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Abstract—Learning to rank from examples is an important direct optimization of the target metrics [6][7], which igplly
task in modern Information Retrieval systems like Web searb  gre eitherMean Average Precision (MAP) for ranks having
engines, where the large number of available features makes two relevance scores d¥ormalized Discounted Cumulative

hard to manually devise high-performing ranking functions. This . . .
paper presents a novel approach to learning-to-rank, whichcan Gain (NDCG) when there is an arbitrary number of relevance

natively integrate any target metric with no modifications. The ~Scores. This class of approaches falls in the listwise cayeg
target metric is optimized via maximum-likelihood estimaton of as the target metrics are functions of ranked lists and not of

a probability distribution over the ranks, which are assumed individual pairs. Those approaches are generally coresitier
to follow a Boltzmann distribution. Unlike other approaches in outperform pairwise methods as they can direct the learning

the literature like BoltzRank, this approach does not rely m ¢ d what' ti tant with d to th timizati
maximizing the expected value of the target score as a proxy oward what's most important with regard to the opumizatio

of the optimization of target metric. This has both theoretcal Of the target metric. However, direct optimization of the
and performance advantages as the expected value can nottarget metrics is typically difficult, because all the commiyo

be computed both accurately and efficiently. Furthermore, ar  employed metrics, such as NDCG and MAP, are not expressed
model employs the pseudo-likelihood as an accurate surfoa i, terms of the scoring functions but in terms of the document
of the likelihood, so as to avoid to explicitly compute the ranks (which then depend on the functions). This makes the
normalization factor of the Boltzmann distribution, which is . ) . v -
intractable in this context. The experimental results showthat the ~ resulting loss function either constant or not differeiiain
approach provides state-of-the-art results on various bechmarks —any point with respect of the training parameters. Mostriear
and_ on a dataset built from the logs of a commercial search |ng approaches solve this issue by emp|0ying a continuous
engine. approximation of the target metric [8]. In this context, st i
fundamental to approximate the probability of a rank with
high precision.

Mlodern Informf';mon Retrieval systems like Web search g paper follows an approach similar to BoltzRank [7],
engines have available hundreds of features to represeit &gpic models the distributions of ranks using a Boltzmann
document while answering users’ queries. These featung®rajsyribytion and then the target metric was optimized by
from query-independent signals like PageRank to others mea,yimizing its expected value. However, unlike in BoltzRan
suring the match between the query and a document. This high -5h6sed solution directly integrates the target mittd
number of ranking signals, which can be strongly correlategle gnergy function of the Boltzmann distribution. Thislgie
makes hard to manually design ranking functions achievingyare direct optimization problem which has the advantage
results that are close to optimality. on not relying on the expected value, which depends on all

In the last few years, learning to rank from exampleéSermytations of a rank and it can not be computed without
has emerged as a more flexible approach to design ranking, sampling. Furthermore, BoltzRank was not making any
functions. Learning-to-rank approaches have been pravediijenendence assumptions over the rank scores. Therafore,
significantly outperform hand-tuned solutions [1]. exact computation of the normalization factor needed to-com

'Ranking algorithms can be assigned to three classes: pPojiiite the probability distribution over the ranks is intedxe
wise, pairwise and listwise. A pointwise approach [2] tak&§henever there are more than a handful of documents to rank.
document/score pairs as training examples to learn a da@umgge explore different independence assumptions and employ
scoring function. Doguments returned_for a query are theps pseudo-likelihood [9] as an accurate surrogate of the
sorted by score. Pairwise methods like [3] take a set ffqlihood both for learning and Bayesian decision [10][11
pairs of documents as input to the training. The traininghe resulting model has both theoretical and performance
process consists in learning to order the pairs. This isigdye advantages over the previous approaches proposed in the
preferable to pointwise methods, because it does not impg§g ature. The experimental results show the effectigsnaf

specific scores to the learning algorithm, leaving it thedem i, approach on various benchmarks and on a dataset built
to select the score range in which to work. Finally, listwWisgom the logs of a commercial search engine.

methods [4], [5] get a set of lists of ranked documents as
training examples, and the optimization is performed using
loss function over the entire list of documents.
A recent trend in learning to rank approaches is to attempt a Il. LEARNING TO RANK

I. INTRODUCTION



WITH BOLTZMANN DISTRIBUTIONS expected value is computed as the average over the expected

A learning-to-rank problem consists of a setiofqueries values obtained for the single queries in the training @dtas
Q= {q,...,q.}, such that for each; there is a correspond- @S o]
ing set of document®,; = {d;,, .. .,dimi}, wherem; is the Z Z P(r | 0) 4)
number of documents retrieved for quegy A set of permu- |Q|
tations R; can be constructed from each $Bf. A generic _ _
permutationr; € R, is a setr; = {r;,,... i, wherer;, where ®(r) is the score of a rank. Equation 4 can be
indicates the rank ofl . We also have a set of associatedirectly maximized via gradient descent by assigning highe
labels £; = {l;,,... } indicating the relevance level of Probability values to permutations having a high targeteco
each document;, W,»[h respect to the corresponding query. There are three main limitations that prevents this method
Therefore we may think of the training data as a collectidfom being applied in its exact formulation and that requre

= {e1,...,en}, wheree; = {(di,.li,), ..., (di, . li,,)}- set of approximations. First, in order to compute the prob-
What d|st|ngmshes relevance judgments from mere label @hility of a rank as defined in equation 1, it is needed to
signments, making the considered taskaaking task in the compute the normalization factdf(@) as defined in equation
proper sense (rather than a mere classification task), is theUnfortunately, this can not be computed exactly as the
fact that the relevance judgments impose a (partial) angerinumber of possible permutatior’® grows factorially with
on each document s@¥;. That is, once given the relevancdhe number of documents. Secondly, the expected value can
assignment€:, . .., £,, it is defined a set of permutations oflot be computed exactly as again its computation requires
D; in such a way that ifr;, < 74, thenl;, > I;, (which to sum over all possible ranks. BoltzRank faces these issues
means that document; is at least as relevant as documerfy approximating these quantities with their Monte Carlo
d;,). In order to keep the notation simple, in the fo||ow|ngest|mates whose accuracy can not be easily assessedy,Final
of the paper we drop the indexwhenever a single query is please note that BoltzRank is only taking into account total

i=1reR,;

taken into account at a given time. orders. Partial orders are still correctly modeled, sinaiespof
S document with the same score factor out in the computation

A. BoltzRank and Rank Distributions of the expected value. However, since the expected value is

over Ordered Lists approximated by sub-sampling, it would be preferable that

BoltzRank [7] is a state-of-the-art approach to learning-tthe energy computation could take partial orders directtp i
rank. We start describing this approach and we highlight igecount.
main advantages and limitations.

Given a permutation- over a set of document® wit
sizem and a functionf, with parameter® = (61,...,6,), In order to overtake the limitations of BoltzRank, the targe
which assigns a scorg(d, 8) to each document, BoltzRank metric can be directly integrated into the potential fuoicti
defines a Boltzmann distribution over document permutationsing a technique inspired from LambdaRank [12],
(conditioned orP) can then be defined as follows:

E(r; | 6) = Z A (7, u,v) (f(dy) — f(dy))

1
P('P | 0) = m exp(—E('P|0)) (1) Ty >Ty
whereA®(r, u, v) is the delta of the target metric score when
swapping resultl, andd, in the rankr.
A common choice for the metri® is the NDCG, defined
as:

Z(0)= "> exp(-E(r'|9)) 2) NDCG — Zﬁ _
r"eR 0go

BoltzRank employs the following form for the energy:

h B. Boltzmann distributions and rank metrics

where E(r|0) denotes the energy of a rank and;Rfis the
set of all possible permutations ®&f, Z denotes the partition
function, given by

For the NDCG,A®(r, u,v) becomes,

2c
E(r|0)= Ty =Ty dy,0)— f(dy,0 by bu b ol
r10)= D Z; ( ) (f(du,6) — f(d, 0)) ANDCG(r o) — 21220 _ @b o2t o
W>Ty 3) logy(ry +1)  logy(ry +1)
wherer is the number of documents to rank aad> 0 is a If the evaluation metric is hard-coded into the energy

parameter. Clearly, the lower the energyr | 8), the higher function as described above, a lower energy and, therefore,

the probability determined for via the functionf. For sake higher probability is assigned to ranks for which there is a

of compactness, in the following we omit th# from the large positive correlation between the function values tyed

argument off. Therefore, we us¢(d) instead off(d, 0). corresponding target metric scores. A key advantage of this
BoltzRank employs the probability of a total rank defineénergy function is that it allows to natively take into acabu

in equation 1 to compute the expected valbeof a target partial orders which are the norm in most learning-to-rank

metric ® such as NDCG or MAP. In particular, we indicateapplications. Indeed, swapping two equivalent results it

as ®(7,0) the target metric score over the dataset, then teame relevance yields th&®(r,u,v) = 0, which gives no



contribution to the energy. Please note that this is not #se c Markov blanketMB(X;) for any valuez;; in the domain of
for the standard BoltzRank energy function, which accountise variableX; takes the following form [16], [17]:
for rank deltas. Another main advantage is that the target I ve(ze )

metric can be directly optimized by likelihood maximizatio CEvx,
over the parameter8. This does not require to rely on the P(% |mb(Xi)) = S 11 eelze i) (10)
computation of the expected value of the target metric, whic 3, CEvx; o

can only be approximated via Monte Carlo estimation.
4 PP wherevx, = {C € v: X; € C} andyc(xzc, z;,) denotes the

Ill. GRAPHICAL MODELS AND THE value returned bypc(x¢) when X; in x¢ is clamped to the
PSEUDO-LIKELIHOOD FUNCTION valuez;, .

In Markov random fields, the probabilitff(x) that a vector ~ One theoretical virtue of the pseudo-likelihood functien i
X of random variables has value = (z1,...,z,) is given that the argument of its maximum (i.e. the set of parameters
by that maximize it) with respect to a specified collection of

1 data converges in probability to the true maximum likeliloo
Plry, . wa) = 7z 61;[ ve(we) ®)  solution as the number of data points grows to infinity [13].
v
where~ is the set containing all maximal cliques of the graph, IV. PSEUDO-LIKELIHOOD FOR MARKOV
andxc is the state of cliqué, as determined by [13]. Now, RANDOM FIELDS ON RANKS

the Boltzmann model described in section Il amounts to aln order to exploit the pseudo-likelihood function as a
(fully connected) MRF model where, for the single cligie replacement for the Boltzmann distribution, it is needed to

of the graph, the potential functiop: is defined as define the conditional distributions involved in the ridrand
9 side of equation 9. Thus, it is needed to specify what the siode
wc(xe)= <70‘1 Z (Ty—T7v) (f(du)_f(dv))> (7) ofthe MRF are.and which i; Fhe Markoy blanket of each node.
m(m — )(,,‘u77,v)€C2* When modeling a probability distribution of ranks, a natura
o . choice is to associate a variabg to each document; that
where, if C > C x C, C* denotes the se{(ru,7v) : needs be ranked for the query under consideration. The value
(Xu, Xo) € C* A 7y > rp}. The equivalence betweenyf the variableR; is the rank ofd;. Assuming that we are
the Boltzmann model and a fully connected Markov randomven the optimal rank-7* = T;th ...,roPt) for a query,

field is nothing but a consequence of th_e Hammersley-Ciiffofhe value ofR; (the rank of a document with ranf) should
theorem [14]. Clearly, since the graph is fully connected, Wjepend on the value of the ranks of the documents immediately
have thaty = {{X;: 1 <i < d}}, i.e. there is exactly one preceding or following it in the optimal rank. We indicate
maximal clique, containing all of the nodes in the graph. ith 117 the number of preceding/following documents that
The main difficulty involved in estimating the quantityare considered when estimating the valueR)t Therefore,

referred to in equation 6 lies in computing the value of thg, js 5 positive integer determining the size of the Markov
partition function, which is typically intractable. Onede@ly pjanket for each node.

used approach to probabilistic modeling in Markov random Ideally, W = 1 should suffice as the rankof a document
fields resorts instead to the pseudo-likelihood object®€ [ ¢4 pe establish knowing that it should follow a document
which is a very efficient yet accurate surrogate for liketilo \yitn rank» — 1 and it should precede a document with rank
in the strict sense, both for learning and Bayesian decision_; However, as the experimental results will confirm, it is
[15], [10], [11]. Given the random variable¥,, ..., Xq, the  giways convenient to increase the size of the Markov blanket
pseudo-likelihood”” of any statery, . . ., x4 of those variables a5 this provides more information to the learning algorithm
is measured as follows: and it helps to generalize in a noisy setting.

d The Markov blanket of the node associated withis the
P*(1,... xa) = [[ Plai | @1, @i, @ieas o, 7a)  set MB(R;), such that
=1

®) MB(R;) = {Ri: j # k A v =W <o <o W)
One convenient property of the pseudo-likelihood measure f (11)

application to graphical models (and MRFs in particular) isince MB(R;) is the set of nodes that are connectedig
that, as defined by equation 8, it reduces to the followingie choice ofiV determines the structure (i.e. the graph) of

function: the Markov random field. Therefore, we referlio parameter
. n as the Markov blanketvidth. Two examples of (undirected)
P*(w1,...,xa) = [[ P (i | mb(X3)) (9) graphs resulting from different values &F are depicted in

i=1

figure IV, for a permutation over a rank of 6 documents.

wheremb(X;) denotes the state of the Markov blanketXof Given the parameters of the ranking functighto be
[13]. learned, this procedure results in a query-dependent model

Once the structure of the MRF has been specified, tfilae model computes a probability distributidt(r | 6) over

conditional probability ofX; given the statenb(X;) of its an assignment to the variable§ R4, ..., R, }, wheren = |r|
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Fig. 1. Two undirected graphs resulting from settiig = 1 andV Z 044 e . D aiuinin il ol &= _;ﬁé
as the width of the respective Markov blankets when modedinau 0.43 |- TE.L _
documents for a given query. The lab¥}; in a node of the graph 042 - R T a. ]
the R; variable, which is the rank for documeds assuming value 041 e DRCER Bt g
optimal rank provided for the query. (’)4<
is the number of documents to be ranked for the spe 039 3
The pseudo-likelihoo®*(r | ) of a rankingr for this | 038 = l l l l l l l l N
is expressed by equation 10. 037} 2 3 4 5 6 7 8 9 10

The conditional probabilities needed to compute t|
Fig. 2. NDCG@n values for different selection of th& parameter or

likelihood take the fOllOWIhg form: when selecting the best W for eachvia cross-validation on the validation
Plr: | mb(R:).0) = 12) set. The vglues increase very significantly bgfore stabgizaround W=5,
( ¢ | ( l)’ ) ( ) which provides a good trade-off between ranking accuracy merformance.

r;—1 r; +W
20 b3 Wymr,e)) +E e

=T — ri=

exp | — m(m—1) In our experimenta_l setting, the scoring functigns imple-
o mented by a multilayer feed-forward neural network [18],
= 1 T FW : of i - i
2(1( £ et T e 9)) and 5 is computed via back-propagation. However, the
Ze"p _ "= W 5= presented method does not any specific assumption about the
m(m—1) underlying implementation of the learned function.

b Therefore,f could be implemented using any other machine

where, using the definiton oANDCG(r,14,j), given in learning method that can be trained by gradient descent.

equation 5y;;(r,0) = ANDCG(r,i, j)(f(di, 0)—f(d;,9)).

Obviously any other metri@ can be naively used in place of V. EXPERIMENTAL RESULTS

the NDCG intog;;(r, 0). In the following of the paper, we refer to the proposed
It would also be possible to plug the standard energygorithm asEnergyNDCG, as we selected the NDCG as the

function of BoltzRank into the pseudo-likelihood compidgat rank goodness metri® to integrate into the energy function.

by instead defining;; (r, ) = (r; —r;)(f(ds,0) — f(d;,0)), For this reason, NDCG@n has been selected as the main

and then substituting the values into equation 12. This seetric in this paper for all the selected datasets.

lection would fall back to the BoltzRank potential function _

(beside the different normalization factor) when removatig A EXperiments on LETOR datasets

independence assumptions by settifg= n (the rank of a  This set of experiments have been carried out on the

document directly depends on the rank of all other document&TOR 3.0 [1] OHSUMED datas&twhich contains a set of

yielding a single clique in the graph). medical publication abstracts. The dataset contains 18fiegl
Equation 12 can be plugged into the following equation tand 16140 (query,document) pairs with associated relevanc
compute the pseudo likelihood of a rank: scores. The relevance scores have three possible levedsewh
|7] a score equal to 0,1,2 corresponds to not relevant, possi-
P*(r|0)= H P(r; | mb(R;),0) . bly relevant and definitely relevant result, respectiv@élgch
j=1 (query,url) pair is represented using several classidatima-

In order to estimate the model parameters, we maximize th@n retrieval (IR) features, such as query term frequendpe
pseudo-likelihood by performing gradient-ascent usingan documents, inverse document frequency for the query terms,
line strategy. In particular, we compute the gradient of tHdM25, various language models, and other features proposed
log-pseudo-likelihood function with respect to the partene in the recent literature, such as HostRank, Feature projpaga

vector@ of f. The partial derivatives of the objective functior2nd Topical PageRank. The dataset contains five precomputed
for each parametery, in 6 = (wy,...,w,) are given by: folds, each one composed by a training, validation and dst s

containing60%, 20%, 20% of the overall data. All the models

dlog P*(r|0) 0 . B have been trained using the training set, the optimal pamme
oWk ~ Dy ZlogP (i | mb(R;),0) = (13)pave been selected by cross validation on the validation set
=1 and, finally, have been evaluated on the test set. As standard

- 1 oP* (r; | mb(R;),0) oy
" : ) : 8— . IFreely downloadable at http://research.microsoft.com/e
j=1 P (Tj | mb(Rj )v 0) f Wk us/um/beijing/projects/letor/letor3dataset.aspx

7|




Method EnergyNDCG  AdaRankMAP  AdaRankNDCG Method EnergyNDCG RankSVM  SortNet

NDCG@1 0.516 0.491 0.533 NDCG@1 0.462 0.462 0.450
NDCG@2 0.501 0.460 0.492 NDCG@2 0.573 0.563 0.568
NDCG@3 0.476 0.427 0.479 NDCG@3 0.616 0.603 0.615
NDCG@4 0.466 0.422 0.469 NDCG@4 0.641 0.628 0.639
NDCG@5 0.459 0.416 0.467 NDCG@5 0.660 0.647 0.658
NDCG@6 0.451 0.413 0.459 NDCG@6 0.675 0.663 0.672
NDCG@7 0.454 0.410 0.459 NDCG@7 0.687 0.675 0.685
NDCG@8 0.453 0.412 0.457 NDCG@8 0.697 0.686 0.696
NDCG@9 0.450 0.410 0.454 NDCG@9 0.705 0.696 0.704
NDCG@10 0.444 0.410 0.450 NDCG@10 0.713 0.705 0.712
Method ListNet RankSVM RankBoost
NDCG@1 0.533 0.496 0.463 TABLE 1|
NDCG@2 0.481 0.433 0.450 NDCG@N RESULTS ON THEAOL WEB LOGS DATASET FOR THE
NDCG@3 0.473 0.421 0.456 PROPOSED METHOD AND OTHER STATEOF-THE-ART LEARNING-TO-RANK
NDCG@4 0.456 0.424 0.454 APPROACHES
NDCG@5 0.443 0.416 0.449
NDCG@6 0.440 0.416 0.444
Hgggg; 8'13(15 8'333 8'2@% pointwise, pairwise and listwise categories as reportethen
NDCG@9 0.446 0.412 0.433 LETOR documentation. In particular, EnergyNDCG performs
NDCG@10 0.441 0.414 0.430 similarly to AdaRankNDCG [19] and Frank [20], which are
Method FRank SortNet Regression know to provide state-of-the-art performances. On the rothe
NDCG@1 0.530 0.514 0.445 ; ;
NDOG@2 0.501 0.476 0.453 hand, it over performs ListNet [21] and SortNet [22] by a dmal
NDCG@3 0.481 0.473 0.443 margin, and significantly improves over AdaRankMap [19],
NDCGg4 0.469 0.468 0.437 RankSVM [23], RankBoost [24] and Regression (a simple
NDCG@5 0.459 0.462 0.428 PR
NDCG@6 s P 0422 pointwise a_pproach reported as reference on the LETOR
NDCG@7 0.453 0.458 0.422 documentation).
NDCG@8 0.448 0.454 0.419
NDCG@9 0.446 0.446 0.414 B. Experiments on AOL Web logs data
NDCG@10 0.443 0.445 0.411

TABLE | This dataset has been constructed from the logs of the

NDCG@N RESULTS ON THELETOR 3.0 OHSUMEDpaTAseT ForR THE ~ AOL commercial search engine released in 2005. The logs
PROPOSED METHOD AND OTHER STATEDOF-THE-ART LEARNING-TO-RANK are a Samp|e Of the Search aCtiViW Of 658000 anonymized
APPROACHES(AS REPORTED ON THELETORDOCUMENTATION). US-based users over a three month period (March-May 2005),
which has been estimated to consist of approximateif of
for the LETOR datasets, the results shown for each modbe overall AOL users in the considered period. The dataset
are the averages of the results for the five folds, computedntains 4.8 million queries and 1.8 million URLs. Since we
using the default evaluation script, provided togetherhwitare aware of the privacy concerns of this dataset, the logs
the dataset. The ranking functions have been implementedhave been pruned to remove queries that have been issued
a 2-layer neural network with 10 hidden neurons with tanlkss than30 times and by less than four distinct users. This
activation functions. Cross-validation on the validatsat has should remove personal queries and documents that could
been performed to select the best performing neural netwallow associating any anonymous user id to a real person. In
during the training process. this dataset we follow a similar approach to what proposed in
A key parameter in our model is the widifY ruling the [25] by assuming that the relevance of a document for a query
amount of dependencies in the graphical model. Figurei proportional to the number of times the users selected it
reports the NDCG@n scores for different values 1f. (click-through-rate), in particular, the click-thoughte ranges
The NDCG@n scores tend to increase significantly at thie the [0, 1] interval and it has been split into 7 portions of
beginning, as more dependencies are required to model éapial size. The first sub-interval is associated to a O reteva
probability distribution with high accuracy. However, the level (non relevant result), and the relevance level is tzomily
is little advantage to increas@’ above 5, as the additionalincreased by).5 sub-interval by sub-interval up to a maximum
computational requirements are not counterbalanced byredevance level equal to 3 (essential result).
significant increase in the ranking accuracy. Figure 2 alsoThe dataset has been constructed by randomly selecting
plots the NDCG@n scores obtained when selecting via cras¥)00 queries issued more than 30 times in the dataset.
validation for eachn the W providing the best results on theAll the documents that have been selected for the query
validation set. However, this does not significantly immev at least once by a user have been downloaded from the
the results obtained withl” = 5, which seems to provide alnternet. All the documents that were not available anynadre
very good trade-off between accuracy and training complexidownloading time have been discarded, resulting int@740
For this reason, all the experiments reported in the folhgwi (query, document pairs}0% of the queries have been selected
of the paper have been obtained by seleciivig= 5. Table | for inclusion in the training set. The validation and tesisse
compares the NDCG@n scores provided by the propodealve been created by randomly splitting the remaining gseri
method against state-of-the-art learning-to-rank methiodhe into two groups containin@0% and 40% of the initial set,



respectively.
The downloaded HTML documents have been parsed and
processed together with their associated query. The oofput
this process is a vectorial representation of each (ques d [4]
ument) pair composed by 140 features, 5 of which depending
on the document only and 135 on the document and query. In
particular, the entire document and 4 sections of the dootmels]
are taken into account: title, body, url and anchor. For each

portion, 27 features compute the match between the query amj

(31

specific sub-portions of the document like the BM25, cosine
similarity, etc. Most of these features have been implesgnt
as reported for LETOR dataset in [1].
The ranking functions have been implemented by a 2-layer
neural network with 40 hidden neurons with tanh activatjonsP]
Cross-validation on the validation set has been perforroed
select the best performing neural network during the trgni
process. ThéV parameter has been set equal to 5 via cross?!
validation.
Table Il reports the NDCG scores obtained on the AOL
dataset by the proposed method, RankSVM and SortNet. THhY
proposed method consistently outperforms RankSVM for all
NDCG@i. It also generally performs better than SortNet.

VI. CONCLUSIONS

[7]

[10]

[12]

This paper presents a novel approach to learning-to-raail
based on Markov Random Fields, which integrates the

vantages of BoltzRank and LambdaRank. This is realized

natively integrating the target metric into the energy fiow
of a Boltzmann distribution, which is then used to modét”!
the distribution over the ranks. This yields a model that fss6]
able to deal with both partial and total orders and can easilyé
accommodate and optimize any target metric like NDC ]
or MAP. A second contribution of this paper is the study

of different independence assumptions among the elemes

i

of a rank and of how such assumptions can be used g
approximate the likelihood of a rank with its pseudo-likelod

surrogate. This overtakes a key limitation of other appneac

like BoltzRank, requiring to approximate the normalizatio
factor needed for computing the probability distribution b[20]
sub-sampling over the ranks. The experimental results show
that this approach provides very good accuracy in spitesof it
computational lightness.
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