
HAL Id: hal-00664309
https://inria.hal.science/hal-00664309

Preprint submitted on 30 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CHOReOS Integration Plan - 1st version (D5.7.1)
Amira Ben Hamida, Jean-Pierre Lorré

To cite this version:
Amira Ben Hamida, Jean-Pierre Lorré. CHOReOS Integration Plan - 1st version (D5.7.1). 2011.
�hal-00664309�

https://inria.hal.science/hal-00664309
https://hal.archives-ouvertes.fr

Deliverable D5.7.1

Integration Plan – 1st version

ICT IP Project

http://www.choreos.eu

template v8

CHOReOS i
FP7-257178

Project Number : FP7-257178

Project Title : CHOReOS
Large Scale Choreographies for the Future Internet

Deliverable Number : D5.7.1

Title of Deliverable : Integration Plan – 1st version

Nature of Deliverable : Report

Dissemination level : Public

License : Creative Commons Attribution 3.0 License

Version : A

Contractual Delivery Date : 1st October 2011

Contributing WP : WP5

Editor(s) : Jean Pierre Lorré (EBM)

Author(s) : Amira Ben Hamida (EBM), Jean Pierre Lorré (EBM)

Reviewer(s) : Marco Aurélio Gerosa (USP), Valérie Issarny (INRIA)

Abstract
The Integration Plan details the process that will be followed to release the CHOReOS
Integrated Development and Runtime Environment (IDRE) software. As a first step, the
Specification of the CHOReOS IDRE is described in D5.2. As a second step, we provide the
integration plan detailing the steps and significant milestones. Then, we provide
development guidelines. Finally, we survey the collaborative development platforms that
facilitate the integration activities.

Keyword list
Integration Plan, Milestones, Components, IDRE, Collaborative Development, Assessment.

CHOReOS ii
FP7-257178

Document History

Version Changes Author(s)

1.0 Document creation Jean-Pierre Lorré

Amira Ben Hamida

2.0 Version for review Jean-Pierre Lorré

Amira Ben Hamida

2.1 Version after review feedbacks Jean-Pierre Lorré

Amira Ben Hamida

3.0 Final version for PTC Jean-Pierre Lorré

Document Review

Review Date Ver. Reviewers Comments

Outline 03/10/11 1.0 J.P. LORRE (EBM)

Draft 05/10/11 2.0 J.P. LORRE (EBM)

QA 19/10/11 3.0 M.A. GEROSA (USP),
H. VINCENT (THA),
V. ISSARNY (INRIA),
J.P. LORRE (EBM)

PTC 20/10/11 A PTC

CHOReOS iii
FP7-257178

Glossary, acronyms & abbreviations

Item Description

CA Consortium Agreement

DL Deliverable Leader

DOW Description of Work

IAC Industrial Advisory Committee

MST Management Support Team

OSS Open Source Software

PL Project Leader

PMC Project Management Committee

PO Project Officer

PTC Project Technical Committee

SL Scientific Leader

VCS Version Control System

WP Work Package

WPL Work Package Leader

CHOReOS iv
FP7-257178

CHOReOS v
FP7-257178

Table of Contents

1. Introduction ... 1

1.1. What is an Integration Plan? .. 1
1.2. Reading Key .. 1

2. CHOReOS IDRE Specification .. 2

2.1. Overview .. 2
2.2. CHOReOS Components .. 3

3. Integration Schedule ... 4

3.1. DoW Deadlines .. 4
3.2. Gantt Diagram for Integration... 4
3.3. Test Bed and Assessments ... 6

4. Development Guidelines .. 7

4.1. Programming language: Java .. 7
4.2. Logging tooling: Log4j .. 7
4.3. Building tooling: Maven .. 8
4.4. Integrated Development Environment: Eclipse .. 9

4.4.1. Maven integration.. 9
4.4.2. Subversion integration .. 9

5. Collaboration tools .. 10

5.1. Revision control system: Apache Subversion .. 10
5.1.1. Directory hierarchy .. 11
5.1.2. Branching policy .. 11

5.2. Issue Reporting and Tracking: Jira .. 11
5.3. Continuous Integration: Bamboo .. 13
5.4. Collaborative Development Environments: the OW2 forge .. 13

6. Conclusion ... 15

CHOReOS vi
FP7-257178

CHOReOS 1
FP7-257178

1. Introduction

1.1. What is an Integration Plan?

The purpose of the Integration Plan is to define the order in which the components and
subsystems of the CHOReOS IDRE should be integrated, which builds to create when
integrating the system, and how they are to be assessed.

The main stakeholders involved are the WP5 leader and co-leader, the developers, and the
test designers.

1.2. Reading Key

This document is organised as follow:
 The first part provides a brief overview of the CHOReOS IDRE software architecture.

 The second part deals with the integration schedule.

 The third part describes the integration steps as well as the assessment strategy.

 The fourth part provides information about the CHOReOS collaborative development
platform.

 The last part concludes the document.

CHOReOS 2
FP7-257178

2. CHOReOS IDRE Specification
This section provides information about the CHOReOS IDRE architecture, which is detailed
in D5.2 “Specification of the CHOReOS IDRE”.

2.1. Overview

According to the deliverable D5.2, Figure 1 depicts CHOReOS “big picture” that contains the
main CHOReOS software components as listed in the following table.

Figure 1: CHOReOS IDRE Overview

CHOReOS 3
FP7-257178

2.2. CHOReOS Components

This table gives the exhaustive list of the CHOReOS components:

CHOReOS Subsystem Components Deliverables

ULS Choreography
Development

Requirements Specification Tools D2.2, D2.3

Synthesis Processor

Choreography Analyser

Extensible Service
Discovery

Abstraction Oriented Service Base
Management

D3.2.1,
D3.2.2, D3.3,
D4.3

Plugin Manager

Governance Registry for Business Services

Things Discovery Protocol

Governance Framework
and V&V

SLA and Lifecycle Manager D4.3, D4.2.1,
D4.2.2, D4.3V&V Components

TDD Framework

CHOReOS Monitoring

Extensible Service
Composition

BPEL-XSC D3.2.1,
D3.2.2 Composition and Estimation

SCA-XSC

Reconfiguration Management for Service
Substitution

Extensible Service Access Distributed Service Bus D3.2.1,
D3.2.2 Light Service Bus

DSB-LSB Bridge

Enactment Engine

CHOReOS Monitoring Business Service Monitoring D4.2.1,
D4.2.2, D4.3Resource Monitoring

Complex Event Processor

Table 1: CHOReOS software components

CHOReOS 4
FP7-257178

3. Integration Schedule
The aim of this section is to present the steps involved in the integration of the components
coming from the technical work-packages (WPs 2, 3, 4) and to provide the corresponding
platform to the uses-cases (WPs 6, 7, 8) for assessment.

3.1. DoW Deadlines

According to the DOW the following milestones has been defined:

WP2 Dynamic development of adaptable, QoS-aware ULS choreographies

D2.2 Definition of the dynamic development process for adaptable
QoS-aware ULS choreographies

UDA M24

D2.3 CHOReOS dynamic development process: methods and tools UDA M36

WP3 Service-Oriented Middleware for the Future Internet

D3.2.1 CHOReOS middleware first implementation EBM M18

D3.2.2 CHOReOS middleware implementation EBM M24

D3.3 Integrated CHOReOS middleware and deployment of ULS, QoS-
aware adaptive choreographies

USP M36

WP4 Governance and V&V support for choreographies for the Future Internet

D4.2.1 V&V tools and infrastructure – strategies, architecture and first
implementation

CNR-
ISTI

M18

D4.2.2 V&V tools and infrastructure – strategies, architecture and
implementation

CNR-
ISTI

M24

D4.3 Final release of the V&V tools and infrastructure CNR-
ISTI

M30

WP5 CHOReOS IDRE - Integrated Development and Runtime Environment

D5.3.1 CHOReOS IDRE and user manual – 1st version EBM M24

D5.4 Implementation of the test-bed EBM M24

D5.3.2 CHOReOS IDRE and user manual – revised version EBM M30

D5.5 CHOReOS IDRE as open-source packages EBM M30

D5.6 Final version and assessment of the CHOReOS IDRE MLS M36

Table 2: CHOReOS milestones

3.2. Gantt Diagram for Integration

The following Gantt diagram depicts the CHOReOS integration process.

CHOReOS 5
FP7-257178

Figure 2: CHOReOS Gantt diagram

CHOReOS 6
FP7-257178

The integration work takes place along the following tasks:
 Task 5.1: Integration requirements; this task is mainly about collecting requirements

that will be use during integration.

 Task 5.2: Design and integration; which is about the main IDRE integration work.

 Task 5.3: Assessment; that prepares and manage the overall assessment of the IDRE.

 Task 5.4: Open-Source software releases; this task takes in charge the software
packaging of the IDRE in order to produce open-source releases.

The design and integration task (T5.2) has been split into four sub tasks in order to smoothly
integrate CHOReOS software components as far as they become available:

 T5.2.1 [M12:M18]: Integration preparation: this sub-task aims to prepare the supporting
environment for the integration.

 T5.2.2 [M18:M24]: Integration iteration 1: this sub-task aims to produce the first
CHOReOS integrated platform taking into account components coming from WP3
(D3.2.1) and WP4 (D4.2.1).
Although WP2 will not have produced so far an integrated set of components to include
in this first release, the coordination delegate specification will be released in order to
enable separate work between WP2 and other work-packages.

 T5.2.3 [M24:M30]: Integration iteration 2: this sub-task aims to produce the first
complete CHOReOS integrated platform based on components from WP2, WP3 and
WP4. This software platform will be released as an open-source package.

 T5.2.4 [M30:M36]: Integration iteration 3: this sub-task aims to produce the final
CHOReOS integrated platform based on updated components that take into account
feedback coming from the Use-Case assessment tasks.

3.3. Test Bed and Assessments

The assessment task (T5.3) aims to evaluate the execution of the CHOReOS runtime
environment, thanks to choreographies design in Use-Cases. It is organized according to
two sub-tasks:

 T5.3.1 [M12:M24]: Implementation of the test bed: this sub-task aims to develop
probes, interceptors and service mock-ups that are necessary for the assessment of
the Use-Cases’ choreographies.

 T5.3.2 [M24:M36]: Assessment of Use-Cases: this sub-task aims to support the
technical assessment carried out by Use-Cases’ work-packages (tasks T6.4, T7.4 and
T8.4).

CHOReOS 7
FP7-257178

4. Development Guidelines
The use of a plethora of programming languages, combined with various OS-level
integration scripts, increases the complexity of the deployment and maintenance of software.
The CHOReOS project will avoid this pitfall by using small subsets of the possible coding
languages and using others if and only if they offer significant improvements or are required
by some other external factor. In this section, we present specific languages of choice for
CHOReOS and prescribe tools and good practices that we expect the developers to adhere
to when contributing to the code.

We however do not constrain any programmer to this set of tools. An individual is welcome
to use any of the tools, as long as s/he does not expect any support and does not cause any
stalls in the development. In short, we expect a unified level of productivity from each of the
contributors to the project codebase and full responsibility of the programmers.

The only exceptions to the aforementioned rules are the programming languages and coding
styles as well as maven for builds management. The use of additional languages will have to
be strongly argued and ultimately authorised by PTC membership.

The adherence to the coding style is of utmost importance. Badly written and undocumented
code will not be tolerated since it makes code maintenance very hard. Unified coding style
will greatly benefit the current programmers on the project and also increase chances of
future adoption within the F/OSS community

4.1. Programming language: Java

By convention, Java source projects are organized in the following way:
 all the source code (i.e. the .java files) belong into the src/ directory;

 the resources, such as the images, the international strings etc., are contained in the
res/ directory; and

 the compilation results are written into the bin/ or target/ directory.

Rather than creating the directories manually, we recommend using Maven (see next
subsection) that, on top of other features, can create the full project skeleton. Another reason
for using Maven is its support for creating projects for popular IDEs.

Best coding practices are a wide topic, often also subject to debate. We therefore encourage
that all developers refer to Coding Best Practices1 by R.Rajesh Kannan.

4.2. Logging tooling: Log4j

Log4j2 offers a hierarchical way to insert logging statements within a Java program. Multiple
output formats and multiple levels of logging information are available. By using a dedicated
logging package, the overhead of maintaining thousands of System.out.println statements is
alleviated as the logging may be controlled at runtime from configuration scripts.

1 http://www.scribd.com/doc/8526130/
2 http://en.wikipedia.org/wiki/Log4j

CHOReOS 8
FP7-257178

4.3. Building tooling: Maven

The programming languages come with basic libraries and tools for compiling the code and
running the software. The developers are by default free to organize the code in any way
they know or like, but when the complexity of a software project raise, the manageability of
its code becomes questionable. To help with this problem, a set of tools that supplement
those belonging to the language itself provide the possibility to formalize the organization of
the sources, turn common tasks such as compiling and testing code into a compact
configuration, and effectively make the use of code much more portable. In this section we
focus on Maven from the Apache foundation.

Maven3 is a tool that handles project management and builds automation. It is mostly used
for Java development, but can also handle projects in C#, Ruby, Scala, and other languages.
It has a similar purpose as the Apache Ant4 tool.

Maven is based on the concept of Project Object Model (POM). The POM, which is an XML
file, describes the software project, the dependencies from other external modules, as well
as the build order. Maven has predefined targets allowing to perform specific tasks (e.g.,
code compilation, code packaging etc.).

The next figure shows a very simple example of a POM file (by default named pom.xml).
This is sufficient to build the project and to run the associated unit tests. Each <dependency>
block references an artefact (usually a .jar library) that is stored on a public repository. When
a library or a plugin is needed by a project, a query should be submitted to a search engine
(see below) copying and pasting the corresponding <dependency> block into the project
pom.xml. A list of the most common Maven plugins is available at Apache website5. More
information and detailed documentation is available at the Maven complete reference
website6.

Figure 3: Simple example of Maven pom.xml

3 http://en.wikipedia.org/wiki/Apache_Maven
4 http://en.wikipedia.org/wiki/Apache_Ant
5 http://maven.apache.org/plugins/index.html
6 http://www.sonatype.com/books/mvnref-book/reference/public-book.html

CHOReOS 9
FP7-257178

In CHOReOS, the POM org.ow2.choreos.choreos contains all the default settings for the
project, and must be inherited by every module using Maven as a build tool.

When looking for available artefacts, we recommend using these search engines:
 http://repository.ow2.org/nexus/index.html

 http://mvnrepository.com/

4.4. Integrated Development Environment: Eclipse

Integrated development environments (IDEs) comprise tools or software suites that integrate
various tools, including the editor, compiler, debugger and other development essentials. In
this section we describe Eclipse, one of the most commonly used IDEs.

Eclipse is a software development environment that supports multiple programming
languages and combines an integrated development environment (IDE) with an extensible
plug-in system. Although it’s written mostly in Java, one can use Eclipse to develop in any
language. As opposed to applications where most functionality is hard-coded, Eclipse uses
plug-ins for most of its functionalities in addition to the basic runtime system. Eclipse’s
runtime system is based on an OSGi7 compliant implementation called Equinox. OSGi
Alliance is a non-profit corporation that provides open specifications, reference
implementations and test suites for modular assembly of software built with Java technology.

More information and detailed documentation is available at the Eclipse Marketplace
website8.

4.4.1. Maven integration

m2eclipse9 provides comprehensive Maven integration for Eclipse. Developer can use
m2eclipse to manage both simple and multi-module Maven projects, execute Maven builds
via the Eclipse interface, and interact with Maven repositories. m2eclipse makes
development easier by integrating data from a project’s Object Model with Eclipse IDE
features.

4.4.2. Subversion integration

Subclipse10 integrates Subversion into Eclipse as an Eclipse Team Provider plugin. It
facilitates the use of SVN directly in Eclipse IDE with its own graphical user interface.

7 http://www.osgi.org/Main/HomePage.
8 http://marketplace.eclipse.org/
9 http://m2eclipse.sonatype.org/
10 http://subclipse.tigris.org/

CHOReOS 10
FP7-257178

5. Collaboration tools
In the software development cycle, the sooner the code enters a common development pool,
the more other developers use this code, be it as a library imported into another component,
or as a service communicating from another process or node. The collaboration tools provide
essential support for keeping and tracking the changes in the code, automatically detecting
possible problems in the code, planning the releases and reporting bugs.

In this section we first provide the description of the repositories that support the storage,
versioning and exchange of the code. For the development coordination, we present feature
request and problem reporting tools, useful also for the external testers and users for
reporting any issues found in the software. Finally, to reduce the chance of issues
discovered later, we describe additional tools that support continuous integration.

5.1. Revision control system: Apache Subversion

Revision control software takes care of changes in documents, programs and other
information stored as files on the file system. This way, developers do not have to manually
control versions when saving newer versions of the files on the server. Distributed revision
control (Git, Mercurial) takes a peer-to-peer approach, as opposed to the client-server
approach of centralized systems (SVN, CVS).

In CHOReOS we decided to use a centralized VCS, namely SVN, described in more detail
below. This means that SVN is the only official and supported repository, and the developers
must commit their code regularly. The reasons for this decision is that we believe that the
distributed revision control is more complex than the centralized one, thus we expect that the
developers will have less difficulties using SVN than they would have using Git or Mercurial.
Further, we want to encourage one central location of code that is committed often by all
contributors.

Apache Subversion11 (also known as SVN) was founded in 2000 by CollabNet Inc. It is a
software versioning and a revision control system used to manage revisions of source code
and other documents (text and binary files). It is mostly-compatible successor to the widely
used Concurrent Versions System12 (CVS). Subversion uses the Apache License, making it
free software and open source.

In the CHOReOS project, it has been agreed that SVN will be the version control system
used in the central forge, however developers are free to use Git or Mercurial locally.

A cheat sheet of SVN commands is available online at the Abbey Workshop website13. More
information and detailed documentation is available at the Subversion book website14.

11 http://en.wikipedia.org/wiki/Apache_Subversion
12 http://en.wikipedia.org/wiki/Concurrent_Versions_System
13 http://www.abbeyworkshop.com/howto/misc/svn01/
14 http://svnbook.red-bean.com/

CHOReOS 11
FP7-257178

5.1.1. Directory hierarchy

Because in Subversion regular directory copies are used for branching and tagging, we
decided in CHOReOS to choose a repository location for each subproject root (i.e., the
”topmost“ directory that contains data related to that subproject) and then create three
subdirectories beneath that root:

 trunk meaning the directory under which the main project development occurs;

 branches which is a directory in which various named branches of the main
development line may be created;

 tags which is a collection of tree snapshots that are created, and perhaps destroyed,
but never changed.

5.1.2. Branching policy

In the CHOReOS project, it is strongly recommended that active development happen in the
trunk. Changes made to trunk have the highest visibility and get the greatest amount of
exercise that can be expected from unreleased code. For this to be beneficial to everyone,
the trunk is expected at all times to be stable. It MUST build. It MUST work. It might not be
release-ready, but it MUST certainly be test-suite ready.

We also strongly recommend seeing large changes broken up into several, smaller, logical
commits — each of which is expected to meet the aforementioned requirements of stability.

Yet, we understand that it can be nearly impossible to apply all these policies to particularly
large changes (new features, sweeping code reorganizations, etc.). It is in those situations
that developers might consider using a custom branch dedicated to their development task.

5.2. Issue Reporting and Tracking: Jira

The tools for issue reporting and tracking act as a smart pinboard that can be used by the
developers, release managers and the users of the software. They are therefore highly
important in directing the development of a large software project as a place to record the
progress of the development, publish the feature requests, track the issues and their status,
and direct the integration of components.

In CHOReOS, we will use Atlassian JIRA, as it comes with the OW2 community.

JIRA15 is a tool used for bug tracking, issue tracking, and project management. It is a
proprietary product, developed by Atlassian. Atlassian provides JIRA for free to open source
projects.

The JIRA interface provides the following bug-tracking features:

 View issue details including custom fields, attachments, workflow actions and recent
activity.

 Create new bugs from browser, email, IDE or smart phone client.

 Quickly triage issues with auto-complete entry fields for labels, components, and
versions.

 Leverage activity history to quickly access recently opened issues, projects and
searches.

15 http://en.wikipedia.org/wiki/JIRA

CHOReOS 12
FP7-257178

Atlassian provides IDE Connectors with which the developers can interact with JIRA from
Eclipse16. Third-party integrations are available for other IDEs, for example, NetBeans17.
This enables the exchange of information between the code repository and the issue reports,
making the development and bug fixing progress easier and more coordinated.

Projects metadata

JIRA projects organize bugs into components for sub-grouping, and into versions for
identifying affected and target fix releases.

From any project, it is possible to access:

 Issue statistics and key metrics for monitoring progress.

 Activity streams displaying recent changes across bugs, issues, projects or people.

 Charts and reports showing the most popular issues, recently opened/closed issues
and more.

 Road Map highlighting issues remaining in current or future versions.

 Change Log detailing bugs and issues fixed in previous versions.

It is also possible to set up a wallboard for each team or to use JIRA Query Language (or
JQL) to create reports and charts and customize dashboards. Events can be subscribed to
via RSS or email notifications.

Figure shows a screenshot of the Atlassian web interface. More information and detailed
documentation is available at the Atlassian JIRA website18.

Figure 4: Screenshot of Jira Web Interface

16 http://en.wikipedia.org/wiki/Eclipse_(software)
17 http://netbeans.org/
18 http://www.atlassian.com/software/jira/

CHOReOS 13
FP7-257178

5.3. Continuous Integration: Bamboo

Continuous Integration19 (CI) comprises practices such as daily builds and additional checks
to prevent bugs. In order to enable automatic daily builds, Continuous Integration software
gather the whole source in one place (with different revisions), automate the build process
and testing, and provide the latest working executable to anyone involved in the project. The
CI model comprises a set of activities for the process implementation: building the system,
running tests, deployment activities, and finally reporting test and deployment results. Of
course, CI does not guarantee bug-free software, it only provides a way to reduce the time to
eliminate as many bugs in the code as possible.

There are many known CI software products and in CHOReOS we will use Bamboo since it
is the one provided by the OW2 platform.

Bamboo20 is a continuous integration server from Atlassian and is free for philanthropic and
open-source projects.

Bamboo is tied to no specific programming language or build tool. The range it supports is
very broad and includes ant, maven, make, and any command line tools. It provides build
notifications that can be customized by type of event. Notifications are sent via email, RSS,
instant message, or shown in pop-up windows in Eclipse-based IDEs.

Bamboo can be installed as a standalone server, which is prepackaged with Jetty application
server and removes all difficulties related to configuration.

5.4. Collaborative Development Environments: the OW2 forge

The collaboration tools described so far need to be hosted in some central location. It is
therefore best to use an already existing site that integrates many or all of the needed tools.
Such sites are called forges, and we will use the OW2 forge to host all the CHOReOS code
and public project-related content:

 The code of the components developed during the CHOReOS project.

 The scripts and specifications required for building the packages for the target
distributions (e.g. deb for Debian Package or rpm for Red Package Manager).

 Documentation, providing the guides and manual for the end-users and ad-
ministrations.

 The structure of the repository for the component code will follow from the architecture
agreed in the relevant WP. In this way, the closely coupled components will reside
within the relevant module. Each module will contain the subfolders standard for the
Subversion modules:

 trunk: the folder containing the current development version of the module.

 branches: this folder contains an arbitrary number of subfolders, each of which is a
copy of the contents of the trunk at the time of the creation. These subfolders can
represent the experimental development that needs to be tested and validated

19 http://en.wikipedia.org/wiki/Continuous_integration
20 http://www.atlassian.com/software/bamboo/

CHOReOS 14
FP7-257178

before it can be merged back into trunk. It usually also contains the maintenance of
the past releases of the module.

 tags: have the subfolders that are similar in content as those in the branches, but
should only contain snapshots of the trunk or a branch with no purpose of being
changed. The tags usually contain the state of the code at the points of versions or
releases.

CHOReOS 15
FP7-257178

6. Conclusion
This document is the first integration plan for CHOReOS, delivered at the end of the first
year of the project. It provides main steps that will be carried out by partners in order to
integrate the CHOReOS software platform. It provides information about the collaborative
development platform that will be provided by the OW2 consortium. The resulting integrated
software platform will be exploited as an open-source project.

An update of this document will be provided at M24 (the end of the second year of the
project). It will adjust the current plan according to the available results.

