Dynamic Bayesian networks for symbolic polyphonic pitch modeling

Stanislaw Raczynski 1 Emmanuel Vincent 2 Shigeki Sagayama 1
2 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : The performance of many MIR analysis algorithms, most importantly polyphonic pitch transcription, can be improved by introducing musicological knowledge to the estimation process. We have developed a probabilistically rigorous musicological model that takes into account dependencies between consequent musical notes and consequent chords, as well as the dependencies between chords, notes and the observed note saliences. We investigate its modeling potential by measuring and comparing the cross-entropy with symbolic (MIDI) data.
Type de document :
Communication dans un congrès
91st IPSJ Special Interest Group on MUSic and computer (SIGMUS) Meeting, Jul 2011, Ibaraki, Japan. 2011-MUS-91, pp.no. 8, 2011, IPSJ SIG Tech. Rep
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00663954
Contributeur : Emmanuel Vincent <>
Soumis le : vendredi 27 janvier 2012 - 18:12:12
Dernière modification le : vendredi 16 novembre 2018 - 01:23:44
Document(s) archivé(s) le : samedi 28 avril 2012 - 02:43:52

Fichier

raczynski_SIGMUS11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00663954, version 1

Citation

Stanislaw Raczynski, Emmanuel Vincent, Shigeki Sagayama. Dynamic Bayesian networks for symbolic polyphonic pitch modeling. 91st IPSJ Special Interest Group on MUSic and computer (SIGMUS) Meeting, Jul 2011, Ibaraki, Japan. 2011-MUS-91, pp.no. 8, 2011, IPSJ SIG Tech. Rep. 〈hal-00663954〉

Partager

Métriques

Consultations de la notice

334

Téléchargements de fichiers

145