Optimal control with random parameters: a multiscale approach

Abstract : We model the parameters of a control problem as an ergodic diffusion process evolving at a faster time scale than the state variables. We study the asymptotics as the speed of the parameters gets large. We prove the convergence of the value function to the solution of a limit Cauchy problem for a Hamilton-Jacobi equation whose Hamiltonian is a suitable average of the initial one. We give several examples where the effective Hamiltonian allows to define a limit control problem whose dynamics and payoff are linear or nonlinear averages of the initial data. This is therefore a constant-parameter approximation of the control problem with random entries. Our results hold if the fast random parameters are the only disturbances acting on the system, and then the limit system is deterministic, but also for dynamics affected by a white noise, and then the limit is a controlled diffusion.
Type de document :
Article dans une revue
European Journal of Control, Lavoisier, 2011, 17 (1), pp.30-45. 〈10.3166/ejc.17.30-45〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00664449
Contributeur : Estelle Bouzat <>
Soumis le : lundi 30 janvier 2012 - 16:00:47
Dernière modification le : lundi 21 mars 2016 - 11:30:54
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 04:18:36

Fichier

BardiCesaroni.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Martino Bardi, Annalisa Cesaroni. Optimal control with random parameters: a multiscale approach. European Journal of Control, Lavoisier, 2011, 17 (1), pp.30-45. 〈10.3166/ejc.17.30-45〉. 〈hal-00664449〉

Partager

Métriques

Consultations de la notice

127

Téléchargements de fichiers

104