
HAL Id: hal-00664975
https://inria.hal.science/hal-00664975

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Approach for Securely Querying and
Updating XML Data

Houari Mahfoud, Abdessamad Imine

To cite this version:
Houari Mahfoud, Abdessamad Imine. A General Approach for Securely Querying and Updating XML
Data. [Research Report] RR-7870, INRIA. 2012, pp.23. �hal-00664975�

https://inria.hal.science/hal-00664975
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
8

7
0

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7870
January 2012

Project-Teams CASSIS

A General Approach for

Securely Querying and

Updating XML Data

Houari Mahfoud and Abdessamad Imine

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

A General Approach for Securely Querying

and Updating XML Data

Houari Mahfoud
∗

and Abdessamad Imine
†

Project-Teams CASSIS

Research Report n° 7870 — January 2012 — 23 pages

Abstract: Over the past years several works have proposed access control models for XML data
where only read-access rights over non-recursive DTDs are considered. A few amount of works
have studied the access rights for updates. In this paper, we present a general model for specifying
access control on XML data in the presence of update operations of W3C XQuery Update Facility.
Our approach for enforcing such updates specifications is based on the notion of query rewriting
where each update operation defined over arbitrary DTD (recursive or not) is rewritten to a safe
one in order to be evaluated only over XML data which can be updated by the user. We investigate
in the second part of this report the secure of XML updating in the presence of read-access rights
specified by a security views. For an XML document, a security view represents for each class
of users all and only the parts of the document these users are able to see. We show that an
update operation defined over a security view can cause disclosure of sensitive data hidden by this
view if it is not thoroughly rewritten with respect to both read and update access rights. Finally,
we propose a security view based approach for securely updating XML in order to preserve the
confidentiality and integrity of XML data.

Key-words: XML access control, XML security views, XML updating, Query rewriting, XPath,
XQuery, Confidentiality and Integrity

∗ University of Nancy 2 & INRIA Nancy Grand Est (Houari.Mahfoud@inria.fr).
† University of Nancy 2 & INRIA Nancy Grand Est (Abdessamad.Imine@inria.fr).

Une Approche Générale pour Sécuriser l’Accès et

la Mise à jour des Données XML

Résumé : Durant ces dernières années, plusieurs travaux ont proposé des
modèles de contrôle d’accès pour sécuriser l’accès en lecture aux données XML,
basés seulement sur des DTDs non-récursives. Le contrôle d’accès XML consid-
érant les opérations de mise à jour n’a pas reçu suffisamment d’attention. Dans
ce papier, nous présentons un modèle général pour spécifier le contrôle d’accès
aux données XML moyennant des primitives de mise à jour du W3C XQuery
Update Facility. Notre approche pour enforcer ces spécifications de mise à jour
est basée sur la notion de réécriture des requêtes (query rewriting en anglais)
où chaque opération de mise à jour, définie par rapport à une DTD arbitraire
(récursive ou non), est réécrite en une autre opération sûre afin qu’elle soit éval-
uée seulement sur des données XML modifiables par l’utilisateur qui a soumis
l’opération. Nous étudions dans la deuxième partie de ce rapport la sécurisation
des opérations de mise à jour XML en présence des droits de lecture spécifiés
sous forme d’une vue de sécurité. Pour un document XML, une vue de sécurité
permet de repésenter pour chaque classe d’utilisateurs les parties du document
dont ils sont autorisés à voir. Nous montrons qu’une opération de mise à jour
définie par rapport à une vue de sécurité peut entraîner des divulgations des
données confidentielles cachées par cette vue, si elle n’est pas soigneusement
réécrite en tenant compte des droits de lecture et de mise à jour. Pour pallier à
ce problème, nous décrivons une solution qui permet de préserver la confiden-
tialité et l’intégrité des données XML.

Mots-clés : Contôle d’accès XML, Vues de sécurité XML, Mise à jour XML,
Réécriture des requêtes, XPath, XQuery, Confidentialité et Intégrité

A General Approach for Securely Querying and Updating XML Data 3

Contents

1 Motivation 4

2 Preliminaries 8

3 Update Access Control Model 10
3.1 Update Specifications . 10
3.2 DTD Recursion Problems . 12

4 Secure Updating XML 13
4.1 Updatability . 13
4.2 Update Operations Rewriting . 15

5 Secure Updating XML over Security Views 18
5.1 Access Control for Recursive Views 19
5.2 Securing Update Operations . 20

6 Conclusion 22

RR n° 7870

4 H. Mahfoud and A. Imine

1 Motivation

The XQuery Update Facility language [22] is a recommendation of W3C that
provides facility to modify some parts of an XML document and leaving the rest
unchanged, and this through different update operations, e.g., insert, replace, or
delete some nodes of a given XML document. The security requirement is the
main problem when manipulating XML documents. An XML document may
be queried and/or updated simultaneously by different users. For each class
of users some rules can be defined to specify parts of the document which are
accessible to the users and/or updatable by them. A bulk of work has been
published in the last decade to secure the XML content, but only read-access
rights has been considered over non-recursive DTDs [5], [17], [3]. Moreover, a
few amount of works have considered update rights.

In this paper, we investigate a general approach for securing XML update
operations of the XQuery Update Facility language. Abstractly, for any update
operation posed over an XML document, we ensure that the operation is per-
formed only on XML nodes updatable by the user and no sensitive information
can be deduced via this operation. Addressing such concerns requires first a
specification model to define update constraints and a flexible mechanism to
enforce these constraints at update time.

We now present our motivating example for controlling update access. Con-
sider the recursive DTD1 of a hospital depicted as a graph in Fig. 1(b) (we
refer to this DTD throughout the paper to illustrate our examples). An XML
document conforming to this DTD consists of different departments (dept) de-
fined by a name dname and each department includes patients of the hospital
and other patients coming from some clinics (patients under clinical element).
For each patient (with name pname and category categ), the hospital maintains
a medical history of its parents (parent) and a medical folder (medicalFolder)
which includes all treatments done for this patient (treatment can be analysis
or diagnosis); descp and result represent the description and the result of the
treatment respectively. The treatment data is organized into two groups de-
pending on whether the treatment has been done in some laboratories (analysis
treatments) or not (the diagnosis treatments). Each dname, pname, categ, de-
scp, and result has a single text node (PCDATA) as its child. An instance of the
hospital DTD is given in Fig. 2. Due to space limitation, this instance is split
into Figures 2 (a) and (b), where Fig. 2(b) represents the medical folder of
patient3.

Suppose that the hospital wants to impose an update policy that allows the
doctors to update all treatments data (e.g., add some treatment results) except
those of analysis (done outside the hospital). According to this policy, only the
nodes treatment1 and treatment4 of Fig. 2(b) can be updated. As the nodes
treatment2 and treatment3 are analysis treatments they cannot be updated.

Problem 1. The existing access control approaches are unable to specify the
above policy. The model given in [3] consists in annotating the schema of the
document by different update constraints, like putting attribute @insert=Y in
element type treatment of the hospital DTD to specify that some data can be
inserted into nodes of type treatment. However, only local annotations (the

1A DTD is recursive iff at least one of its elements is defined (directly or indirectly) in
terms of itself.

Inria

A General Approach for Securely Querying and Updating XML Data 5

Figure 1: Hospital DTD.

update concerns only the node and not its descendants) are used which is not
sufficient to define some update policies. For instance, to enforce the hospital
update policy imposed, the analysis treatment data (i.e., nodes treatment2 and
treatment3) cannot be discarded from doctors’s updates by the model intro-
duced in [3] even by using XPath upward-axes. Specifically, the annotation
@insert=[not(ancestor::analysis)] over element type treatment is not the
adequate constraint since it makes node treatment4 not updatable.

In the XACUannot language presented in [8], an update annotation over an
element type of the DTD is defined with a full path from the DTD root to
this element. E.g., the annotation ann(hospital/patients/patient, insert)=Y
specifies that some nodes can be inserted under hospital patients. However, the
XACUannot language cannot be applied in the presence of recursive DTDs. For
instance, due to recursion, the hospital update policy given above cannot be
defined since the paths denoting updatable treatment nodes (not done during
analysis) stand for an infinite set of paths. As we will see in the next, this set
of paths can be expressed using the Kleene star operator (*) which cannot be
expressed in the standard XPath as outlined in [25, 26]. To our knowledge, no
model exists for specifying update policies over recursive DTDs.

Problem 2. For each update operation, an XPath expression is defined to
specify the XML data at which the update is applied. To enforce rights restric-
tion imposed by an update policy, the query rewriting principle can be applied
where each update operation (i.e., its XPath expression) is rewritten according
to the update rights into a safe one in order to be evaluated only over parts of
the XML data updatable by the user. However, this rewriting step is already
challenging for a small class of XPath. Consider the downward fragment of
XPath which supports child and descendant axes, union and complex predi-
cates. We show that, in case of recursive DTDs, an update operation defined
in this fragment cannot be rewritten safely. More specifically, a safe rewriting
of the XPath expression of an update operation can stand for an infinite set of
paths which cannot be expressed in the downward fragment of XPath. To over-
come this rewriting limitation, some solutions have been proposed [7,11] based
on the Regular XPath to express safe recursive paths. However, these solutions
remain a theoretical achievement since no tool exists to evaluate Regular XPath
expressions. Thus, no practical solution exists for enforcing update policies in

RR n° 7870

6 H. Mahfoud and A. Imine

Figure 2: Example of XML Document.

the presence of recursive DTDs.

Problem 3. We discuss finally the interaction between read and update privi-
leges. For each class of users, some read-access rights can be defined to prevent
access to sensitive data of the XML document. Moreover, update rights can
be imposed to specify parts of the document which can be updated by these
users. In this case, we show that rewriting an update operation by consider-
ing simply the update rights is not sufficient to make XML updates secure. In
other words, an update operation can be safe w.r.t update policy; but, evalu-
ating this operation over the XML document can make disclosure of sensitive
data. For instance, suppose that the doctors can update all data in the hospital,
but they can see only patients of category “A”. According to this read-access
right, a view can be computed from the instance of Fig. 2(a) by hiding node
patient2 and its children nodes (pname2, categ2, parent1, and medicalFolder2).
Thus, node patient3 is shown to the doctors since its category is “A” and it
appears as an immediate child of node patients1. Consider now the update
delete descendant::patients[patient[pname=’Nathaniel’]]/descendant::result
that consists in removing all result nodes provided that patient Nathaniel ex-
ists. This update is safe w.r.t the update policy defined above. However, if
the execution of this update succeeds then the user can deduce that patient
Nathaniel is currently residing in the hospital and his medical data is confiden-
tial. Consequently, the interaction between read and update privileges should be
thoroughly designed in order to preserve confidentiality and integrity properties.

We present in the following our main contributions of this work proposed to
deal with the previous problems.

Our Contributions. Our first contribution is an expressive model for speci-
fying XML update policies, based on the primitives of XQuery Update Facility,
and over arbitrary DTDs (recursive or not). Given a DTD D, we annotate
element types of D with different update rights to specify restrictions on updat-
ing XML documents conform to D through some update operations (e.g., deny

Inria

A General Approach for Securely Querying and Updating XML Data 7

insertion of new nodes of type analysis under treatment nodes). We propose
a new model that supports inheritance and overriding of update privileges and
overcomes expressivity limitations of existing models (see Problem 1). Our
approach for enforcing such update policies is based on the notion of query
rewriting. However, to overcome the rewriting limitation presented above as
Problem 2, we investigate the extension of the downward fragment of XPath
by some axes and operators. Based on this extension, our second contribution
is an algorithm that rewrites any update operation defined in the downward
fragment of XPath into another one defined in the extended fragment to be
safely evaluated over the XML data. We discuss in the second part of this
paper our solution to deal with Problem 3. We propose a general approach
to secure update operations defined over a (recursive) security view without
disclosure of sensitive data hidden by this view (i.e., to preserve confidentiality
and integrity of the XML data, each update operation over the view must be
rewritten to be safe w.r.t both read and update rights). To our knowledge, this
paper presents the first model for specifying and enforcing update policies using
the XQuery update operations and in the presence of arbitrary DTDs (resp.
arbitrary security views).

Related Work. During the last years, several works have proposed access
control models to secure XML content, but only read-access has been considered
over non-recursive DTDs [3, 5, 17]. There has been a few amount of works
on securing XML data by considering the update rights. Damiani et al. [3]
propose an XML access control model for update operations of the XUpdate
language. They annotate the XML schema with the read and update privileges,
and then the annotated schema is translated into two automatons defining read
and update policies respectively, which are used to rewrite any access query
(resp. update operation) over the XML document to be safe. However, the
update policy is expressed only with local annotations which is not sufficient
to specify some update rights (see Problem 1). Additionally, the automaton
processing cannot be successful when rewriting access queries (resp. update
operations) defined over recursive schema (i.e., recursive DTD).

Authors of [8] propose an XML update access control model based on the
XQuery update operations. A set of XPath-based rules is used to specify, for
each update operation, the XML nodes that can be updated by the user using
this operation. These rules are translated into annotations over element types
of the DTD (if exists) to present an annotation-based model called XACUannot.
However this translation is possible only in case of non-recursive DTDs.

Consider the read-access control models. Unlike the secure of XML query-
ing over non-recursive security views, the problem posed by the recursion (i.e.,
XPath query rewriting is not always possible under recursive security views) has
not received a more attention. To overcome this problem, some authors [7, 11]
propose rewriting approaches based on the non-standard language, “Regular
XPath”, which is more expressive than XPath and makes rewriting possible
under recursion. However, no practical system exists of both proposed ap-
proaches2, and in general, no tool exists to evaluate Regular XPath queries over
XML data. Thus, the need of a rewriting system of XPath queries (resp. update
operations) over recursive security views remains an open issue.

2According to [21] the SMOQE system proposed in [6] has been removed because of con-
duction of future researches.

RR n° 7870

8 H. Mahfoud and A. Imine

Outline. The remainder of the paper is organized as follows. Section 2 presents
basic notions on DTD, XPath, and XML update operations considered in this
paper. We describe in Section 3 our specification model of update. Our approach
for securing update operations is detailed in Section 4. We recall the notion of
security view in Section 5 and present a view-based approach to secure updating
of XML documents over (recursive) security views. Finally, we conclude this
paper in Section 6.

2 Preliminaries

This section briefly reviews some basic notions tackled throughout the paper.

DTDs. Without loss of generality, we represent a DTD D by (Ele, Rg, root),
where Ele is a finite set of element types; root is a distinguished type in Ele
called the root type; Rg is a function defining element types such that for any
A in Ele, Rg(A) is a regular expression α defined as follows:

α := str | ǫ | B | α’,’α | α’|’α | α*

where str denotes the text type PCDATA, ǫ is the empty word, B is an element
type in Ele, and finally α’,’α, α’|’α, and α* denote concatenation, disjunction,
and the Kleene closure respectively. We refer to A → Rg(A) as the production
of A. For each element type B occurring in Rg(A), we refer to B as a subelement
type (or child type) of A and to A as a superelement type (or parent type) of B.
A DTD D is said recursive if some element type A is defined in terms of itself
directly or indirectly.

We use graph representation to depict our DTDs. For instance, Fig. 1 repre-
sents (a) the productions of the hospital DTD; and (b) its graph representation
corresponding.

XML Documents. We model an XML document with an unranked ordered
finite node-labeled tree, called XML Tree. Let Σ be a finite set of node labels,
an XML tree T over Σ is a structure defined as [26]: T=(N,R↓, R→, L) where
N is the set of nodes, R↓ ⊆ N×N is a child relation, R→ ⊆ N×N is a successor
relation on (ordered) siblings, and L : N → Σ is a function assigning to every
node its label. R↑ and R← denote the converse of the relations R↓ and R→
respectively. For instance, R← ⊆ N ×N is a predecessor relation on (ordered)
siblings.

An XML document T conforms to a DTD D if the following conditions hold:
(i) the root of T is the unique node labeled with root ; (ii) each node in T is
labeled either with an Ele type A, called an A element, or with str, called a
text node; (iii) for each A element with k ordered children n1, ..., nk, the word
L(n1), ..., L(nk) belongs to the regular language defined by Rg(A); (iv) each
text node carries a string value (PCDATA) and is the leaf of the tree. We call T
an instance of D if T conforms to D.

XPath Queries. We consider a small class of XPath [1] queries, referred to as
X and defined as follows:

p := α::lab | p [q] | p /p | p ∪ p

q := p | p /text() =’c’ | q and q | q or q | not (q)

α := ε | ↓ | ↓+ | ↓∗

Inria

A General Approach for Securely Querying and Updating XML Data 9

where p denotes an XPath query and it is the start of the production, lab refers
to element type or ∗ (that matches all types), ∪ stands for union, c is a string
constant, α is the XPath axis relations, and ε, ↓, ↓+ and ↓∗ denote self , child,
descendant and descendant-or-self axis respectively. Finally the expression q
enclosed in [.] is called a qualifier (predicate or filter).

Let n be a node in an XML tree T . The evaluation of an XPath query p at
node n, called context node n, results in a set of nodes which are reachable via p
from n, denoted by n〚p〛. A qualifier q is said valid at context node n, denoted
by n � q, iff one of the following conditions holds: (i) q is an atomic predicate
and n〚q〛 is nonempty, i.e., there exists a node reachable via q from n; (ii) q
is given by p/text()=’c’ and n〚p〛 contains a node which has a child text node
whose string value is c; (iii) q is a boolean expression and it is evaluated to true
at n, e.g., predicate not(q) is valid at n iff n〚q〛 is empty.

Theoretically, this XPath fragment (called downward fragment) has some
interesting decision results [19]. Practically, it is commonly used and is is es-
sential to XQuery, XSLT and XML Schema [7]. Authors of [7] have shown that
in case of recursive security views, the fragment X is not closed under query
rewriting (i.e., some access queries defined in X cannot be rewritten to be safe).
This problem is known as XPath query rewriting problem. We show that the
same problem is encountered in controlling update operations and we propose
a solution based on the extension of fragment X as follows:

p := α::lab | p [q] | p /p | p ∪ p | p [n]

q := p | p /text() =’c’ | q and q | q or q

| not (q) | p =ε::lab
α := ε | ↓ | ↓+ | ↓∗ | ↑ | ↑+ | ↑∗

we enrich X by the upward-axes parent (↑), ancestor (↑+), and ancestor -or -self
(↑∗), the position and the node comparison predicates. The position predicate,
defined with [n](n ∈ N), is used to return the nth node from an ordered set of
nodes. For instance, since we model an XML document with an ordered tree,
the query ↓::∗[1] over a node n returns its first child node. The node comparison
predicate [p1=p2] is valid at a node n only if the evaluation of the right and left
XPath queries at n result in exactly the same single node. For example, the
predicate [↑::∗=↑+::∗[1]] is valid at any node n having a parent node. We sum-

marize this extension by the following subsets X⇑ (X with upward-axes), X⇑[n]
(X⇑ with position predicate), and X⇑[n,=] (X⇑[n] with node comparison predicate).

In our case, fragment X is used only to formulate update operations (resp.
access queries) and to define our update policies (resp. access policies), while
we will explain later how the augmented fragments of X defined above can be
used to avoid the XPath query rewriting problem.

XML Update Operations. We review some update operations of the W3C
XQuery Update Facility recommendation [22] (abbreviated as XUF). We study
the use of the following operations: insert, delete, and replace. In each update
operation an XPath target expression is used to specify the set of XML node(s)
in which the update is applied. Moreover, a second argument source is required
for insert and replace operations which represents a sequence of XML nodes.
Note that target may evaluate to an arbitrary sequence of nodes, denoted target-
nodes, in case of delete operation. As for other operations, however, target must

RR n° 7870

10 H. Mahfoud and A. Imine

evaluate to a single node, denoted target-node; otherwise a dynamic error is
raised. The XML update operations considered in this paper are detailed as
follows:

• insert source into / as first into / as last into / before / after target: In-
serts each node in source as child, as first child, as last child, as preceding sibling
node, or as following sibling node of target-node respectively. The order defined
between nodes of source must be preserved. We abbreviate these kinds of insert
operations by insertInto, insertAsFirst, insertAsLast, insertBefore, and
insertAfter respectively. In case of insertBefore and insertAfter oper-
ations, target-node must have a parent node; otherwise a dynamic error is
raised. For insertInto operation, the position of insertion is undetermined
and may depend on the XUF implementation. Thus, the effect of executing an
insertInto operation on target can be that of insertAsFirst /insertAsLast
executed on target or insertBefore /insertAfter executed at any child node
of target.

• delete target: This operation is used to delete all nodes in target-nodes along
with their descendant nodes.

• replace target with source: Used to replace target-node and its descendants
with the sequence of nodes specified in source by preserving their order. Note
that target-node must have a parent node; otherwise a dynamic error is raised.

3 Update Access Control Model

This section describes our access control model for XML update.

3.1 Update Specifications

We focus on the security annotation principle presented in [5] and on the update
access type notion introduced in [2] to define our update specifications.

Definition 1. Given a DTD D, an update type defined over D is of the form
insertInto [Bi], insertAsFirst [Bi], insertAsLast [Bi], insertBefore [Bi],
insertAfter [Bi], delete [Bi] or replace [Bi,Bj], where Bi and Bj are element
types of D. �

Intuitively, an update type ut represents a set of update operations which are
defined for specific element types. For example, the update type insertInto [B]
represents the update operations “insert source into target” where nodes in
source are of type B. Moreover, replace [Bi,Bj] represents the update opera-
tions “replace target with source” where target-node is of type Bi and nodes
in source are of type Bj .

Definition 2. We define an update specification Sup as a pair (D, annup),
where D is a DTD, and annup is a partial mapping such that, for each element
type A in D and each update type ut, annup(A, ut), if defined, is an annotation
of the form:

annup(A,ut) := Y | N | [Q] | Nh | [Q]h

with Q is a qualifier in our XPath fragment X . �

Inria

A General Approach for Securely Querying and Updating XML Data 11

An update specification Sup is an extension of a document DTD D associ-
ating update rights with element types of D.

Let n be a node of type A in an instantiation of D. Intuitively, the autho-
rization values Y , N , and [Q] indicate that, the user is authorized, unauthorized,
or conditionally authorized respectively to perform update operations of type ut
at n (case of insert operations) or over children nodes of n (case of delete and
replace operations). For instance, the annotation annup(A,insertInto [B])=Y
specifies that the user can insert nodes of type B as children nodes of n.
However, the annotation annup(A,replace [Bi,Bj])=[Q] indicates that Bi chil-
dren of n can be replaced by new nodes of type Bj iff: n � Q. An anno-
tation annup(A,ut)=value is said valid at node n iff: (i) value=Y ; or, (ii)
value=[Q]|[Q]h and n � Q.

Our model supports inheritance and overriding of update privileges. If
annup(A,ut) is not explicitly defined, then an A element inherits the autho-
rization of its parent node that concerns the same update type ut. On the other
hand, if annup(A,ut) is explicitly defined it may override the inherited autho-
rization of A that concerns the same update type ut. All update operations are
not permitted by default.

Example 1. Consider the following annotations defined over the hospital DTD
(see the instance given in Fig. 2):

R1: annup(medicalFolder,delete [treatment])=Y
R2: annup(analysis,delete [treatment])=N
R3: annup(diagnosis,delete [treatment])=Y

R1 indicates that the treatment children of medicalFolder nodes can be deleted
(e.g., node treatment1). R2 overrides the delete authorization (Y) inherited
from medicalFolder and indicates that the treatment children of analysis
nodes cannot be deleted, such as treatment2 and treatment3 nodes (node
treatment3 inherits the delete authorization (N) from its parent node treatment2
since the annotation annup(treatment,delete [treatment]) is not explicitly de-
fined). Similarly, R3 overrides the delete authorization (N) of analysis to allow
deletion of the treatment children of diagnosis nodes (case of node treatment4).
�

Finally, the semantic of the specification values Nh and [Q]h is given as fol-
lows: The annotation annup(A,ut)=Nh indicates that, for a node n of type A,
update operations of type ut cannot be performed at n and no overriding of
this authorization value is permitted for descendant nodes of n. For instance,
if n′ is a descendant node of n whose type is A′, then an update operation of
type ut cannot be performed at n′ even though annup(A

′,ut)=Y is explicitly
defined. While, with the annotation annup(A,ut)=[Q]h, descendant nodes of
an A element can override this authorization value only if Q is valid at this
element. For instance, let n and n′ be two nodes of type A and A′ respectively,
and consider the annotation annup(A

′,ut)=[Q′], then an update operation of
type ut can be performed at node n′ iff: n′ � Q′. Moreover, if the annotation
annup(A,ut)=[Q]h is defined and n′ is a descendant of n, then the annotation
annup(A

′,ut)=[Q′] takes effect and an update operation of type ut can be per-
formed at node n′ iff: n � Q and n′ � Q′. We call annotation with value Nh or
[Q]h as downward-closed annotation.

RR n° 7870

12 H. Mahfoud and A. Imine

Example 2. Suppose that the hospital wants to impose an update policy that
authorizes the doctors to update (insertion, deletion,...) only data of patients
having category ’A’, which are under department ’cardiology’ and not involved
by clinical trial. We define formally this policy over an update type ut as follows:

R1: annup(dept,ut)=[↓::dname/text()=’cardiology’]h
R2: annup(clinical,ut)=Nh

R3: annup(patient,ut)=[↓::categ/text()=’A’]

Consider the case where ut=insertInto [treatment]. For a node p of type
patient, the annotation R3 takes effect over data of p only if p is under cardiology
department and outside of clinics (p has no ancestor node of type clinical);
otherwise no insertion of treatment nodes is permitted under node p regardless
its category. For the XML document presented in Fig. 2(a), insertions under
nodes patient3 and patient4 are permitted (e.g., insert some treatment nodes
into medicalFolder3). �

In [5], when an annotation R with qualifier [Q] is evaluated to false, all
annotations under R will be discarded regardless their truth values, which is
not always necessary: According to our policy in Example 2, insertions under
node patient3 of Fig. 2(a) are permitted by overriding negative authorization
inherited from node patient2. The principle of downward-closed annotation that
we present with the specification values {Nh,[Q]h} can be defined using just the
values {Y ,N ,[Q]} but with a large XPath fragment (e.g., the fragment X⇑) as
done in [17]. For instance, the policy of Example 2 can be defined as follows:

R′1: annup(dept,ut)=[↓::dname/text()=’cardiology’]
R′2: annup(clinical,ut)=N
R′3: annup(patient,ut)=[↓::categ/text()=’A’ and not(↑+::clinical)

and ↑+::dept[↓::dname/text()=’cardiology’]]

Observe that, without using the values {Nh,[Q]h}, defining a downward-closed
annotation over element type A amounts to propagate its value into all annota-
tions defined under A (values of the two downward-closed annotations R1 and
R2 of Example 2 are propagated into the annotation R3 to redefine it with R′3).
In this case, annotation R′3 depends on R′1 and R′2 and must be redefined each
time a modification is made on R′1 and/or R′2. This propagation leads to ver-
bose annotations. In other words, without the values {Nh,[Q]h}, changing one
annotation may require the modification of some annotations defined under it3

which can be complicated and time consuming in case of large DTDs.

3.2 DTD Recursion Problems

Recall the problems 1 and 2 explained in Section 1. The first problem states the
non-existence of models to specify update policies in case of recursive DTDs.
Suppose that the hospital imposes that the doctors can update all treatment
data except those which have been done outside the hospital (we suppose that all
analysis are done in laboratories). According to this policy, a doctor is permitted
to update a treatment node in an XML document (e.g., insert new diagnosis

3This is not recommended for some systems like collaborative editing where the update
policies are dynamic and each change is propagated to all the users across the network [13].

Inria

A General Approach for Securely Querying and Updating XML Data 13

data, delete some result nodes, etc.) only if this node is not attached, directly
or by other treatment nodes, to an analysis node. Given the XML document
presented in Fig. 2, only nodes treatment1 and treatment4 can be updated
while it is not the case of nodes treatment2 and treatment3 which are data
analysis (attached to node analysis1). Such a policy can be defined only by
using the notion of inheritance and overriding of update privileges which is
not considered in the existing approaches [2–4, 8]. This policy is defined in our
model by the following update annotations:

R1: annup(medicalFolder,ut)=Y
R2: annup(diagnosis,ut)=Y
R3: annup(analysis,ut)=N

where ut can be any update type defined over element types treatment, descp,
diagnosis, and result (e.g., delete [result], insertInto [diagnosis]).

The second problem is related to the enforcement of update policies. In
case of recursive DTD, an update operation with target defined in fragment X
cannot be rewritten into an equivalent one defined in X in order to update only
authorized data. This problem is known as the XPath closure problem [7]. For
instance, according to the previous update annotations, the update operation
delete ↓+::treatment cannot be rewritten into a safe update expressed in X .
Indeed, the paths denoting updatable treatment nodes (not done during anal-
ysis) stand for an infinite set. This set of paths can be captured with: delete
(↓+::medicalFolder ∪ ↓+::diagnosis)/(↓::treatment)*/↓::treatment. However,
the kleene star (∗) cannot be expressed in XPath [25,26].

In the next section we explain how the extended fragment X⇑[n], defined in

Section 2, can be used to overcome this update operations rewriting problem.

4 Secure Updating XML

In this section we focus only on update rights and we assume that every node is
read-accessible by all users. Given an update specification Sup=(D, annup), we
discuss the enforcement of such update constraints where each update operation
posed over an instance T of D must be evaluated only over nodes of T that can be
updated by the user w.r.t Sup. We assume that the XML document T remains
valid after the update operation is performed, otherwise the update is rejected.
In the following, we denote by Sut the set of annotations defined in Sup over
the update type ut and by |Sut| the size of this set. Moreover, for a mapping
function ann (such as annup of an update specification Sup=(D, annup)), we
denote by {ann} the set of all annotations defined with ann, and by |ann| the
size of this set.

4.1 Updatability

Consider the annotation annup(A,ut)=value and let n be a node of type A.
If this annotation is valid at n then update operations of type ut can change
either the content of n (i.e., delete/replace children nodes of n, insert new ones)
or the information relative to its preceding-sibling (resp. following-sibling) pre-
sented by the relation R← (resp. R→) in Section 2 (i.e., insert new nodes in
preceding/following sibling of n). Thus, we say that a node n is updatable w.r.t

RR n° 7870

14 H. Mahfoud and A. Imine

update type ut if the user is granted to perform update operations of type ut
either at node n (case of insert operations) or over children nodes of n (case
of delete and replace operations). For instance, if a node n is updatable w.r.t
insertInto [B], then some nodes of type B can be inserted as children of n.
Additionally, Bi children of n can be replaced with nodes of type Bj iff n is
updatable w.r.t replace [Bi,Bj].

Definition 3. Let Sup=(D, annup) be an update specification and ut be an
update type. A node n in an instantiation of D is updatable w.r.t ut if the
following conditions hold:

i) The node n is concerned by a valid annotation with type ut; or, no anno-
tation of type ut is defined over element type of n and there is an ancestor
node n′ of n such that: n′ is the first ancestor node of n concerned by
an annotation of type ut, and this annotation is valid at n′ (the inherited
annotation).

ii) There is no ancestor node of n concerned by an invalid downward-closed
annotation of type ut. �

Example 3. We consider the XML instance of Fig. 2 and we define the fol-
lowing update annotations:

R1: annup(medicalFolder,insertInto [result])=Y
R2: annup(diagnosis,insertInto [result])=Y
R3: annup(analysis,insertInto [result])=N

The update insert <result/> into ↓+::treatment[↓::descp/text()=’biotherapy’]
has no effect since the node concerned by this update is treatment3 which is
not updatable w.r.t insertInto [result]: According to Definition 3, no anno-
tation of type insertInto [result] is defined over element type treatment; and
analysis1 is the first ancestor node of treatment3 concerned by an annotation
of type insertInto [result], annotation R3. But, R3 is not valid at analysis1.
�

Given an update specification Sup=(D, annup), we define two predicates U1
ut

and U2
ut (expressed in fragment X⇑[n]) to satisfy the conditions (i) and (ii) of

Definition 3 with respect to an update type ut:

U1
ut := ↑∗::∗[

∨
(annup(A,ut)=Y |N |[Q]|Nh|[Q]h)∈Sut

ε::A][1]

[
∨

(annup(A,ut)=Y)∈Sut
ε::A

∨
(annup(A,ut)=[Q]|[Q]h)∈Sut

ε::A[Q]]

U2
ut :=

∧
(annup(A,ut)=Nh)∈Sut

not (↑+::A)
∧

(annup(A,ut)=[Q]h)∈Sut
not (↑+::A[not(Q)])

where
∧

and
∨

denote conjunction and disjunction respectively. The predicate
U1
ut has the form ↑∗::∗[qual1][1][qual2]. Applying ↑∗::∗[qual1] on a node n returns

an ordered set S of nodes (node n and/or some of its ancestor nodes) such that
for each one an annotation of type ut is defined over its element type. The
predicate S[1] returns either node n, if an annotation of type ut is defined over
its element type; or the first ancestor node of n concerned by an annotation of
type ut. Thus, to satisfy condition (i) of Definition 3, it amounts to check that

Inria

A General Approach for Securely Querying and Updating XML Data 15

the node returned by S[1] is concerned by a valid annotation of type ut, done
by S[1][qual2] (i.e., n � U1

ut). The second predicate is used to check that all
downward-closed annotations of type ut defined over ancestor nodes of n are
valid (i.e., n � U2

ut).

Definition 4. Let Sup=(D, annup), ut, and T be an update specification, an
update type and an instance of DTD D respectively. We define the updatability
predicate Uut which refers to an X⇑[n] qualifier such that, a node n on T is

updatable w.r.t ut iff n � Uut, where Uut := U1
ut

∧
U2
ut. �

For example, the XPath expression ↓+::∗[Uut] stands for all nodes which are
updatable w.r.t ut. As a special case, if Sut = φ then Uut = false.

Example 4. According to the update policy of Example 2, the updatability
predicate Uut := U1

ut

∧
U2
ut is defined with:

U1
ut := ↑∗::∗[ε::dept

∨
ε::clinical

∨
ε::patient][1]

[ε::dept[↓::dname/text()=’cardiology’]∨
ε::patient[↓::categ/text()=’A’]]

U2
ut := not (↑+::dept[not (↓::dname/text()=’cardiology’)])∧

not (↑+::clinical)

Applying the predicate ↑∗::∗[ε::dept
∨

ε::clinical
∨

ε::patient] over the node
medicalFolder3 of Fig. 2(a) returns the ordered set S={patient3, patient2,
dept1} of nodes (each one is concerned by an annotation of type ut); S[1]
returns patient3; and the predicate [ε::dept[↓::dname/text()=’cardiology’]

∨

ε::patient[↓::categ/text()=’A’]] is valid at patient3. Thus U1
ut is valid at node

medicalFolder3. Also, we can see that medicalFolder3 � U2
ut. Consequently,

the node medicalFolder3 is updatable w.r.t ut (i.e., medicalFolder3 � Uut).
This means that, in case of ut=insertInto [treatment], the user is granted
to insert nodes of type treatment under node medicalFolder3. However, if
ut=delete [treatment], then treatment children of node medicalFolder3 can
be deleted (case of node treatment1 of the instance of Fig. 2). �

Property 1. For an update specification Sup=(D, annup) and an update type
ut, the updatability predicate Uut can be constructed in at most O(|annup|) time.
�

Proof. Intuitively, for an update type ut, the definition of the set Sut depends
on the parsing of all annotations of Sup (i.e., the set {annup}) in O(|annup|)
time. The construction of each predicate U1

ut and U2
ut over annotations of Sut

takes O(|Sut|) time. Thus, the predicate Uut can be constructed in at most
O(|Sut|+ |annup|)=O(|annup|) time (since |Sut| ≤ |annup|). �

4.2 Update Operations Rewriting

Finally, we detail here our approach for enforcing update policies based on the
notion of query rewriting. Given an update specification Sup=(D, annup). For
any update operation with target defined in the XPath fragment X , we translate
this operation into a safe one by rewriting its target expression into another one
target′ defined in the XPath fragment X⇑[n], such that evaluating target′ over

RR n° 7870

16 H. Mahfoud and A. Imine

any instance of D returns only nodes that can be updated by the user w.r.t Sup.
We describe in the following the rewriting of each kind of update operation
considered in this paper. We refer to DTD D as a pair (Ele,Rg, root), and to
source as a sequence of nodes of type B.

Delete/Replace Operations. According to our model of update, if the user
holds the delete [A] right on a node n then he can delete children nodes of n
of type A. Thus, given the update operation “delete target”, for each node n
of type Ai referred to by target, parent node n′ of n must be updatable w.r.t
delete [Ai] (i.e., n′ � Udelete[Ai]). To this end, the target expression of delete
operations can be rewritten into: target[

∨
Ai∈Ele ε::Ai[↑::∗[Udelete[Ai]]]].

Consider now the update operation “replace target with source”. A node
n of type Ai referred to by target can be replaced with nodes in source if
its parent node n′ is updatable w.r.t replace [Ai,B] (i.e., n′ � Ureplace[Ai,B]).
Therefore, the target expression of the replace operation can be rewritten into:
target[

∨
Ai∈Ele ε::Ai[↑::∗[Ureplace[Ai,B]]]].

Insert as first into/as last into/before/after Operations. Consider the
update operation “insert target as first into source”. For any node n referred
to by target, the user can insert nodes in source at the first child position of n,
regardless the type of n, provided that he holds the insertAsFirst [B] right on
this node (i.e., n � UinsertAsFirst[B]). To check this, the target expression of the
above update operation can be simply rewritten into: target[UinsertAsFirst[B]].
The same principle is applied for the operations insertAsLast, insertBefore,
and insertAfter.

Insert into Operation. In the following we assume that: if a node n is con-
cerned by an annotation of type insertInto [B], then this annotation implies
insertAsFirst [B] (resp. insertAsLast [B]) rights for n, and insertBefore [B]
(resp. insertAfter [B]) rights for children nodes of n (inspired from [8]). In
other words, if one can(not) insert children nodes of types B at any child position
of some node n as specified by some annotations of type insertInto [B], then
one can(not) insert nodes of type B in the first and last child position of n and
in preceding and following sibling of children nodes of n (unless if there is some
annotations of type insertAsFirst [B], insertAsLast [B], insertBefore [B],
or insertAfter [B] respectively that specify otherwise). Thus, one can exe-
cute the update operation “insert source into target” over an XML tree T
iff: (i) one has the right to execute update operations of type insertInto [B]
on the node n (n ∈ T 〚target〛); and (ii) no annotation explicitly prohibits up-
date operations of type insertAsFirst [B]/insertAsLast [B] on node n (resp.
insertBefore [B]/insertAfter [B] on children nodes of n). When condition
(ii) does not hold (e.g. update operations of type insertAsFirst is explicitly
denied), this leads to situation where there is a conflict between insertInto

and other insert operations.

The first condition is checked using the updatability predicate UinsertInto[B]

(whether or not n � UinsertInto[B]). For the second condition, however, we

define the predicate U−1ut over an update type ut such that: for a node n, if
n � U−1ut then update operations of type ut are explicitly forbidden on node
n. An update operation of type ut is explicitly forbidden at node n iff at least
one of the following conditions holds: a) the node n is concerned by an invalid

Inria

A General Approach for Securely Querying and Updating XML Data 17

annotation of type ut; b) no annotation of type ut is defined over element type
of n and there is an ancestor node n′ of n such that: n′ is the first ancestor node
of n concerned by an annotation of type ut, and this annotation is invalid at
n′; c) there is an ancestor node of n concerned by an invalid downward-closed
annotation of type ut.

More formally, for an update specification Sup=(D, annup), we define the
predicate U−1ut := Cnda∨b

∨
Cndc over an update type ut with:4

Cnda∨b := ↑∗::∗[
∨

(annup(A,ut)=Y |N |[Q]|Nh|[Q]h)∈Sut
ε::A][1]

[
∨

(annup(A,ut)=N |Nh)∈Sut
ε::A

∨
(annup(A,ut)=[Q]|[Q]h)∈Sut

ε::A[not(Q)]]

Cndc :=
∨

(annup(A,ut)=Nh)∈Sut
↑+::A

∨
(annup(A,ut)=[Q]h)∈Sut

↑+::A[not(Q)]

To resolve the conflict between insertInto operation and other insert types,
we define the predicate CRPB (“Conflict Resolution Predicate”) over an element
type B as:

CRPB := U−1
insertAsFirst[B]

∨
U−1
insertAsLast[B]

∨

↓::∗[U−1
insertBefore[B]]

∨
↓::∗[U−1

insertAfter[B]]

For a node n, if n � CRPB then at least the update operation insertAsFirst [B]
(resp. insertAsLast [B]) is forbidden for node n or insertBefore [B] (resp.
insertAfter [B]) is forbidden for some children nodes of n. Finally, given the
update operation “insert source into target” over an XML tree T , one can
insert nodes of type B in source to the node n (n ∈ T 〚target〛) if and only if:
n � UinsertInto[B]

∧
not(CRPB). Thus, the target of the insertInto operation

can be rewritten into: target[UinsertInto[B]

∧
not(CRPB)].

The overall complexity time of our rewriting approach of update operations
can be stated as follows:

Theorem 1. For any update specification Sup=(D, annup) and any update op-
eration op (defined in X), there exists an algorithm “Rewrite Updates” that

translates op into a safe one op′ (defined in X⇑[n]) in at most O(|annup|) time.�

Proof. Our algorithm “Rewrite Updates ” for XML update operations rewrit-
ing is given in Fig. 3. As explained in Section 4.2, for any update specification
Sup=(D, annup) with DTD D=(Ele,Rg, root), the securing of an update op-
eration op consists in the rewriting of its target expression (defined in X) into

a safe one target′ (defined in X⇑[n]) in order to refer only to XML nodes that

can be updated by the user w.r.t Sup. Proving that target′ can be defined in
O(|annup|) time is intuitive and based on the proof of Property 1:

• A delete operation can be rewritten by adding the following predicate
[
∨

Ai∈Ele ε::Ai[↑::∗[Udelete[Ai]]]] to its target expression. For each element type
Ai in DTD D, Sdelete[Ai] is a subset of {annup}, i.e.,

⋃
Ai∈Ele Sdelete[Ai] ⊆

{annup}. All these subsets can be computed by parsing only one time the set
{annup}, i.e., in O(|annup|) time. Next, each sub-predicate Udelete[Ai] is defined
over the subset Sdelete[Ai] in O(|Sdelete[Ai]|) time, and all sub-predicates used in

4As a special case, if Sut = φ then U−1
ut = false.

RR n° 7870

18 H. Mahfoud and A. Imine

Algorithm: Rewrite Updates

input : An update specification Sup=(D, annup) and an update operation op.
output: a rewritten of op w.r.t Sup.

1 let D=(Ele,Rg, root);
2 let op be defined with target and optional sequence source of nodes which conform to

type B;
3 case (delete operation) :

4 target′ := target[
∨

Ai∈Ele ε::Ai[↑::∗[Udelete[Ai]
]]];

5 case (replace operation) :

6 target′ := target[
∨

Ai∈Ele ε::Ai[↑::∗[Ureplace[Ai,B]]]];

7 case (insertAsFirst operation) :

8 target′ := target[UinsertAsFirst[B]];

//same principle for insertAsLast, insertBefore, and insertAfter operations;

9 case (insertInto operation) :

10 CRPB := U−1
insertAsFirst[B]

∨
U−1
insertAsLast[B]∨

↓::∗[U−1
insertBefore[B]

]
∨

↓::∗[U−1
insertAfter[B]

];

11 target′ := target[UinsertInto[B]

∧
not(CRPB)];

12 replace target of op with target′;

13 return op;

Figure 3: XML Update Operations Rewriting Algorithm.

line 4 of Fig. 3 can be defined in O(
∑

i |Sdelete[Ai]|)=O(|annup|) time. There-
fore, the predicate [

∨
Ai∈Ele ε::Ai[↑::∗[Udelete[Ai]]]] can be defined in at most

O(|annup|) time, which is the rewriting time of delete operations. The same
principle is applied for replace operations.

• For an insertAsFirst operation (resp. insertAsLast , insertBefore , and
insertAfter) defined with source of nodes conform to type B, only one pred-
icate is used to rewrite this operation; the predicate [UinsertAsFirst[B]] is con-
structed in at most O(|annup|) time.

• An insertInto operation defined with source of nodes conform to type B
is rewritten by adding the predicate [UinsertInto[B]

∧
not(CRPB)] to its target

expression (line 11 of Fig. 3). The predicate UinsertInto[B] is constructed in at
most O(|annup|) time, while the predicate CRPB is based on the definition of
some other predicates U−1ut for each update type ut in {insertAsFirst [B],
insertAsLast [B], insertBefore [B], insertAfter [B]}. Similarly to the
updatability predicate, the construction of each predicate U−1ut takes at most
O(|annup|) time (the same proof as Property 1). Thus, the overall complexity
time of the rewriting of insertInto operations is O(5 ∗ |annup|)=O(|annup|)
time. �

5 Secure Updating XML over Security Views

In the previous section we have supposed that all nodes are read-accessible which
is not always the case. An XML document T can be queried simultaneously by
different users. For each class of users, some read constraints can be imposed
to deny access to sensitive information on T . To enforce such constraints, most
of existing works which deal with read-access control are based on the notion of
Security Views. Abstractly, for each class of users, we annotate the used DTD

Inria

A General Approach for Securely Querying and Updating XML Data 19

D with read-access constraints to specify accessibility conditions for nodes of
instances of D. A security view is defined to be a pair (Dv, σ) where: (i) Dv is
the view of D given to the users to represent the schema of all and only data
they are able to see; and (ii) σ is a function, hidden from the users, and used
to extract, for each instance T of D, its virtual view Tv showing only accessible
nodes. We investigate in this section the secure of update operations defined
over (recursive) security views.

5.1 Access Control for Recursive Views

Given a security view V =(Dv, σ), some works [3, 5, 17] have proposed efficient
algorithms to rewrite any user query formulated for Dv to an equivalent one
formulated for the original DTD D to be finally evaluated over any instance of D.
This query rewriting principle has to avoid the overhead of view materialization
and maintenance. However, only non-recursive views are considered (i.e., Dv is
non-recursive). Consider the XPath fragment X which is more used in practice,
it has been shown in [7] that query rewriting is not always possible under X in
case of recursive security views.

To overcome this limitation, we presented in [12] a general approach to
make XPath query rewriting possible under recursive security views. We briefly
discuss here the main principle of our approach.

Given a DTD D=(Ele,Rg, root), we define for each class of users an access
specification S=(D, ann) which specifies accessibility of XML nodes in intances
of D. Formally, ann is a partial mapping such that, for each production A →
Rg(A) and each element type B in Rg(A), ann(A,B), if explicitly defined, is
an annotation of the form: ann(A,B) := Y |N|[Q]|Nh|[Q]h where [Q] is a
qualifier in our XPath fragment X .

The specification values Y , N , and [Q] indicate that the B children of A
elements in an instance of D are accessible, inaccessible, or conditionally acces-
sible respectively. If ann(A,B) is not explicitly defined, then B inherits the
accessibility of A (inheritance). On the other hand, if ann(A,B) is explicitly
defined it may override the accessibility inherited from A (overriding).

The same principle of downward-closed annotation defined in Section 3.1 is
applied for access annotations. With the annotation ann(A,B)=Nh, each B
child of an A element is inaccessible and any descendant node of this B element
can override this accessibility value (Nh) to be accessible. However, with the
annotation ann(A,B)=[Q]h, for any node n of type B child of an A element,
descendant nodes of n can override this accessibility value ([Q]h) only if n � Q.

We define the security view in our approach to be V =(Dv, ann) by omitting
the function σ since it cannot be defined in case of recursive DTDs as outlined
in [5, 17].

Finally, we describe our algorithm “Rewrite ” for XPath queries rewriting
over arbitrary security views (recursive or not). Given an access specification
S=(D, ann), we extract first the security view V =(Dv, ann) corresponding to
S. The user is provided with the DTD view Dv which represents the schema
of the data he is able to see. For any query Q defined in X over Dv, our
algorithm “Rewrite ” translates it into an equivalent one Qt defined in X⇑[n,=]

over the original DTD D such that: for any instance T of D, its virtual view
Tv conforms to Dv, the evaluation of Q on Tv yields the same result as the

RR n° 7870

20 H. Mahfoud and A. Imine

Figure 4: View of the XML document of Fig. 2.

evaluation of Qt on T . Our rewriting algorithm “Rewrite ” runs in linear time
on the size of the query.

We explain now some notations used in the following. For an access speci-
fication S=(D, ann), we define predicates Aacc and A+ (expressed in fragment

X⇑[n]) such that: for any node n in an instance of D, n is accessible w.r.t S if

and only if n � Aacc. While, n/A+ returns all accessible ancestor nodes of n.
We use algorithm “RW_Pred ” to rewrite any predicate p defined in X over DTD
view Dv to an equivalent one RW_Pred (p) defined in X⇑[n,=] over the original

DTD D. More details of these predicates, and about the algorithms “Rewrite ”
and “RW_Pred ” can be found in [12].

5.2 Securing Update Operations

We present in this section a security view-based approach for securing XML up-
date operations. Given an access specification S=(D, ann), and its correspond-
ing security view V =(Dv, ann). The update privileges of each class of users
are defined over the DTD view Dv=(Elev, Rgv, root) to be Sup=(Dv, annup)
and not over the original DTD D (i.e., for an update type ut, an annotation
annup(A, ut)=value defined over an element type A does not make sense if
A /∈ Elev). Each update operation must be rewritten with respect to both
V and Sup to be safe, since, considering only update privileges (i.e., rewriting
update operations only over Sup as explained in Section 4.2) is not sufficient
to make XML updates secure and can cause leakage of sensitive information
hidden by V . We illustrate this problem by the following example.

Example 5. Let S=(D, ann) be an access specification where D is the hospital
DTD and the annotations ann are defined as follows:

ann(hospital, dept)=[Q1]h; Q1 is ↓::dname/text()=′cardiology′

ann(dept, clinical)=Nh

ann(patients, patient)=[Q2]; Q2 is ↓::categ/text()=′A′

ann(parent, patient)=[Q2]

Inria

A General Approach for Securely Querying and Updating XML Data 21

These annotations indicate that only the patients which are under department
’cardiology’, not involved by clinical trial, and also having category ’A’ are
accessible to the user. Figure 4 represents the virtual view of the XML instance
of Fig. 2 according to these annotations. We define now the following update
privileges:

annup(medicalFolder, delete[result]) = Y
annup(diagnosis, delete[result]) = Y
annup(analysis, delete[result]) = N

Consider now the update operation op = delete ↓+::patients[Q]/↓+::result
defined over the view instance depicted in Fig. 4 where Q is the quali-
fier “not (↓::patient[↓::pname/text()=’Margaret’])”. Considering only the up-
date privileges is not sufficient to make this operation safe. The rewrit-
ten of this update operation w.r.t the update policy defined above returns
op′=op[↑::∗[Udelete[result]]]. If the execution of op′ over the original instance
of Fig. 2 deletes the node result1, then the qualifier Q is valid at node
patients1 and the user can deduce that some nodes are hidden between nodes
patients1 and patient3. By performing the rewritten operation op′ with
Q=“↓::patient[↓::pname/text()=’Nathaniel’]”, the result1 node is deleted and
the user can deduce that patient Nathaniel is currently residing in the hospital
and has confidential data. Moreover, the user is able to request these sensitive
data simply by changing the predicate Q. �

In order to avoid this inference problem, each update operation must be
rewritten w.r.t both read and update privileges to be safely executed over any
instance. Securely controlling an update operation is then done in two steps:

(1) The XPath target expression of the update operation is rewritten accord-
ing to the read privileges of the user submitting the update operation. This
is done by using our rewriting algorithm “Rewrite ” described in Section 5.1.

(2) Let target′ be the rewriting of target w.r.t the read privileges, the user
must hold the update privilege for each node referred to by target′. Then,
we rewrite target′ w.r.t the update privileges into a safe one in order to be
evaluated only over nodes updatable by the user and without disclosure of
sensitive information.

Example 6. Consider the read and update privileges of Example 5. The update
operation op=delete ↓+::patients[Q]/↓+::result (where Q is the qualifier “not
(↓::patient[↓::pname/text()=’Margaret’])”) over the view instance of Fig. 4 is
rewritten into delete target′′ to be safely evaluated over the original instance
of Fig. 2, where target′′ is defined with:

target := ↓+::patients[Q]/↓+::result

target′ := Rewrite (target) =
↓∗::result[Aacc][↑+::patients[Aacc][RW_Pred (Q)][↑+::hospital]]

RW_Pred (Q) := not (↓+::patient[Aacc][↓+::pname[Aacc]
[ε::∗/text()=’Margaret’]/A+[1]=ε::patient]/A+[1]=ε::patients)

target′′ := target′[↑::∗[Udelete[result]]]

RR n° 7870

22 H. Mahfoud and A. Imine

We have seen in Example 5 that, by evaluating the predicate Q=“not (↓::patient
[↓::pname/text()=’Margaret’])” over node patients1 of Fig. 2, some confiden-
tial information can be deduced. Using our rewriting algorithm “Rewrite ”, we
ensure that only accessible nodes can be requested by the update operation. Let
Q′ be the predicate “↓+::patient[Aacc][↓+::pname[Aacc][ε::∗/text()=’Margaret’]
/A+[1]=ε::patient]/A+[1]=ε::patients” (i.e., RW_Pred (Q)=not (Q′)). Evaluat-
ing the predicate Q′ over a node n in the original instance has to check that there
is some accessible nodes of type patient, having name ’Margaret’, and which
are children of n or separated from it only with inaccessible nodes. Thus, the
rewritten predicate RW_Pred (Q) (i.e., not (Q′)) is not valid at node patients1
since the node patient3 has name ’Margaret’ and is separated from patients1
only with inaccessible nodes. Therefore, the rewritten update operation delete
target′′ has no effect over the original instance of Fig. 2 and no confidential
information can be deduced. �

6 Conclusion

We have proposed a general model for specifying XML update policies based
on the primitives of XQuery Update Facility. To enforce such policies, we have
introduced a rewriting approach to securely updating XML over arbitrary DTDs
and for a significant fragment of XPath. In the second part of this work, we have
investigated the secure of XML data in the presence of security views. We have
reviewed first our previously proposed approach enabling XPath query rewriting
over recursive security views. Finally, we have discussed some inference problem
that can be caused by combining read and update privileges, and our solution to
deal with such a problem. This yields the first XML security model that provides
both read and update access control for arbitrary DTDs (resp. security views).

We plan first to extend our approach to handle larger fragments of XPath
and other XQuery update operations. Moreover, we aim to provide a working
system in order to investigate the practicality of our proposed solutions.

References
[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon. Xml

path language (xpath) 2.0 (second edition). W3C Recommendation, December 2010.

[2] L. Bravo, J. Cheney, and I. Fundulaki. Accon: checking consistency of xml write-access control
policies. In EDBT, pages 715–719, 2008.

[3] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A general approach to securely querying
xml. Computer Standards & Interfaces, 30(6):379–389, 2008.

[4] M. Duong and Y. Zhang. An integrated access control for securely querying and updating xml
data. In ADC, pages 75–83, 2008.

[5] W. Fan, C. Y. Chan, and M. N. Garofalakis. Secure xml querying with security views. In
SIGMOD Conference, pages 587–598, 2004.

[6] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Smoqe: A system for providing secure
access to xml. In VLDB, pages 1227–1230, 2006.

[7] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular xpath queries on xml
views. In ICDE, pages 666–675, 2007.

[8] I. Fundulaki and S. Maneth. Formalizing xml access control for update operations. In SAC-
MAT, pages 169–174, 2007.

Inria

A General Approach for Securely Querying and Updating XML Data 23

[9] I. Fundulaki and M. Marx. Specifying access control policies for xml documents with xpath.
In SACMAT, pages 61–69, 2004.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath queries. ACM
Trans. Database Syst., 30(2):444–491, 2005.

[11] B. Groz, S. Staworko, A.-C. Caron, Y. Roos, and S. Tison. Xml security views revisited. In
DBPL, pages 52–67, 2009.

[12] M. Houari and A. Imine. Secure querying of recursive xml views: A standard xpath-based
technique. INRIA Research Report, NANCY, France, Available at: http://hal.inria.fr/
hal-00646135/en. December 2011.

[13] A. Imine, A. Cherif, and M. Rusinowitch. A flexible access control model for distributed
collaborative editors. In Secure Data Management, 2009.

[14] F. Jacquemard and M. Rusinowitch. Rewrite-based verification of xml updates. In PPDP,
pages 119–130, 2010.

[15] Y. Koglin, G. Mella, E. Bertino, and E. Ferrari. An update protocol for xml documents in
distributed and cooperative systems. In ICDCS, pages 314–323, 2005.

[16] A. Kundu and E. Bertino. A new model for secure dissemination of xml content. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 38(3):292–301, 2008.

[17] G. M. Kuper, F. Massacci, and N. Rassadko. Generalized xml security views. In SACMAT,
pages 77–84, 2005.

[18] M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml access control using static analysis. In
ACM Conference on Computer and Communications Security, pages 73–84, 2003.

[19] F. Neven and T. Schwentick. On the complexity of xpath containment in the presence of
disjunction, dtds, and variables. Logical Methods in Computer Science, 2(3), 2006.

[20] N. Rassadko. Policy classes and query rewriting algorithm for xml security views. In DBSec,
pages 104–118, 2006.

[21] N. Rassadko. Query rewriting algorithm evaluation for xml security views. In Secure Data
Management, pages 64–80, 2007.

[22] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon. Xquery update
facility 1.0. W3C Recommendation, March 2011.

[23] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mechanisms. In
FOSAD, pages 137–196, 2000.

[24] A. Stoica and C. Farkas. Secure xml views. In DBSec, pages 133–146, 2002.

[25] B. ten Cate. The expressivity of xpath with transitive closure. In PODS, pages 328–337, 2006.

[26] B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments of
xpath 2.0. J. ACM, 56(6), 2009.

[27] R. Vercammen, J. Hidders, and J. Paredaens. Query translation for xpath-based security views.
In EDBT Workshops, pages 250–263, 2006.

RR n° 7870

http://hal.inria.fr/hal-00646135/en
http://hal.inria.fr/hal-00646135/en

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	1 Motivation
	2 Preliminaries
	3 Update Access Control Model
	3.1 Update Specifications
	3.2 DTD Recursion Problems

	4 Secure Updating XML
	4.1 Updatability
	4.2 Update Operations Rewriting

	5 Secure Updating XML over Security Views
	5.1 Access Control for Recursive Views
	5.2 Securing Update Operations

	6 Conclusion

