Y. Achdou, F. Camilli, and I. , Capuzzo-Dolcetta: Mean field games: numerical methods for the planning problem, 2010.

Y. Achdou and I. , Mean Field Games: Numerical Methods, SIAM Journal on Numerical Analysis, vol.48, issue.3, pp.1136-1162, 2010.
DOI : 10.1137/090758477

URL : https://hal.archives-ouvertes.fr/hal-00392074

O. Alvarez and M. Bardi, Ergodic Problems in Differential Games, Internat. Soc. Dynam. Games Birkhäuser Boston, vol.9, pp.131-152, 2007.
DOI : 10.1007/978-0-8176-4553-3_7

M. Bardi and I. , Capuzzo Dolcetta: Optimal control and viscosity solutions of Hamilton- Jacobi-Bellman equations, Birkhäuser Boston Inc, 1997.

T. Basar and G. J. Olsder, Dynamic noncooperative game theory, 1995.

A. Bensoussan and J. Frehse, Regularity results for nonlinear elliptic systems and applications, 2002.
DOI : 10.1007/978-3-662-12905-0

P. Cardaliaguet, Notes on Mean Field Games (from P.-L. Lions' lectures atColì ege de France, 2010.

D. A. Gomes, J. Mohr, and R. R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl, issue.9, pp.93-308, 2010.

O. Guéant, Mean field games and applications to economics, 2009.

O. Guéant, A reference case for mean field games models, Journal de Math??matiques Pures et Appliqu??es, vol.92, issue.3, pp.276-294, 2009.
DOI : 10.1016/j.matpur.2009.04.008

O. Guéant, J. Lasry, and P. , Lions: Mean field games and applications, Paris- Princeton Lectures on Mathematical Finance, 2010.

M. Huang, P. E. Caines, and R. P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions, Proc. the 42nd IEEE Conference on Decision and Control, pp.98-103, 2003.

M. Huang, P. E. Caines, and R. P. Malhamé, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun . Inf. Syst, vol.6, pp.221-251, 2006.

M. Huang, P. E. Caines, and R. P. Malhamé, Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized <formula formulatype="inline"> <tex>$\varepsilon$</tex></formula>-Nash Equilibria, IEEE Transactions on Automatic Control, vol.52, issue.9, pp.1560-1571, 2007.
DOI : 10.1109/TAC.2007.904450

M. Huang, P. E. Caines, and R. P. , An Invariance Principle in Large Population Stochastic Dynamic Games, Journal of Systems Science and Complexity, vol.20, issue.1, pp.162-172, 2007.
DOI : 10.1007/s11424-007-9015-4

A. Lachapelle, J. Salomon, and G. Turinici, COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.04, pp.567-588, 2010.
DOI : 10.1142/S0218202510004349

URL : https://hal.archives-ouvertes.fr/hal-00346214

J. Lasry and P. , Jeux ?? champ moyen. I ??? Le cas stationnaire, Comptes Rendus Mathematique, vol.343, issue.9, pp.619-625, 2006.
DOI : 10.1016/j.crma.2006.09.019

J. Lasry and P. , Jeux ?? champ moyen. II ??? Horizon fini et contr??le optimal, Comptes Rendus Mathematique, vol.343, issue.10, pp.679-684, 2006.
DOI : 10.1016/j.crma.2006.09.018

J. Lasry and P. , Mean field games, Japanese Journal of Mathematics, vol.4, issue.1, pp.229-260, 2007.
DOI : 10.1007/s11537-007-0657-8

URL : https://hal.archives-ouvertes.fr/hal-00667356