric [8]. In this context, it is
fundamental to approximate the probability of a rank with
high precision.

This paper follows an approach similar to BoltzRank [7],
which models the distributions of ranks using a Boltzmann
distribution and then the target metric was optimized by
maximizing its expected value. However, unlike in BoltzRank,
the proposed solution directly integrates the target metric into
the energy function of the Boltzmann distribution. This yields
a more direct optimization problem which has the advantage
on not relying on the expected value, which depends on all
permutations of a rank and it can not be computed without
sub-sampling. Furthermore, BoltzRank was not making any
independence assumptions over the rank scores. Therefore,an
exact computation of the normalization factor needed to com-
pute the probability distribution over the ranks is intractable
whenever there are more than a handful of documents to rank.
We explore different independence assumptions and employ
the pseudo-likelihood [9] as an accurate surrogate of the
likelihood both for learning and Bayesian decision [10][11].
The resulting model has both theoretical and performance
advantages over the previous approaches proposed in the
literature. The experimental results show the effectiveness of
the approach on various benchmarks and on a dataset built
from the logs of a commercial search engine.

II. L EARNING TO RANK



WITH BOLTZMANN DISTRIBUTIONS

A learning-to-rank problem consists of a set ofn queries
Q = {q1, . . . , qn}, such that for eachqi there is a correspond-
ing set of documentsDi = {di1 , . . . , dimi

}, wheremi is the
number of documents retrieved for queryqi. A set of permu-
tationsRi can be constructed from each setDi. A generic
permutationri ∈ Ri is a setri = {ri1 , . . . , rimi

, whererij

indicates the rank ofdij
. We also have a set of associated

labelsLi = {li1 , . . . , limi
}, indicating the relevance level of

each documentdij
with respect to the corresponding query.

Therefore, we may think of the training data as a collection
T = {e1, . . . , en}, whereei = {(di1 , li1), . . . , (dimi

, limi
)}.

What distinguishes relevance judgments from mere label as-
signments, making the considered task aranking task in the
proper sense (rather than a mere classification task), is the
fact that the relevance judgments impose a (partial) ordering
on each document setDi. That is, once given the relevance
assignmentsL1, . . . ,Ln, it is defined a set of permutations of
Di in such a way that, ifrij

< rik
, then lij

≥ lik
(which

means that documentdij
is at least as relevant as document

dik
). In order to keep the notation simple, in the following

of the paper we drop the indexi whenever a single query is
taken into account at a given time.

A. BoltzRank and Rank Distributions
over Ordered Lists

BoltzRank [7] is a state-of-the-art approach to learning-to-
rank. We start describing this approach and we highlight its
main advantages and limitations.

Given a permutationr over a set of documentsD with
size m and a functionf , with parametersθ = (θ1, . . . , θp),
which assigns a scoref(d, θ) to each documentd, BoltzRank
defines a Boltzmann distribution over document permutations
(conditioned onθ) can then be defined as follows:

P (r | θ) =
1

Z(θ)
exp
(

−E(r|θ)
)

(1)

whereE(r|θ) denotes the energy of a rank and, ifR is the
set of all possible permutations ofD, Z denotes the partition
function, given by

Z(θ) =
∑

r
′∈R

exp
(

−E(r′ | θ)
)

(2)

BoltzRank employs the following form for the energy:

E(r | θ) =
2α

m (m − 1)

∑

ru>rv

(ru − rv)
(

f(du, θ)− f(dv, θ)
)

(3)
wheren is the number of documents to rank andα > 0 is a
parameter. Clearly, the lower the energyE(r | θ), the higher
the probability determined forr via the functionf . For sake
of compactness, in the following we omit theθ from the
argument off . Therefore, we usef(d) instead off(d, θ).

BoltzRank employs the probability of a total rank defined
in equation 1 to compute the expected valueΦ̂ of a target
metric Φ such as NDCG or MAP. In particular, we indicate
as Φ(T , θ) the target metric score over the dataset, then the

expected value is computed as the average over the expected
values obtained for the single queries in the training dataset
as

Φ̂(T , θ) =
1

|Q|

|Q|
∑

i=1

∑

r∈Ri

Φ(r)P (r | θ) (4)

where Φ(r) is the score of a rankr. Equation 4 can be
directly maximized via gradient descent by assigning higher
probability values to permutations having a high target score.

There are three main limitations that prevents this method
from being applied in its exact formulation and that requirea
set of approximations. First, in order to compute the prob-
ability of a rank as defined in equation 1, it is needed to
compute the normalization factorZ(θ) as defined in equation
2. Unfortunately, this can not be computed exactly as the
number of possible permutationsR grows factorially with
the number of documents. Secondly, the expected value can
not be computed exactly as again its computation requires
to sum over all possible ranks. BoltzRank faces these issues
by approximating these quantities with their Monte Carlo
estimates, whose accuracy can not be easily assessed. Finally,
please note that BoltzRank is only taking into account total
orders. Partial orders are still correctly modeled, since pairs of
document with the same score factor out in the computation
of the expected value. However, since the expected value is
approximated by sub-sampling, it would be preferable that
the energy computation could take partial orders directly into
account.

B. Boltzmann distributions and rank metrics

In order to overtake the limitations of BoltzRank, the target
metric can be directly integrated into the potential function
using a technique inspired from LambdaRank [12],

E(ri | θ) =
2α

m (m − 1)

∑

ru>rv

∆Φ(r, u, v)
(

f(du) − f(dv)
)

where∆Φ(r, u, v) is the delta of the target metric score when
swapping resultdu anddv in the rankr.

A common choice for the metricΦ is the NDCG, defined
as:

NDCG =
m
∑

j=1

2lj − 1

log2(rj) + 1
.

For the NDCG,∆Φ(r, u, v) becomes,

∆NDCG(r, v, u) =
(2lv − 2lu)

log2(rv + 1)
−

(2lv − 2lu)

log2(ru + 1)
(5)

If the evaluation metric is hard-coded into the energy
function as described above, a lower energy and, therefore,
higher probability is assigned to ranks for which there is a
large positive correlation between the function values andthe
corresponding target metric scores. A key advantage of this
energy function is that it allows to natively take into account
partial orders which are the norm in most learning-to-rank
applications. Indeed, swapping two equivalent results with the
same relevance yields that∆Φ(r, u, v) = 0, which gives no



contribution to the energy. Please note that this is not the case
for the standard BoltzRank energy function, which accounts
for rank deltas. Another main advantage is that the target
metric can be directly optimized by likelihood maximization
over the parametersθ. This does not require to rely on the
computation of the expected value of the target metric, which
can only be approximated via Monte Carlo estimation.

III. G RAPHICAL MODELS AND THE

PSEUDO-L IKELIHOOD FUNCTION

In Markov random fields, the probabilityP (x) that a vector
X of random variables has valuex = (x1, . . . , xd) is given
by

P (x1, . . . , xd) =
1

Z

∏

C∈γ

ϕC(xC) (6)

whereγ is the set containing all maximal cliques of the graph,
andxC is the state of cliqueC, as determined byx [13]. Now,
the Boltzmann model described in section II amounts to a
(fully connected) MRF model where, for the single cliqueC
of the graph, the potential functionϕC is defined as

ϕC(xC)=

(

2α

m (m − 1)

∑

(ru,rv)∈C2∗

(ru−rv)
(

f(du)−f(dv)
)

)

(7)

where, if C2 = C × C, C2∗

denotes the set{(ru, rv) :
(Xu, Xv) ∈ C2 ∧ ru > rv}. The equivalence between
the Boltzmann model and a fully connected Markov random
field is nothing but a consequence of the Hammersley-Clifford
theorem [14]. Clearly, since the graph is fully connected, we
have thatγ = {{Xi : 1 ≤ i ≤ d}}, i.e. there is exactly one
maximal clique, containing all of the nodes in the graph.

The main difficulty involved in estimating the quantity
referred to in equation 6 lies in computing the value of the
partition function, which is typically intractable. One widely
used approach to probabilistic modeling in Markov random
fields resorts instead to the pseudo-likelihood objective [9],
which is a very efficient yet accurate surrogate for likelihood
in the strict sense, both for learning and Bayesian decision
[15], [10], [11]. Given the random variablesX1, . . . , Xd, the
pseudo-likelihoodP ∗ of any statex1, . . . , xd of those variables
is measured as follows:

P ∗(x1, . . . , xd) =
d
∏

i=1

P (xi | x1, . . . , xi−1, xi+1, . . . , xd)

(8)
One convenient property of the pseudo-likelihood measure for
application to graphical models (and MRFs in particular) is
that, as defined by equation 8, it reduces to the following
function:

P ∗(x1, . . . , xd) =

n
∏

i=1

P
(

xi | mb(Xi)
)

(9)

wheremb(Xi) denotes the state of the Markov blanket ofXi

[13].
Once the structure of the MRF has been specified, the

conditional probability ofXi given the statemb(Xi) of its

Markov blanketMB(Xi) for any valuexij
in the domain of

the variableXi takes the following form [16], [17]:

P
(

xij
| mb(Xi)

)

=

∏

C∈γXi

ϕC(xC , xij
)

∑

xik

∏

C∈γXi

ϕC(xC , xik
)

(10)

whereγXi
= {C ∈ γ : Xi ∈ C} andϕC(xC , xik

) denotes the
value returned byϕC(xC) when Xi in xC is clamped to the
valuexik

.
One theoretical virtue of the pseudo-likelihood function is

that the argument of its maximum (i.e. the set of parameters
that maximize it) with respect to a specified collection of
data converges in probability to the true maximum likelihood
solution as the number of data points grows to infinity [13].

IV. PSEUDO-LIKELIHOOD FOR MARKOV

RANDOM FIELDS ON RANKS

In order to exploit the pseudo-likelihood function as a
replacement for the Boltzmann distribution, it is needed to
define the conditional distributions involved in the right-hand
side of equation 9. Thus, it is needed to specify what the nodes
of the MRF are and which is the Markov blanket of each node.

When modeling a probability distribution of ranks, a natural
choice is to associate a variableRj to each documentdj that
needs be ranked for the query under consideration. The value
of the variableRj is the rank ofdj . Assuming that we are
given the optimal rankropt = {ropt

1 , . . . , ropt
n } for a query,

the value ofRj (the rank of a document with rankj) should
depend on the value of the ranks of the documents immediately
preceding or following it in the optimal rank. We indicate
with W the number of preceding/following documents that
are considered when estimating the value ofRj . Therefore,
W is a positive integer determining the size of the Markov
blanket for each node.

Ideally, W = 1 should suffice as the rankr of a document
can be establish knowing that it should follow a document
with rank r − 1 and it should precede a document with rank
r + 1. However, as the experimental results will confirm, it is
always convenient to increase the size of the Markov blanket
as this provides more information to the learning algorithm
and it helps to generalize in a noisy setting.

The Markov blanket of the node associated withdj is the
setMB(Rj), such that

MB(Rj) = {Rk : j 6= k ∧ r
opt
k − W ≤ r

opt
j ≤ r

opt
k + W} .

(11)
SinceMB(Rj) is the set of nodes that are connected toRj ,
the choice ofW determines the structure (i.e. the graph) of
the Markov random field. Therefore, we refer toW parameter
as the Markov blanketwidth. Two examples of (undirected)
graphs resulting from different values ofW are depicted in
figure IV, for a permutation over a rank of 6 documents.

Given the parameters of the ranking functionf to be
learned, this procedure results in a query-dependent model.
The model computes a probability distributionP (r | θ) over
an assignmentr to the variables{R1, . . . , Rn}, wheren = |r|
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Fig. 1. Two undirected graphs resulting from settingW = 1 and W = 2

as the width of the respective Markov blankets when modelinga rank of6
documents for a given query. The labelXi in a node of the graph indicates
the Rj variable, which is the rank for documentdj assuming valuei in the
optimal rank provided for the query.

is the number of documents to be ranked for the specific query.
The pseudo-likelihoodP ∗(r | θ) of a rankingr for this model
is expressed by equation 10.

The conditional probabilities needed to compute the pseudo
likelihood take the following form:

P
(

ri | mb(Ri), θ
)

= (12)

=

exp

0

B

B

B

@

−

2α
(

ri−1
P

rj=ri−W
gij(r,θ)

)

+
ri+W

P

rj=ri+1
gij(r,θ)

)

m (m − 1)

1

C

C

C

A

∑

rik

exp

0

B

B

B

B

@

−

2α
(

rik
−1

P

rj=rik
−W

gikj(r,θ)+

rik
+W

P

rj=rik
+1

gjik
(r,θ)

)

m (m − 1)

1

C

C

C

C

A

.

where, using the definition of∆NDCG(r, i, j), given in
equation 5gij(r, θ) = ∆NDCG(r, i, j)

(

f(di, θ)−f(dj , θ)
)

.
Obviously any other metricΦ can be naively used in place of
the NDCG intogij(r, θ).

It would also be possible to plug the standard energy
function of BoltzRank into the pseudo-likelihood computation
by instead defininggij(r, θ) = (ri − rj)

(

f(di, θ)−f(dj, θ)
)

,
and then substituting the values into equation 12. This se-
lection would fall back to the BoltzRank potential function
(beside the different normalization factor) when removingall
independence assumptions by settingW = n (the rank of a
document directly depends on the rank of all other documents,
yielding a single clique in the graph).

Equation 12 can be plugged into the following equation to
compute the pseudo likelihood of a rank:

P ∗(r | θ) =

|r|
∏

j=1

P
(

rj | mb(Rj), θ
)

.

In order to estimate the model parameters, we maximize the
pseudo-likelihood by performing gradient-ascent using anon-
line strategy. In particular, we compute the gradient of the
log-pseudo-likelihood function with respect to the parameter
vectorθ of f . The partial derivatives of the objective function
for each parameterwk in θ = (w1, . . . , wp) are given by:

∂ log P ∗(r | θ)

∂wk

=
∂

∂wk

|r|
∑

j=1

log P ∗
(

rj | mb(Rj), θ
)

= (13)

=

|r|
∑

j=1

1

P ∗
(

rj | mb(Rj), θ
) ·

∂P ∗
(

rj | mb(Rj), θ
)

∂f
·

∂f

∂wk

.

Fig. 2. NDCG@n values for different selection of theW parameter or
when selecting the best W for eachn via cross-validation on the validation
set. The values increase very significantly before stabilizing around W=5,
which provides a good trade-off between ranking accuracy and performance.

In our experimental setting, the scoring functionf is imple-
mented by a multilayer feed-forward neural network [18],
and ∂f

∂wk
is computed via back-propagation. However, the

presented method does not any specific assumption about the
underlying implementation of the learned function.

Therefore,f could be implemented using any other machine
learning method that can be trained by gradient descent.

V. EXPERIMENTAL RESULTS

In the following of the paper, we refer to the proposed
algorithm asEnergyNDCG, as we selected the NDCG as the
rank goodness metricΦ to integrate into the energy function.
For this reason, NDCG@n has been selected as the main
metric in this paper for all the selected datasets.

A. Experiments on LETOR datasets

This set of experiments have been carried out on the
LETOR 3.0 [1] OHSUMED dataset1, which contains a set of
medical publication abstracts. The dataset contains 106 queries
and 16140 (query,document) pairs with associated relevance
scores. The relevance scores have three possible levels: where
a score equal to 0,1,2 corresponds to not relevant, possi-
bly relevant and definitely relevant result, respectively.Each
(query,url) pair is represented using several classical informa-
tion retrieval (IR) features, such as query term frequency in the
documents, inverse document frequency for the query terms,
BM25, various language models, and other features proposed
in the recent literature, such as HostRank, Feature propagation
and Topical PageRank. The dataset contains five precomputed
folds, each one composed by a training, validation and test set
containing60%, 20%, 20% of the overall data. All the models
have been trained using the training set, the optimal parameters
have been selected by cross validation on the validation set
and, finally, have been evaluated on the test set. As standard

1Freely downloadable at http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor3dataset.aspx



Method EnergyNDCG AdaRankMAP AdaRankNDCG
NDCG@1 0.516 0.491 0.533
NDCG@2 0.501 0.460 0.492
NDCG@3 0.476 0.427 0.479
NDCG@4 0.466 0.422 0.469
NDCG@5 0.459 0.416 0.467
NDCG@6 0.451 0.413 0.459
NDCG@7 0.454 0.410 0.459
NDCG@8 0.453 0.412 0.457
NDCG@9 0.450 0.410 0.454
NDCG@10 0.444 0.410 0.450

Method ListNet RankSVM RankBoost
NDCG@1 0.533 0.496 0.463
NDCG@2 0.481 0.433 0.450
NDCG@3 0.473 0.421 0.456
NDCG@4 0.456 0.424 0.454
NDCG@5 0.443 0.416 0.449
NDCG@6 0.440 0.416 0.444
NDCG@7 0.441 0.413 0.441
NDCG@8 0.446 0.407 0.436
NDCG@9 0.446 0.412 0.433
NDCG@10 0.441 0.414 0.430

Method FRank SortNet Regression
NDCG@1 0.530 0.514 0.445
NDCG@2 0.501 0.476 0.453
NDCG@3 0.481 0.473 0.443
NDCG@4 0.469 0.468 0.437
NDCG@5 0.459 0.462 0.428
NDCG@6 0.455 0.461 0.422
NDCG@7 0.453 0.458 0.422
NDCG@8 0.448 0.454 0.419
NDCG@9 0.446 0.446 0.414
NDCG@10 0.443 0.445 0.411

TABLE I
NDCG@N RESULTS ON THELETOR 3.0 OHSUMEDDATASET FOR THE

PROPOSED METHOD AND OTHER STATE-OF-THE-ART LEARNING-TO-RANK

APPROACHES(AS REPORTED ON THELETORDOCUMENTATION).

for the LETOR datasets, the results shown for each model
are the averages of the results for the five folds, computed
using the default evaluation script, provided together with
the dataset. The ranking functions have been implemented by
a 2-layer neural network with 10 hidden neurons with tanh
activation functions. Cross-validation on the validationset has
been performed to select the best performing neural network
during the training process.

A key parameter in our model is the widthW ruling the
amount of dependencies in the graphical model. Figure 2
reports the NDCG@n scores for different values ofW .
The NDCG@n scores tend to increase significantly at the
beginning, as more dependencies are required to model the
probability distribution with high accuracy. However, there
is little advantage to increaseW above 5, as the additional
computational requirements are not counterbalanced by a
significant increase in the ranking accuracy. Figure 2 also
plots the NDCG@n scores obtained when selecting via cross
validation for eachn the W providing the best results on the
validation set. However, this does not significantly improves
the results obtained withW = 5, which seems to provide a
very good trade-off between accuracy and training complexity.
For this reason, all the experiments reported in the following
of the paper have been obtained by selectingW = 5. Table I
compares the NDCG@n scores provided by the proposed
method against state-of-the-art learning-to-rank methods in the

Method EnergyNDCG RankSVM SortNet
NDCG@1 0.462 0.462 0.450
NDCG@2 0.573 0.563 0.568
NDCG@3 0.616 0.603 0.615
NDCG@4 0.641 0.628 0.639
NDCG@5 0.660 0.647 0.658
NDCG@6 0.675 0.663 0.672
NDCG@7 0.687 0.675 0.685
NDCG@8 0.697 0.686 0.696
NDCG@9 0.705 0.696 0.704
NDCG@10 0.713 0.705 0.712

TABLE II
NDCG@N RESULTS ON THEAOL WEB LOGS DATASET FOR THE

PROPOSED METHOD AND OTHER STATE-OF-THE-ART LEARNING-TO-RANK

APPROACHES.

pointwise, pairwise and listwise categories as reported onthe
LETOR documentation. In particular, EnergyNDCG performs
similarly to AdaRankNDCG [19] and Frank [20], which are
know to provide state-of-the-art performances. On the other
hand, it over performs ListNet [21] and SortNet [22] by a small
margin, and significantly improves over AdaRankMap [19],
RankSVM [23], RankBoost [24] and Regression (a simple
pointwise approach reported as reference on the LETOR
documentation).

B. Experiments on AOL Web logs data

This dataset has been constructed from the logs of the
AOL commercial search engine released in 2005. The logs
are a sample of the search activity of 658000 anonymized
US-based users over a three month period (March-May 2005),
which has been estimated to consist of approximately1.5% of
the overall AOL users in the considered period. The dataset
contains 4.8 million queries and 1.8 million URLs. Since we
are aware of the privacy concerns of this dataset, the logs
have been pruned to remove queries that have been issued
less than30 times and by less than four distinct users. This
should remove personal queries and documents that could
allow associating any anonymous user id to a real person. In
this dataset we follow a similar approach to what proposed in
[25] by assuming that the relevance of a document for a query
is proportional to the number of times the users selected it
(click-through-rate), in particular, the click-though-rate ranges
in the [0, 1] interval and it has been split into 7 portions of
equal size. The first sub-interval is associated to a 0 relevance
level (non relevant result), and the relevance level is constantly
increased by0.5 sub-interval by sub-interval up to a maximum
relevance level equal to 3 (essential result).

The dataset has been constructed by randomly selecting
10000 queries issued more than 30 times in the dataset.
All the documents that have been selected for the query
at least once by a user have been downloaded from the
Internet. All the documents that were not available anymoreat
downloading time have been discarded, resulting into140740
(query, document pairs).40% of the queries have been selected
for inclusion in the training set. The validation and test sets
have been created by randomly splitting the remaining queries
into two groups containing20% and 40% of the initial set,



respectively.
The downloaded HTML documents have been parsed and

processed together with their associated query. The outputof
this process is a vectorial representation of each (query, doc-
ument) pair composed by 140 features, 5 of which depending
on the document only and 135 on the document and query. In
particular, the entire document and 4 sections of the document
are taken into account: title, body, url and anchor. For each
portion, 27 features compute the match between the query and
specific sub-portions of the document like the BM25, cosine
similarity, etc. Most of these features have been implemented
as reported for LETOR dataset in [1].

The ranking functions have been implemented by a 2-layer
neural network with 40 hidden neurons with tanh activations.
Cross-validation on the validation set has been performed to
select the best performing neural network during the training
process. TheW parameter has been set equal to 5 via cross-
validation.

Table II reports the NDCG scores obtained on the AOL
dataset by the proposed method, RankSVM and SortNet. The
proposed method consistently outperforms RankSVM for all
NDCG@i. It also generally performs better than SortNet.

VI. CONCLUSIONS

This paper presents a novel approach to learning-to-rank
based on Markov Random Fields, which integrates the ad-
vantages of BoltzRank and LambdaRank. This is realized by
natively integrating the target metric into the energy function
of a Boltzmann distribution, which is then used to model
the distribution over the ranks. This yields a model that is
able to deal with both partial and total orders and can easily
accommodate and optimize any target metric like NDCG
or MAP. A second contribution of this paper is the study
of different independence assumptions among the elements
of a rank and of how such assumptions can be used to
approximate the likelihood of a rank with its pseudo-likelihood
surrogate. This overtakes a key limitation of other approaches
like BoltzRank, requiring to approximate the normalization
factor needed for computing the probability distribution by
sub-sampling over the ranks. The experimental results show
that this approach provides very good accuracy in spite of its
computational lightness.
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