E. Aarts and J. Lenstra, Local search in combinatorial optimization, 1997.

B. Adenso-díaz and M. Laguna, Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search, Operations Research, vol.54, issue.1, pp.99-114, 2006.
DOI : 10.1287/opre.1050.0243

E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Díaz et al., MALLBA: A Library of Skeletons for Combinatorial Optimisation, Parallel Processing Conference (Euro-Par 2002), pp.927-932, 2002.
DOI : 10.1007/3-540-45706-2_132

L. Altenberg, Fitness distance correlation analysis: an instructive counterexemple, Seventh Int. Conf. on Genetic Algorithms, pp.57-64, 1997.

U. Bastolla, M. Porto, H. Roman, and M. Vendruscolo, Statistical Properties of Neutral Evolution, Journal of Molecular Evolution, vol.57, issue.0, pp.103-119, 2003.
DOI : 10.1007/s00239-003-0013-4

T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua, LocalSolver 1.x: a black-box local-search solver for 0-1 programming, 4OR, vol.20, issue.2, pp.299-316, 2011.
DOI : 10.1007/s10288-011-0165-9

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A racing algorithm for configuring metaheuristics, Proceedings of the Genetic and Evolutionary Computation Conference, pp.11-18, 2002.

S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, PISA ??? A Platform and Programming Language Independent Interface for Search Algorithms, Second International Conference on Evolutionary Multi-Criterion Optimization, pp.494-508, 2003.
DOI : 10.1007/3-540-36970-8_35

J. Boisson, J. L. Talbi, and E. , Metaheuristics based de novo protein sequencing: A new approach, Applied Soft Computing, vol.11, issue.2, pp.2271-2278, 2011.
DOI : 10.1016/j.asoc.2010.08.007

URL : https://hal.archives-ouvertes.fr/inria-00575764

E. Burke and J. Newall, Enhancing Timetable Solutions with Local Search Methods, Practise and Theory of Automated Timetabling IV (PATAT 2002, pp.195-206, 2002.
DOI : 10.1007/978-3-540-45157-0_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Cahon, N. Melab, and E. Talbi, ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics, Journal of Heuristics, vol.10, issue.3, pp.357-380, 2004.
DOI : 10.1023/B:HEUR.0000026900.92269.ec

V. Cerny, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm, Journal of Optimization Theory and Applications, vol.21, issue.1, pp.41-51, 1985.
DOI : 10.1007/BF00940812

I. Charon and O. Hudry, The noising method: a new method for combinatorial optimization, Operations Research Letters, vol.14, issue.3, pp.133-137, 1993.
DOI : 10.1016/0167-6377(93)90023-A

M. Clergue and P. Collard, GA-hard functions built by combination of Trap functions, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), pp.249-254, 2002.
DOI : 10.1109/CEC.2002.1006242

URL : https://hal.archives-ouvertes.fr/hal-00166375

F. Daolio, S. Verel, G. Ochoa, and M. Tomassini, Local Optima Networks of the Quadratic Assignment Problem, IEEE Congress on Evolutionary Computation, pp.3145-3152, 2010.
DOI : 10.1109/CEC.2010.5586481

URL : https://hal.archives-ouvertes.fr/hal-00487806

A. Dekkers and E. Aarts, Global optimization and simulated annealing, Mathematical Programming, vol.56, issue.1-3, pp.367-393, 1991.
DOI : 10.1007/BF01594945

D. Gaspero, L. Roli, A. Schaerf, and A. , EasyAnalyzer: An Object-Oriented Framework for the Experimental Analysis of Stochastic Local Search Algorithms, International conference on Engineering stochastic local search algorithms, pp.76-90, 2007.
DOI : 10.1007/978-3-540-74446-7_6

A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, Parameter control in evolutionary algorithms (eds) Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, vol.54, pp.19-46, 2007.

T. Feo and M. Resende, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, vol.8, issue.2, pp.67-71, 1989.
DOI : 10.1016/0167-6377(89)90002-3

T. Feo and M. Resende, Greedy Randomized Adaptive Search Procedures, Journal of Global Optimization, vol.68, issue.2, pp.109-133, 1995.
DOI : 10.1007/BF01096763

L. Gaspero and A. Schaerf, EASYLOCAL++: an object-oriented framework for the flexible design of local-search algorithms, Software: Practice and Experience, vol.20, issue.8, pp.733-765, 2003.
DOI : 10.1002/spe.524

F. Glover, Future paths for integer programming and links to artificial intelligence, Computers & Operations Research, vol.13, issue.5, pp.533-549, 1986.
DOI : 10.1016/0305-0548(86)90048-1

F. Glover and C. Millan, The general employee scheduling problem. An integration of MS and AI, Computers & Operations Research, vol.13, issue.5, pp.563-573, 1986.
DOI : 10.1016/0305-0548(86)90050-X

J. Gu and X. Huang, Efficient local search with search space smoothing: a case study of the traveling salesman problem, IEEE Transactions on Systems Man and Cybernetics, vol.24, issue.5, pp.728-735, 1994.

S. Halim, R. Yap, and H. Lau, An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local Search, 13th International Conference on Principles and Practice of Constraint Programming, pp.332-347, 2007.
DOI : 10.1007/978-3-540-74970-7_25

P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming, congress on Numerical Methods in Combinatorial Optimization, 1986.

J. Hart and A. Shogan, Semi-greedy heuristics: An empirical study, Operations Research Letters, vol.6, issue.3, pp.107-114, 1987.
DOI : 10.1016/0167-6377(87)90021-6

H. Hoos and T. Stützle, Stochastic Local Search, 2004.
DOI : 10.1201/9781420010749.ch19

H. Hoos, Programming by optimization, Communications of the ACM, vol.55, issue.2, pp.70-80, 2012.
DOI : 10.1145/2076450.2076469

F. Hutter, H. Hoos, K. Leyton-brown, and T. Stützle, ParamILS: an automatic algorithm configuration framework, J Artif Int Res, vol.36, issue.1, pp.267-306, 2009.

D. Johnson, Local optimization and the travelling salesman problem, 17th Colloquium on Automata, Languages and Programming, pp.446-461, 1990.

M. Jones, A object-oriented framework for the implementation of search techniques, 2000.

M. Jones, G. Mckeown, and V. Rayward-smith, Templar: A object-oriented framework for distributed combinatorial optimization, Proc. of the UNICOM Seminar on Modern Heuristics for Decision Support, 1998.

T. Jones, Evolutionary algorithms, fitness landscapes and search, 1995.

M. Keijzer, J. Merelo, G. Romero, and M. Schoenauer, Evolving Objects: A General Purpose Evolutionary Computation Library, 5th International Conference on Artificial Evolution, pp.231-244, 2001.
DOI : 10.1007/3-540-46033-0_19

A. Khanafer, F. Clautiaux, S. Hanafi, and T. El-ghazali, The min-conflict packing problem, Computers & Operations Research, vol.39, issue.9, pp.2122-2132, 2012.
DOI : 10.1016/j.cor.2011.10.021

URL : https://hal.archives-ouvertes.fr/hal-00638177

M. Kimura, The Neutral Theory of Molecular Evolution, 1983.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

N. Krasnogor and J. Smith, MAFRA: A Java memetic algorithms framework In: Data mining with evolutionary algorithms, pp.125-131, 2000.

F. Lecron, P. Manneback, and D. Tuyttens, Exploiting grid computation for solving the Vehicle Routing Problem, ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2010, pp.1-6, 2010.
DOI : 10.1109/AICCSA.2010.5587020

A. Liefooghe, L. Jourdan, and E. Talbi, A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO, European Journal of Operational Research, vol.209, issue.2, pp.104-112, 2011.
DOI : 10.1016/j.ejor.2010.07.023

URL : https://hal.archives-ouvertes.fr/hal-00522612

A. Liefooghe, J. Humeau, S. Mesmoudi, J. L. Talbi, and E. , On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems, Journal of Heuristics, vol.7, issue.2, pp.317-352, 2012.
DOI : 10.1007/s10732-011-9181-3

URL : https://hal.archives-ouvertes.fr/hal-00628215

M. Locatelli, Simulated Annealing Algorithms for Continuous Global Optimization: Convergence Conditions, Journal of Optimization Theory and Applications, vol.47, issue.1, pp.87-102, 2000.
DOI : 10.1023/A:1004680806815

H. Lourenco, O. Martin, and T. Stutzle, Handbook of metaheuristics, Operations Research and Management Science, vol.57, pp.321-353, 2002.

M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, Opt4J -A Modular Framework for Metaheuristic Optimization, Proceedings of the Genetic and Evolutionary Computing Conference, 2011.

N. Madras, Lectures on Monte Carlo Methods, 2002.
DOI : 10.1090/fim/016

M. Marmion, C. Dhaenens, J. L. Liefooghe, A. Verel, and S. , NILS: A Neutrality-Based Iterated Local Search and Its Application to Flowshop Scheduling, Evolutionary Computation in Combinatorial Optimization Lecture Notes in Computer Science, vol.6622, pp.191-202, 2011.
DOI : 10.1007/978-3-642-20364-0_17

URL : https://hal.archives-ouvertes.fr/hal-00563459

M. Marmion, C. Dhaenens, J. L. Liefooghe, A. Verel, and S. , On the Neutrality of Flowshop Scheduling Fitness Landscapes, 5th Learning and Intelligent OptimizatioN Conference, pp.238-252, 2011.
DOI : 10.1007/BF00202749

URL : https://hal.archives-ouvertes.fr/hal-00550356

M. Marmion, F. Mascia, M. López-ibáñez, and T. Stützle, Automatic design of hybrid stochastic local search metaheuristics, In: Hybrid Metaheuristics Lecture Notes in Computer Science, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01094695

O. Martin, S. Otto, and E. Felten, Large-step markov chains for the traveling salesman problem, Complex Systems, vol.5, issue.3, pp.299-326, 1991.

N. Melab, T. Luong, B. Karima, and E. Talbi, Towards ParadisEO-MO-GPU: A Framework for GPU-Based Local Search Metaheuristics, 11th International Work-Conference on Artificial Neural Networks, 2011.
DOI : 10.1007/978-3-642-21501-8_50

URL : https://hal.archives-ouvertes.fr/inria-00638809

L. Michel and P. Hentenryck, Localizer++: An open library for local search, 2001.

L. Michel, A. See, and P. Hentenryck, Parallel and distributed local search in COMET, Computers & Operations Research, vol.36, issue.8, pp.2357-2375, 2009.
DOI : 10.1016/j.cor.2008.08.014

M. Mladenovic and P. Hansen, Variable neighborhood search, Computers & Operations Research, vol.24, issue.11, pp.1097-1100, 1997.
DOI : 10.1016/S0305-0548(97)00031-2

URL : https://hal.archives-ouvertes.fr/hal-00979295

V. Nannen and A. Eiben, Efficient relevance estimation and value calibration of evolutionary algorithm parameters, 2007 IEEE Congress on Evolutionary Computation, pp.975-980, 2007.
DOI : 10.1109/CEC.2007.4424460

G. Ochoa, M. Tomassini, S. Verel, and C. Darabos, A study of NK landscapes' basins and local optima networks, Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pp.555-562, 2008.
DOI : 10.1145/1389095.1389204

URL : https://hal.archives-ouvertes.fr/hal-00331868

G. Ochoa, S. Verel, and M. Tomassini, First-Improvement vs. Best-Improvement Local Optima Networks of NK Landscapes, Proceedings of the 11th International Conference on Parallel Problem Solving From Nature, pp.104-113, 2010.
DOI : 10.1007/978-3-642-15844-5_11

URL : https://hal.archives-ouvertes.fr/hal-00488401

L. Ozdamar and M. Demirhan, Experiments with new stochastic global optimization search techniques, Computers & Operations Research, vol.27, issue.9, pp.841-865, 2000.
DOI : 10.1016/S0305-0548(99)00054-4

C. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, 1982.

J. Parejo, A. Ruiz-cortés, S. Lozano, and P. Fernández, Metaheuristic optimization frameworks: a survey and benchmarking, Soft Computing, vol.3, issue.4, pp.527-561, 2012.
DOI : 10.1007/s00500-011-0754-8

R. Quick, V. Rayward-smith, and G. Smith, Fitness distance correlation and Ridge functions, Fifth Conference on Parallel Problems Solving from Nature (PPSN'98), pp.77-86, 1998.
DOI : 10.1007/BFb0056851

C. Reidys and P. Stadler, Neutrality in fitness landscapes, Applied Mathematics and Computation, vol.117, issue.2-3, pp.321-350, 2001.
DOI : 10.1016/S0096-3003(99)00166-6

E. Rodriguez-tello, J. Hao, and J. Torres-jimenez, An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem, Computers & Operations Research, vol.35, issue.10, pp.3331-3346, 2008.
DOI : 10.1016/j.cor.2007.03.001

H. Rosé, W. Ebeling, and T. Asselmeyer, The density of states ??? A measure of the difficulty of optimisation problems, Parallel Problem Solving from Nature, pp.208-217, 1996.
DOI : 10.1007/3-540-61723-X_985

F. Rothlauf, Representations for genetic and evolutionary algorithms, 2006.
DOI : 10.1007/978-3-642-88094-0

B. Sendhoff, M. Kreutz, and W. Von-seelen, A condition for the genotype-phenotype mapping: Causality, Proc. of the 7th Int. Conf. on Genetic Algorithms, pp.73-80, 1997.

P. Stadler, Fitness landscapes, Lecture Notes Physics, vol.585, pp.187-207, 2002.
DOI : 10.1007/3-540-45692-9_10

T. Stutzle, Local search algorithms for combinatorial problems -analysis, algorithms and new applications, 1999.

E. Talbi, Metaheuristics: from design to implementation, 2009.
DOI : 10.1002/9780470496916

URL : https://hal.archives-ouvertes.fr/hal-00750681

E. Talbi, Z. Hafidi, and J. Geib, A parallel adaptive tabu search approach, Parallel Computing, vol.24, issue.14, pp.2003-2019, 1998.
DOI : 10.1016/S0167-8191(98)00086-6

E. Van-nimwegen, J. Crutchfield, and M. Huynen, Neutral evolution of mutational robustness, Proc. Nat. Acad. Sci. USA 96, pp.9716-9720, 1999.
DOI : 10.1073/pnas.96.17.9716

S. Verel, Fitness landscapes and graphs: multimodularity, ruggedness and neutrality. In: 11th annual conference companion on Genetic and evolutionary computation conference, pp.3593-3656, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00845349

S. Verel, P. Collard, and M. Clergue, Where are bottlenecks in NK fitness landscapes?, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., pp.273-280, 2003.
DOI : 10.1109/CEC.2003.1299585

URL : https://hal.archives-ouvertes.fr/hal-00159994

S. Voss and D. Woodruff, Optimization software class librairies, 2002.

C. Voudouris, Guided local search -an illustrative example in function optimization, BT Technology Journal, vol.16, issue.3, pp.46-50, 1998.
DOI : 10.1023/A:1009665513140

C. Voudouris and E. Tsang, Guided local search and its application to the traveling salesman problem, European Journal of Operational Research, vol.113, issue.2, pp.469-499, 1999.
DOI : 10.1016/S0377-2217(98)00099-X

E. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference, Biological Cybernetics, vol.1, issue.5, pp.325-336, 1990.
DOI : 10.1007/BF00202749

E. Weinberger, model: A tunably rugged energy landscape, Physical Review A, vol.44, issue.10, pp.6399-6413, 1991.
DOI : 10.1103/PhysRevA.44.6399

D. White, Software review: the ECJ toolkit, Genetic Programming and Evolvable Machines, vol.12, issue.1, pp.65-67, 2012.
DOI : 10.1007/s10710-011-9148-z

C. Wilke, Adaptive Evolution on Neutral Networks, Bulletin of Mathematical Biology, vol.63, issue.4, pp.715-730, 2001.
DOI : 10.1006/bulm.2001.0244

L. Search and A. , 11 2.4.1 Hill-Climbing Algorithm, 11 2.4.2 Escaping from Local

A. Components and .. , 25 3.2.1 Local Search, p.27