Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?
Gaël Varoquaux, Alexandre Gramfort, Jean Baptiste Poline, Bertrand Thirion

To cite this version:

HAL Id: hal-00665340
https://hal.inria.fr/hal-00665340v2
Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

G. Varoquauxa,b,c,*, A. Gramforta,c, J.B. Polinec, B. Thiriona,c

aParietal project-team, INRIA Saclay-Île de France
bINSERM, U992
cCEA/Neurospin bât 145, 91191 Gif-Sur-Yvette

Abstract

Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems.

Keywords: fMRI, brain networks, small-world, functional connectivity, Markov models, decomposable graphs

1. Introduction

The study of distant correlations in functional Magnetic Resonance Imaging (fMRI) signals, revealing brain functional connectivity, has opened the door to fundamental insights on the functional architecture of the brain [1, 2]. Among other features, the concept of cognitive network has emerged as one of the leading views in current cognitive neuroscientific studies: regions that activate together form an integrated network corresponding to a cognitive function [1]. In other words, these networks can in general be identified to sets of active regions observed in traditional brain mapping experiments, thus in line with a segregative view of brain functional organization. On the other hand, graph-theoretical analysis of brain connectivity has shown that it displays small-world properties: any two points of the brain can be connected through few intermediate steps, despite the fact that most nodes maintain only a few direct connections [2]. There is an apparent contradiction between those two points of views: can the brain be separated in functionally-specialized networks, or are these simply a convenient but misleading representation to interpret the data?

Establishing a link between the functional connectivity observed in fMRI and the underlying neural architecture can be a challenging task. Indeed, the fMRI signal is very noisy and reflects many non neural effects, such as cardiac and respiratory rhythms or head and body motion. In addition, statistical estimation of brain interactions from fMRI data is made difficult by the small number of observations available per experimental run, and by the lack of salient structure in this data. Finally, it has become a common practice to study these interactions during resting-state, i.e. in the absence of any stimulation, the subject resting eyes-closed in the scanner; in that case functional connectivity is loosely identified with the correlation structure of ongoing activity across regions.

In this paper, we use advanced statistical techniques to investigate the structure of brain connections that is captured by resting-state fMRI recordings. For this purpose, we infer the Markov network structure of the signals –the underlying independence graph– using a statistical framework well suited to modeling correlations: Gaussian graphical models. We compare various estimation methods adapted to different graph topologies. In particular,
we introduce decomposable Markov models to describe functional networks: sets of distant regions working together. Importantly these tools enable to study the extent—i.e. the clique size—of brain functional networks that is required to give a good description of the signal. Our work introduces a probabilistic description of brain activity that encompasses features of distributed cognitive network and small-world systems.

The layout of the article is the following. First we review different pictures of brain connectivity emerging from a vast body of anatomical and structural studies. In section 3, we introduce the statistical tools that we use to estimate functional connectivity graphs from the fMRI signal. In section 4, a method for learning decomposable models of brain activity is presented. Finally, in section 5, we estimate graphical models of brain activity with various methods and quantify their ability to fit unseen data as a function of the imposed graph topology: a strong segregation into well-separated distributed networks, or a highly-connected system.

2. Brain structure: from small-world connectivity to functional networks

Integration and segregation in neural systems. Beyond the historical opposition of localizationist and holist views [3], brain organization is generally considered as reflecting the fundamental principles of segregation into functionally-specialized sub-systems, and integration across these systems to sustain high-level cognitive functions [4]. Originally highlighted in theoretical descriptions of neural systems [5], this general organization shapes the properties of brain-wide connectivity: local clustering and global connectivity [6, 2] that reflects functional integration [7]. In high-level cognition, it can be seen as the duality of local circuits and global networks [8], for instance in conscious information integration [9]. Finally, there is growing evidence from functional imaging, that this segregation increases during brain development [10, 11].

Small word graphs. A quantitative description of these structural properties can be given using graph theory. In mathematics and computer science, a graph is the abstract object defined by a set of nodes and their connections. In social sciences or neuroscience, the word “network” is often employed instead of “graph”, but in this paper, we will reserve this term to denote cognitive or functional networks. Watts and Strogatz [12] popularized the concept of small-world properties for graphs: graphs with a small fraction of nodes connected, but with a connection topology such that only a short chain is required to connect any pair of nodes. These efficient transport properties are achieved via a local clustering into communities, and a few edges interconnecting the communities across the graph. A graph can be characterized by a variety of statistical properties of its connections [13, 14, 2]. Most often, small-world graphs are studied via the relative importance of a local graph metric, such as their clustering coefficient, and a global metric, e.g. their average path length [12, 13, 15]. The fundamental characteristic of a small-world graph remains that it displays high sparsity and yet good transport across the graph. Watts and Strogatz [12] stress that, for sparse graphs, small-worldness is determined by its global properties: “at the local level (as reflected by [the clustering coefficient]), the transition to a small world is almost undetectable” while “in sparse networks with many vertices [...] even a tiny fraction of short cuts would suffice”.

Graphs of brain connectivity. The physical connections between gray-matter areas can be measured in-vivo via tractography of diffusion MRI [16, 17]. They establish a picture of the human brain architecture at an anatomical-connectivity level [18, 19]. In non-human animals, systematic post-mortem studies have enabled detailed and complete mapping of connections, e.g. for the macaque brain [20, 21]. This anatomical connectivity forms the substrate of information processing in the brain and reflects the functional segregation properties of neural systems [22]. From the point of view of graph theory, it has been shown to display small-world properties [6, 2]. In fact, Watts and Strogatz [12] used the graph of neural connections of C. elegans in their seminal paper introducing small-world graphs. It is also possible to build graphs of functional connectivity by thresholding correlation matrices of brain activity, for instance from MEG [23] or fMRI data [24, 25, 26, 27]. As their anatomical counterparts, these have been shown to display small-world properties: local clustering and short average path length.

Intrinsic functional networks. The seminal work of Biswal et al. [30] showed that correlations in resting-state brain activity, i.e. in the absence of task, can be used to reveal brain systems dedicated to a cognitive function, often called intrinsic functional networks. Indeed, in the presence or in the absence of explicit cognitive task, a large fraction of brain activity is due to on-going functional processes. After Shulman et al. [31] used task-independent spatial correlations maps to uncover a new and important

Figure 1: Intrinsic functional networks extracted from fMRI datasets of on-going activity, adapted from [28]. (a) Default mode network [29]. (b) Language network.
of a Gaussian graph-

Indeed, Deuker et al. \cite{38} find an inter-class correlation of 1, and \(A^2 \) is the transposed matrix. Finally, we write \(A > 0 \), for a symmetric matrix \(A \) with strictly positive eigenvalues, \(i.e \) a positive definite matrix.

3. Statistical tools for connectivity analysis: Markov and Gaussian graphical models

\textbf{Notations.} To clarify the mathematical presentation, we apply the following conventions. We write sets with capital letters, matrices with capital bold letters, \(A \in \mathbb{R}^{n \times n} \), and we denote \(\| A \| \) the operator norm, \(\| A \|^2 = \sum_{i,j=1}^{n} A^2_{ij} \), and \(\| A \|_1 \) the \(\ell_1 \) norm, \(\| A \|_1 = \sum_{i,j=1}^{n} |A_{ij}| \). \(I \) is the identity matrix. Quantities estimated from the data at hand are written \(\hat{A} \). \(A^{-1} \) is the matrix inverse of \(A \), \(A^T \) is the transposed matrix.

3.1. Probabilistic modeling of brain network structure

A limitation of the commonly used graph-theoretical descriptions of functional connectivity is that they do not form a probabilistic model of the functional signal. As such, they convey no natural notion of goodness of fit and hypothesis testing of the graph properties in the presence of noise is ill-defined. This is why we resort to the analysis of graphical models specifying a probability distribution for the signal. Namely we use Markov models, that we apply to the functional-connectivity correlation matrices in the framework of Gaussian graphical models.

\textbf{Markov models: conditional independence graphs.} Measures of functional connectivity are based on correlations in the BOLD signal. They cannot be easily interpreted in terms of transfer of information or effective connectivity; that is the influence that a neural system exerts over another \cite{44}. Indeed, BOLD is a very indirect measure of neural firing, the MRI signal observed contains many non BOLD-related confounds, and correlation is a rough summary of the dependence between two variables revealing, amongst other things, indirect effects.

For these reasons, we focus our study on recovering the independence structure of the observed functional signals. With the data at hand, fMRI recordings with limited observations available, this is a challenging statistical estimation problem. We use a class of probabilistic models called \textit{Markov models} that specify the independence structure of the variables that it describes. It can be represented as a graph, in which case a node is statistically independent from nodes to which it is not directly connected, conditionally on its neighbors.

In the context of brain functional connectivity, we are interested in inferring the graphical structure from the correlations in the observed activity. We frame this problem as estimating the Markov structure\footnote{More specifically, we learn a undirected graph of conditional independence. Such a model is often called a Markov Random Field model.} of a Gaussian graphical model of brain activity.
Gaussian graphical models. The study of functional connectivity focuses on second-order statistics of the signal, in other word Gaussian statistics. While the underlying signals are most-likely not Gaussian, these measures have been shown to capture well the independence structure underlying fMRI signals [45]. A multivariate Gaussian model with a specified Markov structure is called a Gaussian graphical model [46]. We apply this class of models to the study of brain connectivity.

A centered Gaussian model is fully specified by the inverse of its covariance matrix, known as its precision matrix K, that closely relates to conditional correlations between its variables. The conditional independence between variables in the model are given by the zeros in this matrix. Therefore the statistical estimation task that we are interested in, is to find these zeros in the precision matrix.

We start from a brain activation dataset $X \in \mathbb{R}^{p \times n}$ with p variables, the activation of p different brain regions, and n samples. We are interested in inferring a large-scale connectivity graph, that is between many nodes, from a comparatively small amount of observations. In these settings, estimating the covariance matrix, or the precision matrix, from the data is an ill-posed problem (see for instance [47, 48]). First, if $n < \frac{1}{2}p(p+1)$, the number of unknown parameters is greater than the number of samples. Second, the various parameters to estimate are not mutually independent, as the estimated covariance has the constraint of being positive definite.

Thus, the Markov structure of the data cannot be estimated simply by thresholding the precision matrix. We resort to modern covariance estimation tools, namely covariance selection, as detailed below. In this context, specifying a Markov structure acts as a regularization for the covariance matrix estimation: it injects a prior information that a certain number of coefficients of the precision matrix are zero, and thus decreases the number of coefficients to be estimated.

Smith et al. [45] have shown on realistic simulations of brain functional connectivity that sparse ℓ_1-penalized inverse covariance estimators performed well to recover the graphical structure from noisy data. Huang et al. [49] and Varoquaux et al. [7] used such a sparse covariance estimation procedure to infer the conditional independence structure of a Gaussian graphical model on full brain data.

Assessing model fit. As a Gaussian graphical model defines a probability of observing data, its log-likelihood can be used as a natural metric for assessing the goodness of fit of the model for some test data X: for a model specified by its precision matrix K,

$$L(X|K) = \frac{1}{2} (\log \det K - \text{tr} K \hat{\Sigma}_{\text{emp}}) + \text{cst}$$

where $\hat{\Sigma}_{\text{emp}}$ is the empirical covariance of the data: $\hat{\Sigma}_{\text{emp}} = \frac{1}{n} XX^T$.

For our application, an important point is to separate properties of the functional connectivity networks extracted from the signal from features learned on observation noise particular to the experimental run. This problem is well known in statistics under the term of overfit.

We use a standard technique to control overfit known as cross-validation: having learned a probabilistic model on a given set of experiment run, we test its goodness of fit on unseen data. Features learned by chance do not generalize to unseen data, as it is independent from the training data.

3.2. Covariance selection procedures

As proposed by Dempster [50], learning or setting conditional independence between variables can be used to improve the conditioning of an estimation problem, a technique referred to as covariance selection. Improved covariance estimation can therefore be achieved by estimating from the data a precision matrix with a sparse support, i.e., a small number of non-zero coefficients.

Selecting the non-zero coefficients to optimize the likeliness of the model given the data (eq. 1) is a difficult combinatorial optimization problem. It is NP hard in the number of edges and it therefore cannot be solved on moderately large graphs. To tackle such problems efficiently, two strategies coexist: convex relaxation approaches that lead to optimal solutions for a new problem that is a convex approximation of the initial problem and greedy approaches that find sub-optimal solutions.

Sparse penalized inverse covariance estimation. A constraint based on the number of non-zero coefficients leads to NP hard problems. It can be modified by replacing it by a constraint on the ℓ_1 norm of the solution. This leads to a penalized estimator taking the form of the following convex optimization problem [51]:

$$\hat{K}_1 = \arg\max_{K=0} \left(\log \det K - \text{tr} K \hat{\Sigma}_{\text{emp}} - \lambda \|K\|_1 \right),$$

where $\| \cdot \|_1$ is the element-wise ℓ_1 norm of the off-diagonal coefficients in the matrix. This problem can be solved very efficiently in $O(p^3)$ time [52, 53]. This technique makes no assumption on the topology of the graph other than its sparsity. Its major limitation is that the ℓ_1 penalty may bias the coefficients of the precision matrix. It was employed successful to learn functional connectivity graphs by Huang et al. [49] and Varoquaux et al. [7] on full-brain fMRI data, as well as Smith et al. [45] on realistic simulations of neural interactions.

PC-DAG. A greedy approach to learning the Markov independence structure of observed data is given by the PC algorithm [54]. It consists in pruning edges of a graph by successively testing for conditional independence. Although it does not solve a global optimization criteria, this algorithm is proved to be consistent [54, 55]. In the case of covariance selection, it can be used efficiently to learn
a sparse precision matrix, as in the PC-DAG algorithm [56]: the PC algorithm is applied to estimate a Markov structure for the Gaussian graphical model, which is then used to estimate the precision matrix. An important point is that the Markov independence structure estimated is constructed as the moral graph of the (possibly) directed conditional independence relation extracted by the PC algorithm. This graph is limited by the PC algorithm to a small node degree. This implies that the graphs extracted by the PC-DAG are unlikely to contain large cycles. This procedure is interesting because its computational cost scales exponentially with the number of neighbors on the underlying graph, rather than the number of possible edges.

Shrinkage estimates. Finally, a more naive but quite efficient approach in practice consists in regularizing the estimate of the precision matrix by adding a diagonal matrix to the empirical covariance before computing its inverse. It amounts to an l_2 shrinkage by penalizing uniformly off-diagonal terms:

$$
\hat{K}_2 = (\hat{\Sigma}_{\text{emp}} + \lambda I)^{-1}
$$

(3)

Ledoit and Wolf [47] have introduced a closed formula for a choice of λ leading to a good bias-variance compromise. Empirical results show that this method can achieve good generalization scores even with small sample sizes. The intuition behind this good performance is that a sample covariance matrix tends to over-estimate pair-wise correlations in the small-sample limit. Shrinking them to zero thus improves the estimate. This procedure gives a good baseline to compare goodness of fit of models, however, it does not extract a graph structure from the observed time series, as it does not set zeros in the precision matrix.

3.3. Decomposable graphical models

Here, we introduce the notion of decomposable graphs, and present some related properties interesting to describe brain functional networks.

A graph is said to be chordal if each of its cycles of four or more nodes has a chord, i.e., an edge joining two nodes that are not adjacent in the cycle. A chordal graph can be divided in an ordered sequence of cliques C_i [46], as illustrated in Fig. 2. The intersection between two successive cliques C_i and C_{i+1} forms a complete subgraph $C_i \cup C_{i+1}$ called a separating set S_i. When the structure of a graphical probabilistic model is chordal, the model is said to be decomposable [58]. The different cliques C_i are then mutually independent conditionally on the separating set S_i, and the likelihood factors in terms corresponding to the different cliques and separating sets:

$$
\mathcal{L}(X|K) = \sum_{C_i} \mathcal{L}(X|K_{C_i}) - \sum_{S_i} \mathcal{L}(X|S_i),
$$

(4)

where X_{C_i} denotes the dataset reduced to the variables of clique C_i and K_{C_i} the corresponding reduced precision matrix [46]. While there exists no closed formula for the Maximum Likelihood Estimate (MLE) of the precision matrix for an arbitrary sparse graphical Gaussian model, the MLE for a decomposable model can be written as:

$$
K_{MLE} = \sum_{C_i} [\hat{K}_{C_i}]^0 - \sum_{S_i} [\hat{K}_{S_i}]^0,
$$

(5)

where $[\hat{K}_{C_i}]^0$ denotes the MLE for the precision matrix of the fully-connected subset of X reduced to the clique C_i, that is the inverse empirical covariance matrix, padded with zeros to the size of the full model [46]. Identifying the cliques and separating sets in a graphical model opens the door to an efficient estimation of the maximum-likelihood precision matrix. Note that a non-decomposable model can be turned in a decomposable model: cordless cliques can be completed to turn the graph in a chordal graph.

The motivation for using decomposable models to learn brain connectivity is twofold. First, the covariance matrices are estimated at the clique level, which are smaller problems. This strongly limits the estimation error. More importantly, the description of the brain that decomposable models give, cliques of regions that are mutually independent conditionally to set of hubs nodes, seems to match well the intuition of the functional networks composing brain architecture. Models sharing a similar intuition but not relying on a graphical description have been popularized in neuroimaging through the concept of integration of brain regions within a network [59].

4. Efficient learning of decomposable structures

In this section, we introduce a new algorithm to learn decomposable models on large covariance matrices without a priori knowledge of the relevant cliques. Indeed, to
date, none of the standard covariance selection procedures for large-scale graphs seeks a decomposable model. While Bayesian approaches to learning Gaussian graphical models often rely on decomposable models, they require sampling of the space of models, and therefore are intractable on problems with more than a few dozen of nodes [60, 61]. Marlin and Murphy [62] recently proposed an algorithm to impose a clique structure on Gaussian graphical models. However, their approach, with an $O(p^3)$ complexity, requires a known ordering of the nodes.

We propose a fast algorithm, that we call FastDecomp, to learn a decomposable graph with a large-scale structure common to several datasets. Our goal is to find a structure of conditional independence between successive blocks of variables. Our algorithm is based on a greedy approach to select non-independent variables.

The FastDecomp algorithm. Similarly to the PC-Algorithm, we start from a complete graph \mathcal{G}, compute pair-wise partial correlations conditioning on all other variables, and use them to test conditional independence between variable pairs to prune the graph. However, to keep bounds on the computational cost, we do not pursue to test conditional independence exhaustively. To test for independence between nodes X_i and X_j, conditioning on $X_K, K = \{1 \ldots p\} \setminus \{i,j\}$, we first test conditional independence using Fisher’s z-transform of the estimated partial correlation:

$$z(i,j|K) = \frac{1}{2} \log \left(\frac{1 + \hat{\rho}_{i,j|K}}{1 - \hat{\rho}_{i,j|K}} \right).$$

$z(i,j|K)$ has approximately a $\mathcal{N}(0, (n-p-1)^{-1})$ distribution if $\hat{\rho}_{i,j|K} = 0$ (see Rütimann and Bühlmann [56] for similar considerations).

Once all the pair-wise partial correlations are tested, we find a good completion of the resulting graph to a chordal graph\(^7\). For this we apply the symmetric Reverse Cuthill-McKee (RCM) algorithm [63] on the corresponding adjacency matrix to obtain a peripheral node\(^8\) and an ordering minimizing the envelop of the graph. We start from the peripheral node and jump successively to the adjacent node furthest according to the RCM ordering, which gives the peripheral node and jump successively to the adjacent node.

Finally, on each clique C_i (resp. separating set S_i) we estimate the precision matrix by applying the Ledoit-Wolf estimator to the observed data, restricted to the clique (resp. separating set). We obtain the final precision matrix using formula 5. See listing 1 for a precise description of the algorithm.

Algorithm 1 FastDecomp. RCM stands for Reverse Cuthill-McKee algorithm [63]. LedoitWolf stands for covariance estimation as in Eq. 3, [47].

Input: X, threshold β

Output: estimated precision matrix \hat{K}, perfect elimination order

Compute $\hat{K}_{\text{LW}} \leftarrow \left(\text{LedoitWolf}(X)\right)^{-1}$

Initialize \mathcal{G} to a complete graph.

for $i = 1$ to p

for $j = 1$ to p

if $z(i,j|\{1 \ldots p\} \setminus \{i,j\}) < \beta$

Remove edge i, j from \mathcal{G}.

end if

end for

end for

$i_0, \text{order} = \text{RCM}(\mathcal{G})$

Color the vertices of \mathcal{G} with order

Initialize \hat{K} to a $p \times p$ matrix of zeros.

Set $X \leftarrow [X^1, \ldots, X^p]$.

Sort X according to order.

repeat

$i_1 \leftarrow$ largest node in $\text{adj}(i_0)$ given order.

$\hat{K} \leftarrow \hat{K} + \left(\text{LedoitWolf}(\text{X}_{i_0 \ldots i_1})\right)^{-1}$

if $i_1 \neq p$

$i_0 \leftarrow$ smallest node in $\text{adj}(i_1 + 1)$ given order.

$\hat{K} \leftarrow \hat{K} - \left(\text{LedoitWolf}(\text{X}_{i_0 \ldots i_1})\right)^{-1}$

end if

until $i_1 = p$

5. Experimental results: graphical models of ongoing brain activity

5.1. A resting-state fMRI dataset

We apply the various covariance-selection methods to estimate the Markov independence structure from a resting-state fMRI dataset acquired in a previous experiment [66]. 12 subjects were scanned in a resting task, resulting in a set of 810 brain volumes per subject acquired
with a repetition of 1.5 second. The data were preprocessed using the SPM5 software10, including in particular the spatial normalization to standard template space. As in Achard et al. \cite{Achard2006}, or Huang et al. \cite{Huang2007}, we extract brain-activation time series on a parcellation of the gray matter in 105 non-overlapping regions11. As we are interested in modeling only gray-matter correlations, we regress out confound effects obtained by extracting signals in the white matter, the cortico-spinal fluid regions, as well as the rigid-body motion time courses estimated during data pre-processing.

The correlation matrix of the resulting signals can be seen in Figure 3 (left). On this figure, regions are ordered according to the labels of the atlas that was used to define them \cite{Fischl2002}. This ordering groups together regions that belong to the same general bilateral anatomical structures. A first visual analysis reveals large blocks of correlated regions. This can be interpreted as the signature of the so-called cognitive networks.

The corresponding empirical precision matrix (Figure 3, right) reveals the partial correlations between regions. It appears more sparse; in particular the block-structure is not visible.

5.2. Generalization performance of the various estimators

We learn from this dataset different Gaussian graphical models of brain activity using the different covariance selection procedures: sparse penalized inverse covariance estimation12, PC-DAG, and FastDecomp. We evaluate the goodness of fit of the different models using a leave-one-out procedure: we learn a sparse precision on 11 subjects13 and test the likelihood of the data corresponding to the 12th subject in the model described by this precision matrix. In the likelihood term (eq. 1), we use correlation matrices, rather than covariances, as we are not interested in the variance terms, but only in the correlation structure.

As a baseline for the generalization likelihood, we use the Ledoit-Wolf diagonal shrinkage estimator14, that does not impose any structure or sparsity on the model. Each algorithm has a parameter that controls the degree of sparsity of the estimated graph: for the sparse penalized estimator it is the amount of ℓ_1 penalization $-\lambda$ in equation \ref{eq:1} and for the greedy methods, PC-DAG and FastDecomp, it is the threshold on the conditional independence test used to build the Markov independence graph $-\beta$ in listing \ref{alg:1}. If we set these parameters to maximize the likelihood of left-out data, we find that the best performing solutions are achieved with very little sparsity or penalization.

The PC-DAG approach is fast when underlying graphs are very sparse. However, to achieve good cross-validation scores on our data, the p-value on the conditional independence test of the PC algorithm should be very small. As a result, the algorithm explores denser graphs. As the computational cost is in $O(k^8)$, where \textit{k} is the maximum node degree of the graph, we could not reach an optimal point in reasonable time. We interpret this result by the fact that the brain-connectivity network is poorly represented by a network with small maximum node degree.

5.3. Trading off goodness of fit for decomposition into networks

We are interested in interpreting the graphs in terms of functional networks. As the networks found can be over-
lapping, the total number of cliques in the decomposable graph is not a good indication of the amount of “decomposition”. For this purpose, we study the maximum clique size, which correspond to the maximum number of nodes in a functional network (Figure 4). With a small maximum clique size, the likelihood of the model (Eq. 4) factors in terms comprising a small amount of brain regions, and the decomposition into conditionally-independent networks in more easily interpretable. Note that, in this case, the description of networks is underpinned by a probabilistic model in which they appear in independent terms, unlike when using ICA [69, 70, 71, 28], or seed-based correlation analysis [30, 72, 1].

Likelihood as a function of clique size. Decomposable models estimated using FastDecomp maintain a generalization score (likelihood on left out data) as good as the baseline for maximum clique size as large as 70% of the number of nodes but for smaller cliques their score decreases, and starts dropping quickly for cliques smaller than 30% (Figure 4). While the models estimated with the sparse penalized inverse covariance estimator or the PC-DAG algorithm are not decomposable, the graph can be completed into a chordal graph using the RCM algorithm. Increasing the penalization to create sparse graphs with the penalized estimator leads to a important loss in generalization scores without a sizable clique width reduction (Figure 4). Indeed, completing the graphs to be chordal creates large cliques unless they are very sparse. This high sparsity is enforced by using a large penalization, which introduces bias in the estimated coefficient and is detrimental to the generalization likelihood. The PC-DAG does not suffer from this limitation. However, we could not use it to explore graphs with a degree higher than 14 due to available computational power as the complexity of this algorithm is exponential in the maximum degree. Although very sparse, these graphs already have large cliques.

Selecting a decomposed model. As the maximum clique size decreases, so does the filling factor of the precision matrix. As a result, we are comparing models with different degrees of freedom and we should account for the difference in our model comparison, based on a likelihood ratio test. The expected difference in log-likelihood, under the null hypothesis that two models fit as well the data, is given by half the difference in degrees of freedom. When accounting for this loss (Figure 5), we find that for filling factors above 70%, which corresponds to a maximum clique width of 60%, the model learned by FastDecomp performs as well as the baseline non-sparse model.

5.4. Structure of the models

Here we discuss the structure of brain connectivity that appears in the graph learned.

Very sparse models. Only very sparse graph structures are directly interpretable. As can be seen on figure 5, PC-DAG is the algorithm best suited for this purpose as, unlike penalized methods, it does not bias the estimation of the precision matrix coefficient, and, unlike the FastDecomp algorithm, it does not force small cliques. It is interesting to note that these graphs have large cliques (Fig 4), even though we were limited to exploring small maximal node degrees due to available computational power. Such graphs (Figure 6) have a lattice-like structure –nearest-neighbor connections on the cortex– with the addition of inter-hemispheric homologous connections and a few long-distance connections.

15This procedure is often called triangularization of the graph.
Decomposition in networks. To assert the meaning of the decomposable models in neuroscientific terms, we apply FastDecomp with β chosen such that the maximum clique width is 50% of the full graph. As highlighted by the above cross-validation study, this results in a small loss in generalization scores. However, the resulting cliques and separating sets form small groups of regions and are therefore more interpretable. The estimated banded precision matrix is given in Figure 7. The differences between empirical and estimated covariance accumulate mainly outside the cliques that were selected by FastDecomp, corresponding to the long-range interactions between networks far apart according to the ordering learned. In Figure 8, we display the regions forming the nodes of the graph, colored by their node ordering on a standard brain model.

It is clear that the ordering is not random: regions of similar function are grouped together. For instance, the purple nodes form the primary visual cortex and are connected to blue regions along the well-known dorsal visual pathway, going up to the superior parietal lobule [73]. The separation of brain structure from the outer surface versus cingular regions, located in between the hemispheres, is also striking, as well as the symmetry of the model. However, more interesting is that the red regions, representing high node order, form a left-lateral network in the temporal lobe. It resembles the language network, the lateralized network most often recruited that is displayed on figure 1b, as estimated from the same resting-state dataset using an ICA-based method [28]. We note that the ordering of regions located in the central cliques is more difficult to interpret as it appears to be representing several cognitive networks. This is consistent with the fact that these regions are part of larger cliques, that do not separate small structures. We defer a more thorough neuroscientific interpretation of the present results, and in particular a link with the knowledge available from anatomical connectivity data, to future work.

A high bandwidth structure. While the graphical structures that we extract are sparse, we can see that they must have a small average path length to fit the data. Indeed, we find that the adjacency matrix of the graph must have a high bandwidth, as the likelihood drops when forcing a small bandwidth as for small clique sizes on figure 4. The graph is therefore a high-bandwidth graph [74], which implies it has a small diameter [75]. This in turns implies that average path length on the graph is small. In layman’s term, any two nodes are always connected by a small distance on the graph, as they can not be separated by more than a few large networks.

Small word properties. The high bandwidth that we observed is characteristic of small-world graphs. Our analysis

Figures 7 and 8: Figures showing the reordered empirical covariance and precision matrix, as well as estimates by FastDecomp, and the difference between empirical and estimated values. The parameter β was set to limit the size of the largest clique to 50% of the nodes. Compared to figure 3, the nodes have been reordered in a complete elimination ordering of the decomposable model. The outline of the cliques is drawn using a black line. Note that, while the empirical precision and the estimated precision seem to differ significantly due to the values set to zeros outside the cliques selected, the empirical and estimated covariance look very similar. The errors on the covariance matrix inside the cliques selected are not visible, as they are 1/100 times smaller than outside the cliques.

17 The RCM is an algorithm commonly used for ordering a graph to evaluate its bandwidth.

18 The diameter of a graph is the maximal value of the shortest path lengths for all pairs of nodes in the graph.
shows that this property is required for a model to fit the data well. The other aspect of a small-world graph, local properties of the graph such as clustering coefficient, is sensitive to sampling noise or the choice of thresholding or any other sparsity-enforcing parameter. It appears that, with our dataset, little sparsity is best to maximize goodness of fit. To study the local properties of the graph, we can use the results of the PC-DAG algorithm. Indeed, the chordal completion of the graph used in FastDecomp increases artificially the clustering coefficient, and the penalized estimators give precision matrices that are not sparse enough to be considered as small world. On the graph extracted by the PC-DAG with the best goodness of fit, we find an average shortest path length of 3.0 and an average node clustering coefficient of 0.19. These numbers are characteristic of small word graphs and are consistent with the graph properties reported with previous functional-connectivity analysis of fMRI that did not rely on Markov models.

We note that the PC-DAG algorithm is ill suited to recover small-world graphs, where the presence of hub nodes leads to high computational costs. On the opposite, FastDecomp is well suited for extracting large interpretable cliques on such data, but not the local properties.

6. Conclusion

We have applied different covariance selection procedures to learn probabilistic graphical models –Markov models– of brain functional connectivity from resting-state fMRI data. We introduce a definition of the large-scale functional networks as the cliques of a decomposable graphical model. To learn efficiently decomposable models on graphs presenting hub nodes, such as small-world graphs, we have introduced a new algorithm. By setting the width of the largest clique of the graph, we have investigated the compromise between models interpretable in terms of independent functional networks, and models that generalize well.

We find that the brain is best represented by a high-bandwidth graph that cannot be decomposed into small cliques: forcing a strongly decomposable representation breaks its small-world properties. However, we can learn a simplified model of the data in which the variables are decomposed into smaller conditionally-independent units that can be interpreted as functional networks, matching the current knowledge in cognitive neuroscience. To summarize adequately brain functional connectivity with segregated networks, these must encompass many brain regions and be strongly overlapping. These preliminary results provide further evidence that the functional connectivity signals observed in fMRI reflect the small-world properties of brain connectivity. Markov models, describing the conditional independence relations of the data, are a promising tool to investigate the large scale architecture of the brain via its functional connectivity.

Acknowledgments

We wish to thank Andreas Kleinschmidt for many enlightening discussions on the cognitive meaning of ongoing activity as well as Sepideh Sadighian for acquiring the data used in the paper. We are also grateful to the anonymous reviewers for helpful remarks. This project was partly funded from an INRIA-INSERM collaboration. The fMRI set was acquired in the context of the SPONTACT ANR project (ANR-07-NEURO-042). Estimation algorithms were implemented using the scikit-learn [77]. Figures were generated with Mayavi [78] and nipy (www.nipy.org).

References

[57] R. Fisher, Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika 10 (4) (1915) 507–521.

