Explicit solutions of some Linear-Quadratic Mean Field Games

Abstract : We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
Type de document :
Article dans une revue
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2012, 7 (2), pp.243 - 261. 〈10.3934/nhm.2012.7.243〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00664442
Contributeur : Estelle Bouzat <>
Soumis le : lundi 30 janvier 2012 - 15:51:47
Dernière modification le : lundi 21 mars 2016 - 11:30:53
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 04:05:08

Fichier

Bardi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Martino Bardi. Explicit solutions of some Linear-Quadratic Mean Field Games. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2012, 7 (2), pp.243 - 261. 〈10.3934/nhm.2012.7.243〉. 〈hal-00664442〉

Partager

Métriques

Consultations de la notice

666

Téléchargements de fichiers

539